Underground brine is an unusual water resource that contains abundant mineral resources. It is distributed widely in the Qaidam Basin, western China, a hyperarid inland basin located in the northern Tibetan Plateau. P...Underground brine is an unusual water resource that contains abundant mineral resources. It is distributed widely in the Qaidam Basin, western China, a hyperarid inland basin located in the northern Tibetan Plateau. Pores in the brine storage medium act as storage space and transmission channels of underground brine. Therefore, the porosity of brine storage medium determines its ability to store brine. In this study, Mahai Salt Lake was used as the research area as a modern saline lake located in the north area of the Qaidam Basin. A total of 100 porosity samples were collected from eight sampling points in two profiles of the research area at sampling depths of 1.30–314.78 m. The porosity distribution characteristics and influencing factors in brine storage medium were analysed according to the measured porosity data. Based on analysis of the pore structure characteristics, the brine storage medium contains intercrystalline pores, unlike conventional freshwater storage mediums. Moreover, the primary salt rock is susceptible to dissolution by lighter brine, facilitating the formation of secondary porosity. Due to the formation of secondary pores, a porosity greater than 20% remains even at buried depths greater than 100 m. Based on the geological statistical analysis, due to the geographic location, salt formation time, and depositional environment, the porosity values of Mahai Salt Lake do not exhibit a wider distribution, but also show more extreme values than a nearby salt lake. Based on the porosity characteristics by depth, due to the presence of secondary pores, flooding, stratigraphic static pressure, and other factors, porosity shows fluctuations with increasing depth.展开更多
This paper briefly summarizes the current status of typical solar thermal power plant system,including system composition,thermal energy storage medium and performance.The thermo-physical properties of the storage med...This paper briefly summarizes the current status of typical solar thermal power plant system,including system composition,thermal energy storage medium and performance.The thermo-physical properties of the storage medium are some of the most important factors that affect overall efficiency of the system,because some renewable energy sources such as solar and wind are unpredictable.A thermal storage system is therefore necessary to store energy for continuous usage.Based on the form of storage or the mode of system connection,heat exchangers of a thermal storage system can produce different temperature ranges of heat transfer fluid to realize energy cascade utilization.Founded upon the review,a small hybrid energy system with a molten-salt energy storage system is proposed to solve the problems of heating,cooling,and electricity consumption of a 1000 m2 training hall at school.The system uses molten-salt storage tank,water tank and steam generator to change the temperature of heat transfer fluid,in order to realize thermal energy cascade utilization.Compared to the existing heating and cooling system,the proposed system needs more renewable energy and less municipal energy to achieve the same results according to simulation analysis.Furthermore,by improving the original heating and cooling system,PMV has been improved.The comprehensive efficiency of solar energy utilization has been increased to 83%.展开更多
The article presents the results of experimental studies of the physical mechanisms and magnetic switching dynamics of films with one or two magnetic nanolayers under an irradiation picosecond and femtosecond laser pu...The article presents the results of experimental studies of the physical mechanisms and magnetic switching dynamics of films with one or two magnetic nanolayers under an irradiation picosecond and femtosecond laser pulses and also the samples of data recording devices on the spin storage medium are described. The study used a film with perpendicular anisotropy (Tb22Co5Fe73/Pr6O11/Tb29Co5Fe76, Tb25Co5Fe70/Al2O3, Tb22Co5Fe73, Tb19Co5Fe76) and films planar single-axis magnetic anisotropy (Co80Fe20/Pr6O11/CO30Fe70). The magnetic switching of magnetic layers under action the magnetic field of a spin current is the most important for practical use in elements of spintronic. The spin current can also be realized using short electrical pulses. On the basis of this mechanism, the high-speed recording of information on the spin carrier has been realized.展开更多
In this paper, we first present a full numerical simulation for the trapping and retrieval procedure of eight continuing '1' Guassian pulses (i.e., '11111111') in the electromagnetically induced transp...In this paper, we first present a full numerical simulation for the trapping and retrieval procedure of eight continuing '1' Guassian pulses (i.e., '11111111') in the electromagnetically induced transparency (BIT) medium. This simulation shows that an BIT medium has the ability to store multiple light pulses in a shape-preserving way. And we also, for the first time, give the formula evaluating the maximum number of pulses that can be stored by an EIT medium at one time. This work reveals a new possible way to the reversible storage of the photonic information.展开更多
Based on the Dark State Polariton (DSP) theory, a full numerical simulation of an optical packet's trapping and retrieval procedure in the Electromagnetically Induced Transparency (BIT) medium is first presented h...Based on the Dark State Polariton (DSP) theory, a full numerical simulation of an optical packet's trapping and retrieval procedure in the Electromagnetically Induced Transparency (BIT) medium is first presented here by us.展开更多
基金Under the auspices of The National Natural Science Fundation of China(No.41572216,41672243)The Water Resources Project of Jilin Province(No.0773-1441GNJL00390)+1 种基金The Natural Science Fundation of Jilin Province(No.20140101164JC)Science and Technology Support Program of Qinghai Province(No.2012-G-154A)
文摘Underground brine is an unusual water resource that contains abundant mineral resources. It is distributed widely in the Qaidam Basin, western China, a hyperarid inland basin located in the northern Tibetan Plateau. Pores in the brine storage medium act as storage space and transmission channels of underground brine. Therefore, the porosity of brine storage medium determines its ability to store brine. In this study, Mahai Salt Lake was used as the research area as a modern saline lake located in the north area of the Qaidam Basin. A total of 100 porosity samples were collected from eight sampling points in two profiles of the research area at sampling depths of 1.30–314.78 m. The porosity distribution characteristics and influencing factors in brine storage medium were analysed according to the measured porosity data. Based on analysis of the pore structure characteristics, the brine storage medium contains intercrystalline pores, unlike conventional freshwater storage mediums. Moreover, the primary salt rock is susceptible to dissolution by lighter brine, facilitating the formation of secondary porosity. Due to the formation of secondary pores, a porosity greater than 20% remains even at buried depths greater than 100 m. Based on the geological statistical analysis, due to the geographic location, salt formation time, and depositional environment, the porosity values of Mahai Salt Lake do not exhibit a wider distribution, but also show more extreme values than a nearby salt lake. Based on the porosity characteristics by depth, due to the presence of secondary pores, flooding, stratigraphic static pressure, and other factors, porosity shows fluctuations with increasing depth.
基金funded by 2017 Research Project of Tianjin Sino-German University of Applied Sciences(Project No.zdkt2017-001)The Science&Technology Development Fund of Tianjin Education Commission for Higher Education(Project No.2018KJ260)The Science&Technology Development Fund of Tianjin Education Commission for Higher Education(Project No.2020ZD03).
文摘This paper briefly summarizes the current status of typical solar thermal power plant system,including system composition,thermal energy storage medium and performance.The thermo-physical properties of the storage medium are some of the most important factors that affect overall efficiency of the system,because some renewable energy sources such as solar and wind are unpredictable.A thermal storage system is therefore necessary to store energy for continuous usage.Based on the form of storage or the mode of system connection,heat exchangers of a thermal storage system can produce different temperature ranges of heat transfer fluid to realize energy cascade utilization.Founded upon the review,a small hybrid energy system with a molten-salt energy storage system is proposed to solve the problems of heating,cooling,and electricity consumption of a 1000 m2 training hall at school.The system uses molten-salt storage tank,water tank and steam generator to change the temperature of heat transfer fluid,in order to realize thermal energy cascade utilization.Compared to the existing heating and cooling system,the proposed system needs more renewable energy and less municipal energy to achieve the same results according to simulation analysis.Furthermore,by improving the original heating and cooling system,PMV has been improved.The comprehensive efficiency of solar energy utilization has been increased to 83%.
文摘The article presents the results of experimental studies of the physical mechanisms and magnetic switching dynamics of films with one or two magnetic nanolayers under an irradiation picosecond and femtosecond laser pulses and also the samples of data recording devices on the spin storage medium are described. The study used a film with perpendicular anisotropy (Tb22Co5Fe73/Pr6O11/Tb29Co5Fe76, Tb25Co5Fe70/Al2O3, Tb22Co5Fe73, Tb19Co5Fe76) and films planar single-axis magnetic anisotropy (Co80Fe20/Pr6O11/CO30Fe70). The magnetic switching of magnetic layers under action the magnetic field of a spin current is the most important for practical use in elements of spintronic. The spin current can also be realized using short electrical pulses. On the basis of this mechanism, the high-speed recording of information on the spin carrier has been realized.
基金This work was supported by the National Natural Science Foundation of China under Grants No.90104003,69990540-2,60272023 and 10074003also supported by the National Hi-Tech 863 Plan of China under Contracts No.2001AA122012,2003AA103410,and 2003AA122540.
文摘In this paper, we first present a full numerical simulation for the trapping and retrieval procedure of eight continuing '1' Guassian pulses (i.e., '11111111') in the electromagnetically induced transparency (BIT) medium. This simulation shows that an BIT medium has the ability to store multiple light pulses in a shape-preserving way. And we also, for the first time, give the formula evaluating the maximum number of pulses that can be stored by an EIT medium at one time. This work reveals a new possible way to the reversible storage of the photonic information.
文摘Based on the Dark State Polariton (DSP) theory, a full numerical simulation of an optical packet's trapping and retrieval procedure in the Electromagnetically Induced Transparency (BIT) medium is first presented here by us.