Stomatopods are better known as mantis shrimp with considerable ecological importance in wide coastal waters globally. Some stomatopod species are exploited commercially, including Oratosquilla oratoria in the Northwe...Stomatopods are better known as mantis shrimp with considerable ecological importance in wide coastal waters globally. Some stomatopod species are exploited commercially, including Oratosquilla oratoria in the Northwest Pacific. Yet, few studies have published to promote accurate habitat identification of stomatopods, obstructing scientific management and conservation of these valuable organisms. This study provides an ensemble modeling framework for habitat suitability modeling of stomatopods, utilizing the O. oratoria stock in the Bohai Sea as an example. Two modeling techniques(i.e., generalized additive model(GAM) and geographical weighted regression(GWR)) were applied to select environmental predictors(especially the selection between two types of sediment metrics) that better characterize O. oratoria distribution and build separate habitat suitability models(HSM). The performance of the individual HSMs were compared on interpolation accuracy and transferability.Then, they were integrated to check whether the ensemble model outperforms either individual model, according to fishers’ knowledge and scientific survey data. As a result, grain-size metrics of sediment outperformed sediment content metrics in modeling O. oratoria habitat, possibly because grain-size metrics not only reflect the effect of substrates on burrow development, but also link to sediment heat capacity which influences individual thermoregulation. Moreover, the GWR-based HSM outperformed the GAM-based HSM in interpolation accuracy,while the latter one displayed better transferability. On balance, the ensemble HSM appeared to improve the predictive performance overall, as it could avoid dependence on a single model type and successfully identified fisher-recognized and survey-indicated suitable habitats in either sparsely sampled or well investigated areas.展开更多
基金The National Natural Science Foundation of China under contract No.31902375the David and Lucile Packard Foundation+1 种基金the Innovation Team of Fishery Resources and Ecology in the Yellow Sea and Bohai Sea under contract No.2020TD01the Special Funds for Taishan Scholars Project of Shandong Province。
文摘Stomatopods are better known as mantis shrimp with considerable ecological importance in wide coastal waters globally. Some stomatopod species are exploited commercially, including Oratosquilla oratoria in the Northwest Pacific. Yet, few studies have published to promote accurate habitat identification of stomatopods, obstructing scientific management and conservation of these valuable organisms. This study provides an ensemble modeling framework for habitat suitability modeling of stomatopods, utilizing the O. oratoria stock in the Bohai Sea as an example. Two modeling techniques(i.e., generalized additive model(GAM) and geographical weighted regression(GWR)) were applied to select environmental predictors(especially the selection between two types of sediment metrics) that better characterize O. oratoria distribution and build separate habitat suitability models(HSM). The performance of the individual HSMs were compared on interpolation accuracy and transferability.Then, they were integrated to check whether the ensemble model outperforms either individual model, according to fishers’ knowledge and scientific survey data. As a result, grain-size metrics of sediment outperformed sediment content metrics in modeling O. oratoria habitat, possibly because grain-size metrics not only reflect the effect of substrates on burrow development, but also link to sediment heat capacity which influences individual thermoregulation. Moreover, the GWR-based HSM outperformed the GAM-based HSM in interpolation accuracy,while the latter one displayed better transferability. On balance, the ensemble HSM appeared to improve the predictive performance overall, as it could avoid dependence on a single model type and successfully identified fisher-recognized and survey-indicated suitable habitats in either sparsely sampled or well investigated areas.