期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
Improving the seismic performance of base-isolated liquid storage tanks with supplemental linear viscous dampers 被引量:6
1
作者 Alexandros Tsipianitis Yiannis Tsompanakis 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第1期269-282,共14页
Large tanks are extensively used for storing water,petrochemicals and fuels.Since they are often cited in earthquake-prone areas,the safe and continuous operation of these important structures must be ensured even whe... Large tanks are extensively used for storing water,petrochemicals and fuels.Since they are often cited in earthquake-prone areas,the safe and continuous operation of these important structures must be ensured even when severe earthquakes occur,since their failure could have devastating financial and socio-environmental consequences.Base-isolation has been widely adopted for the efficient seismic protection of such critical facilities.However,base-isolated tanks can be located relatively close to active faults that generate strong excitations with special characteristics.Consequently,viscous dampers can be incorporated into the isolation system to reduce excessive displacement demands and to avoid overconservative isolator design.Nonetheless,only a few studies have focused on the investigation of seismic response of base-isolated liquid storage tanks in conjunction with supplemental viscous dampers.Therefore,the impact of the addition of supplemental linear viscous dampers on the seismic performance of tanks isolated by single friction pendulum devices is investigated herein.Four levels of supplemental damping are assessed and compared with respect to isolators′displacement capacity and accelerations that are transferred to the tanks. 展开更多
关键词 liquid storage tanks linear viscous dampers seismic isolation concave sliding bearings seismic vulnerability
下载PDF
Seismic assessment of unanchored steel storage tanks by endurance time method 被引量:4
2
作者 M. Alembagheri H.E. Estekanchi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第4期591-603,共13页
Liquid storage tanks are essential structures that are often located in residential and industrial areas; thus an assessment of their seismic performance is an important engineering issue. In this paper, the seismic r... Liquid storage tanks are essential structures that are often located in residential and industrial areas; thus an assessment of their seismic performance is an important engineering issue. In this paper, the seismic response ofunanchored steel liquid storage tanks is investigated using the endurance time (ET) dynamic analysis procedure and compared to responses obtained for anchored tanks under actual ground motions and intensifying ET records. In most cases, the results from ground motions are properly obtained with negligible differences using ET records. It is observed that uplifting of the tank base, which is closely related to the tank aspect ratio, has the greatest significance in the responses of the tank and can be predicted with reasonable accuracy by using currently available ET records. 展开更多
关键词 steel liquid storage tanks endurance time method seismic assessment intensifying dynamic excitation tank base uplifting
下载PDF
Deformation Analysis of Gasoline Storage Tanks
3
作者 Ana Cristina C.F.Sieira Luis Fernando S.Castro 《Journal of Civil Engineering and Architecture》 2022年第12期626-631,共6页
This paper aims to study the deformations of the five tanks implanted in a Terminal located in the region of Pará,Brazil.Initially,the results of eight standard penetration tests(SPT),carried out around the const... This paper aims to study the deformations of the five tanks implanted in a Terminal located in the region of Pará,Brazil.Initially,the results of eight standard penetration tests(SPT),carried out around the construction area of the tanks,were analyzed to define a representative geological-geotechnical profile and estimate of geotechnical parameters of the local subsoil.The vertical deformations imposed by the construction of the tanks were predicted numerically from the PLAXIS 2D computational program,which performs stress-strain analysis using the finite element method.From the prediction of the settlements,it was possible to estimate the maximum settlements and the angular distortions for the foundations of the tanks,comparing with the admissible values. 展开更多
关键词 Numerical analysis storage tanks settlements and distortions
下载PDF
Investigation of factors affecting on viscosity reduction of sludge from Iranian crude oil storage tanks 被引量:14
4
作者 Masoumeh Hassanzadeh Leila Tayebi Hedieh Dezfouli 《Petroleum Science》 SCIE CAS CSCD 2018年第3期634-643,共10页
Crude oil is a kind of water/oil emulsion, which the oil phase consists of organic molecules with different molecular weights such as alkanes, paraffin, asphaltene, and resins. Due to the change in physicochemical con... Crude oil is a kind of water/oil emulsion, which the oil phase consists of organic molecules with different molecular weights such as alkanes, paraffin, asphaltene, and resins. Due to the change in physicochemical conditions during the production, transportation, storage, and refining, heavier molecules can precipitate from crude oil. Thus, viscous sludge formed at the bottom of storage tanks can cause many problems including reduction of storage capacity of tank, oil contamination, corrosion, repair costs, environmental pollution, etc. The reduction of sludge viscosity can be achieved by reduction of its interfacial tension. In this study, different chemical and physical factors, influencing prepared emulsions(made of sludge, water and surfactant), such as surfactants, solvents, temperature, pressure, and mixing conditions were investigated. Results showed that non-ionic surfactants(like bitumen emulsifier), and solvents(such as mixed xylene, AW-400, and AW-402), injection of additives, applying pressure, and mixing operations had a positive effect on reduction of emulsion viscosity. All experiments were carried out with sludge obtained from crude oil storage tanks at Kharg Island,Iran. 展开更多
关键词 SURFACTANT EMULSION SLUDGE storage tank Crude oil
下载PDF
UNITIVE ANALYSIS SCHEMES ON PROBLEMS OF MULTIPLE MOVING BOUNDARIES WITH 3-D LIQUID-SOLID MULTIPLE NONLINEAR COUPLING FOR UPLIFT OF ANCHOREDLIQUID STORAGE TANKS
5
作者 温德超 郑兆昌 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1997年第1期69-79,共11页
In the paper, 3-D analysis method with unitive schemes is set up, which is used to resolve the uplift with multiple moving boundaries and multiple nonlinear coupling for anchored liquid storage tanks. hi it, an algori... In the paper, 3-D analysis method with unitive schemes is set up, which is used to resolve the uplift with multiple moving boundaries and multiple nonlinear coupling for anchored liquid storage tanks. hi it, an algorithm of quasi-harmonious finite elements for arbitrary quadrilateral of thin plates and shells is built up to analyze the multiple coupling problems of general thin plates and shells structures with three dimensions, the complementary equations for analyzing uplifting moving boundary problems are deduced. The axial symmetry and presumption of beam type mode are not used. In it, an algorithm is put forward for analyzing the Navier-Stokes problems of unsteady, three-dimensional, and viscous liquid with sloshing of moving boundary surfaces in large amplitude under ALE frame by scheme of time-split-steps to which linear potential theory is not applied. The algorithms can be used to analyze the solid-liquid multiple nonlinear coupling problems with 3-D moving boundary with friction in multiple places. 展开更多
关键词 solid-liquid coupling multiple nonlinear coupling moving boundary liquid storage tank UPLIFT time-split-steps ALE method
下载PDF
Key technology and application of AB_(2) hydrogen storage alloy in fuel cell hydrogen supply system
6
作者 Ming Yao Jianguang Yuan +3 位作者 Bao Zhang Youhua Yan Shaoxiong Zhou Ying Wu 《Materials Reports(Energy)》 EI 2024年第1期113-122,共10页
At present,there is limited research on the application of fuel cell power generation system technology using solid hydrogen storage materials,especially in hydrogen-assisted two-wheelers.Considering the disadvantages... At present,there is limited research on the application of fuel cell power generation system technology using solid hydrogen storage materials,especially in hydrogen-assisted two-wheelers.Considering the disadvantages of low hydrogen storage capacity and poor kinetics of hydrogen storage materials,our primary focus is to achieve smooth hydrogen ab-/desorption over a wide temperature range to meet the requirements of fuel cells and their integrated power generation systems.In this paper,the Ti_(0.9)Zr_(0.1)Mn_(1.45)V_(0.4)Fe_(0.15) hydrogen storage alloy was successfully prepared by arc melting.The maximum hydrogen storage capacity reaches 1.89 wt% at 318 K.The alloy has the capability to absorb 90% of hydrogen storage capacity within 50 s at 7 MPa and release 90% of hydrogen within 220 s.Comsol Multiphysics 6.0 software was used to simulate the hydrogen ab-/desorption processes of the tank.The flow rate of cooling water during hydrogen absorption varied in a gradient of(0.02 t x)m s^(-1)(x=0,0.02,0.04,0.06,0.08,0.1,0.12).Cooling water flow rate is positively correlated with the hydrogen absorption rate but negatively correlated with the cost.When the cooling rate is 0.06 m s^(-1),both simulation and experimentation have shown that the hydrogen storage tank is capable of steady hydrogen desorption for over 6 h at a flow rate of 2 L min^(-1).Based on the above conclusions,we have successfully developed a hydrogen-assisted two-wheeler with a range of 80 km and achieved regional demonstration operations in Changzhou and Shaoguan.This paper highlights the achievements of our team in the technological development of fuel cell power generation systems using solid hydrogen storage materials as hydrogen storage carriers and their application in twowheelers in recent years. 展开更多
关键词 AB_(2)hydrogen storage alloy Hydrogen storage tanks Simulation Hydrogen-electric coupling system Power-assisted two-wheelers
下载PDF
Explosion damage effects of aviation kerosene storage tank under strong ignition
7
作者 Shixiang Song Cheng Wang +1 位作者 Boyang Qiao Gongtian Gu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期27-38,共12页
In order to study the blast damage effects of aviation kerosene storage tanks,the out-field explosion experiments of 8 m3fixed-roof tanks were carried out.The fragments,shock wave and fireball thermal radiation of the... In order to study the blast damage effects of aviation kerosene storage tanks,the out-field explosion experiments of 8 m3fixed-roof tanks were carried out.The fragments,shock wave and fireball thermal radiation of the tank in the presence of bottom oil,half oil and full oil,as well as empty tank,were investigated under internal explosion by various TNT charge contents(1.8 kg,3.5 kg and 6.2 kg).The results showed that the tank roof was the only fragment produced,and the damage forms could be divided into three types.The increase of TNT charge content and oil volume enlarged the deformation of the tank,while the hole ratio presented a trend of increase first and then decrease.The H_r,maxand V_(max)values positively increased as increasing the TNT charge content and oil volume(from empty to half oil),but decreased in full oil.The Pmaxvalues had a progressive increase with the increment of TNT charge content,but not the case with the increase in oil volumes.The development of fireball was divided into three stages:tank roof‘towed'flame,jet flow flame tumbling and rising,and jet flow flame extinguishing.The Dmaxand Hf,maxvalues both increased as increasing TNT charge content and oil volumes.The oscillation phenomenon of fireball temperature was observed in the cooling process.The average temperature of fireball surface was positively correlated with TNT charge content,and negatively correlated with oil volumes. 展开更多
关键词 Aviation kerosene storage tank Internal explosion Shock wave FIREBALL
下载PDF
Numerical Simulation of the Seismic Response of a Horizontal Storage Tank Based on a SPH-FEM Coupling Method
8
作者 Peilei Yan Endong Guo +1 位作者 HouliWu Liangchao Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1655-1678,共24页
A coupled numerical calculation method combining smooth particle hydrodynamics(SPH)and the finite element method(FEM)was implemented to investigate the seismic response of horizontal storage tanks.Anumericalmodel of a... A coupled numerical calculation method combining smooth particle hydrodynamics(SPH)and the finite element method(FEM)was implemented to investigate the seismic response of horizontal storage tanks.Anumericalmodel of a horizontal storage tank featuring a free liquid surface under seismic action was constructed using the SPH–FEM coupling method.The stored liquid was discretized using SPH particles,while the tank and supports were discretized using the FEM.The interaction between the stored liquid and the tank was simulated by using the meshless particle contact method.Then,the numerical simulation results were compared and analyzed against seismic simulation shaking table test data to validate the method.Subsequently,a series of numerical models,considering different liquid storage volumes and seismic effects,were constructed to obtain time history data of base shear and top center displacement,which revealed the seismic performance of horizontal storage tanks.Numerical simulation results and experimental data showed good agreement,with an error rate of less than 18.85%.And this conformity signifies the rationality of the SPH-FEM coupling method.The base shear and top center displacement values obtained by the coupled SPH-FEM method were only 53.3% to 69.1% of those calculated by the equivalent mass method employed in the current code.As the stored liquid volume increased,the seismic response of the horizontal storage tank exhibited a gradual upward trend,with the seismic response increasing from 73% to 388% for every 35% increase in stored liquid volume.The maximum von Mises stress of the tank and the supports remained below the steel yield strength during the earthquake.The coupled SPH-FEM method holds certain advantages in studying the seismic problems of tanks with complex structural forms,particularly due to the representation of the flow field distribution during earthquakes by involving reservoir fluid participation. 展开更多
关键词 SPH-FEM coupling method horizontal storage tank seismic response SLOSHING
下载PDF
Modern Corrosion Mapping of Storage Tank Bottoms--Notable Advancements in Critical Zone Coverage,Inspection Efficiency and Data Integrity
9
作者 Andrew J.Simpson Matthew A.Boat 《Journal of Civil Engineering and Architecture》 2024年第3期148-153,共6页
Every day,an NDT(Non-Destructive Testing)report will govern key decisions and inform inspection strategies that could affect the flow of millions of dollars which ultimately affects local environments and potential ri... Every day,an NDT(Non-Destructive Testing)report will govern key decisions and inform inspection strategies that could affect the flow of millions of dollars which ultimately affects local environments and potential risk to life.There is a direct correlation between report quality and equipment capability.The more able the equipment is-in terms of efficient data gathering,signal to noise ratio,positioning,and coverage-the more actionable the report is.This results in optimal maintenance and repair strategies providing the report is clear and well presented.Furthermore,when considering tank floor storage inspection it is essential that asset owners have total confidence in inspection findings and the ensuing reports.Tank floor inspection equipment must not only be efficient and highly capable,but data sets should be traceable and integrity maintained throughout.Corrosion mapping of large surface areas such as storage tank bottoms is an inherently arduous and time-consuming process.MFL(magnetic flux leakage)based tank bottom scanners present a well-established and highly rated method for inspection.There are many benefits of using modern MFL technology to generate actionable reports.Chief among these includes efficiency of coverage while gaining valuable information regarding defect location,severity,surface origin and the extent of coverage.More recent advancements in modern MFL tank bottom scanners afford the ability to scan and record data sets at areas of the tank bottom which were previously classed as dead zones or areas not scanned due to physical restraints.An example of this includes scanning the CZ(critical zone)which is the area close to the annular to shell junction weld.Inclusion of these additional dead zones increases overall inspection coverage,quality and traceability.Inspection of the CZ areas allows engineers to quickly determine the integrity of arguably the most important area of the tank bottom.Herein we discuss notable developments in CZ coverage,inspection efficiency and data integrity that combines to deliver an actionable report.The asset owner can interrogate this report to develop pertinent and accurate maintenance and repair strategies. 展开更多
关键词 storage tank tank bottom CZ MFL stars CORROSION corrosion-mapping EFFICIENCY COVERAGE paperless reporting data traceability
下载PDF
Rheological behavior of oil sludge from Algerian refinery storage tanks
10
作者 Farid Souas 《Petroleum Research》 2022年第4期536-544,共9页
The consumption and demand for petroleum are increasing dramatically with the rapid development of industry and energy sector.As a result,petroleum refineries produce the greatest amount of oily sludge formed at the b... The consumption and demand for petroleum are increasing dramatically with the rapid development of industry and energy sector.As a result,petroleum refineries produce the greatest amount of oily sludge formed at the bottom of storage tanks during oil storage operations,which has a severely negative impact on the storage capacity and the operational safety of the storage tank.The present study focuses on the rheology of this complex fluid from Algerian crude oil storage tanks.Rheological measurements were performed at different temperatures under steady shear and dynamic oscillometry using AR-2000 Rheometer.The results obtained show that the sludge exhibits yield-pseudoplastic flow behavior at low shear rates,which is adequately described by the Herschel Bulkley model based on the standard error and correlation coefficient values.However,quasi-Newtonian flow behavior occurs at very high shear rates.The increase in temperature had positive effects on the rheological properties of the sludge,including dynamic viscosity,shear stress,yield stress,complex modulus,elastic modulus and viscous modulus.The dynamic rheology studies have shown that the sludge material behaves more like a solid than a liquid under all experimental conditions studied. 展开更多
关键词 Crude oil RHEOLOGY SLUDGE storage tank TEMPERATURE VISCOSITY
原文传递
Comprehensive Molten Salt Storage Shell and Support Design and Analysis Ⅲ: A Complete 700 ℃ Thermal-Structural Interaction Design Using Theoretical Analysis of an 80 Foot Diameter and 46 Foot High MS Storage Shell Including Structural, Conductive and Convective Thermal Stress Analysis 被引量:1
11
作者 Nathan Loyd Samaan Ladkany 《Journal of Energy and Power Engineering》 CAS 2024年第2期35-45,共11页
The paper discusses the structural design of a futuristic 700℃ MS(Molten salt)Storage Shell,which considers many elements in providing an adequate and comprehensive design.In designing the structural carbon steel for... The paper discusses the structural design of a futuristic 700℃ MS(Molten salt)Storage Shell,which considers many elements in providing an adequate and comprehensive design.In designing the structural carbon steel for the tank,temperature is an important consideration because steel has a yield strength at 700℃,that is 33%of its nominal yield,while the Young’s Modulus at 700℃ is 50%of its nominal Young’s Modulus.At this temperature,thermal stresses can yield or tear the structural steel unless free expansion of the structure is allowed.This is accomplished with sand layers below each layer of steel and by including a small gap behind the side carbon steel layer.A roof shell design for the tank is also presented in this paper,comparing various roof shell types and their designs.All designs include thermal insulation and an inner stainless steel corrosion layer to protect the structural and thermal insulation elements of the tank from the MS. 展开更多
关键词 MS storage tank design solar energy shell theory steel structural design
下载PDF
Stability Analysis of Cylindrical Tanks under Static and Earthquake Loading
12
作者 Sukhvarsh Jerath Mark Lee 《Journal of Civil Engineering and Architecture》 2015年第1期72-79,共8页
Large thin walled cylindrical above ground tanks have become more susceptible to failure by buckling during earthquakes. In this study, three different geometries of tanks with H/D (height to diameter) ratios of 2.0... Large thin walled cylindrical above ground tanks have become more susceptible to failure by buckling during earthquakes. In this study, three different geometries of tanks with H/D (height to diameter) ratios of 2.0, 0.56, 1.0, and D/t (depth to thickness) ratios of 960.0, 1,706.67 and 640.0 respectively were analyzed for stability when subjected to the E1 Centro earthquake at the base. The Budiansky and Roth procedure was used to find the buckling loads when the tanks were empty and when they were filled with liquid up to 90% of their depth. Also, nonlinear time history analysis using ANSYS finite element computer program was performed. Analysis results show that the dynamic buckling occurs for empty tanks at very high PGA (peak ground accelerations) which are unrealistic even for major earthquakes. Furthermore, when the tanks filled with water up to 90% of its height, analysis results show that when the H/D ratio reduced by two times (i.e., from 2 to 1), the PGA for the buckling increased by six times (increase from 0.25g to 1 .Sg). Hence, H/D ratio plays an important role in the earthquake stability design of over ground steel tanks. 展开更多
关键词 Dynamic stability earthquake loads static buckling storage tanks structure fluid interaction.
下载PDF
Comprehensive Molten Salt Storage Shell and Support Design and Analysis Ⅳ: A Complete 700℃ Thermal-Structural Interaction Finite Element Analysis of an 80 Foot Diameter and 46 Foot High MS Storage Shell Including Structural, Conductive and Convective Thermal Stress Analysis
13
作者 Nathan Loyd Samaan Ladkany 《Journal of Energy and Power Engineering》 CAS 2024年第2期46-58,共13页
In this paper a finite element structural analysis model—using COMSOL—of a large molten salt container,80 foot in diameter and 46 feet high that includes a four-foot elliptic shell roof,is presented for a futuristic... In this paper a finite element structural analysis model—using COMSOL—of a large molten salt container,80 foot in diameter and 46 feet high that includes a four-foot elliptic shell roof,is presented for a futuristic 700℃ design,which uses a highly stable chloride salt called SS700(SaltStream 700)that improves the efficiency of the tank when compared to the traditional 565℃.The resulting FEA(finite element analysis)computed the stresses induced in the tank,which includes the stresses that are due to the loading and due to the thermal expansion of the tank.A stress FEA model was developed using COMSOL Version 5.4 in order to determine the full thermal stress and total stress distribution of the 700℃ Cylindrical MS Storage Tank,as well as corresponding temperature distributions,which can be used to compare with the theoretical analysis and verify the final design. 展开更多
关键词 Molten salts storage tank design solar energy shell theory FEA
下载PDF
Optimization of Baffled Rectangular and Prismatic Storage Tank Against the Sloshing Phenomenon 被引量:7
14
作者 Hassan SAGHI NING De-zhi +1 位作者 CONG Pei-wen ZHAO Ming 《China Ocean Engineering》 SCIE EI CSCD 2020年第5期664-676,共13页
The fluid motion in partially filled tanks with internal baffles has wide engineering applications. The installation of baffles is expected to reduce the effect of sloshing as well as the consequent environmental dama... The fluid motion in partially filled tanks with internal baffles has wide engineering applications. The installation of baffles is expected to reduce the effect of sloshing as well as the consequent environmental damages. In the present study, a series of experimental tests are performed to investigate the sloshing phenomenon in a baffled rectangular storage tank. In addition, the sloshing phenomenon is also modeled by using Open Foam. Based on the experimental and numerical studies, optimization of the geometric parameters of the tank is performed based on some criteria such as tank area, entropy generation, and the horizontal force exerted on the tank area due to the sloshing phenomenon.The optimization is also carried out based on the entropy generation minimization analysis. It is noted that the optimum baffle height is in the range of h_b/h_w=0.5-0.75 in the present study(where h_b and h_w are the baffle height and water depth, respectively). Based on the results, the optimal design of the tank is achieved with R_A= 0.9-1.0(where R_A=L/W, L and W are the length and width of the tank, respectively). The results also show that the increase of h_b can lead to a decrease of the maximum pressure and horizontal force exerted on the tank. It is also noted that the horizontal force exerted on the tank firstly continues to increase as the sway motion amplitude increases.However, as the normalized motion amplitude parameter, a/L(The parameter a is the motion amplitude), exceeds0.067, the effect of motion amplitude on the force is not obvious. The same optimization is also performed in the multiple-variable-baffled tank and prismatic storage tank. 展开更多
关键词 baffled rectangular storage tank experimental tests sloshing phenomenon OPTIMIZATION entropy generation Open Foam
下载PDF
Numerical Simulation of Sloshing in Rectangular Storage Tank Using Coupled FEM-BEM 被引量:6
15
作者 Hassan Saghi Mohammad Javad Ketabdari 《Journal of Marine Science and Application》 2012年第4期417-426,共10页
Sloshing of liquid can increase the dynamic pressure on the storage sidewalls and bottom in tanker ships and LNG careers. Different geometric shapes were suggested for storage tank to minimize the sloshing pressure on... Sloshing of liquid can increase the dynamic pressure on the storage sidewalls and bottom in tanker ships and LNG careers. Different geometric shapes were suggested for storage tank to minimize the sloshing pressure on tank perimeter. In this research, a numerical code was developed to model liquid sloshing in a rectangular partially filled tank. Assuming the fluid to be inviscid, Laplace equation and nonlinear free surface boundary conditions are solved using coupled FEM-BEM. The code performance for sloshing modeling is validated against available data. To minimize the sloshing pressure on tank perimeter, rectangular tanks with specific volumes and different aspect ratios were investigated and the best aspect ratios were suggested. The results showed that the rectangular tank with suggested aspect ratios, not only has a maximum surrounded tank volume to the constant available volume, but also reduces the sloshing pressure efficiently. 展开更多
关键词 rectangular storage tank sloshing phenomenon aspect ratio coupled FEM-BEM
下载PDF
Seismic performance evaluation of VCFPB isolated storage tank using real-time hybrid simulation 被引量:3
16
作者 Hong Yue Tang Zhenyun +1 位作者 Li Zhenbao Du Xiuli 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第2期501-515,共15页
Variable curvature friction pendulum bearings(VCFPB)effectively reduce the dynamic response of storage tanks induced by earthquakes.Shaking table testing is used to assess the seismic performance of VCFPB isolated sto... Variable curvature friction pendulum bearings(VCFPB)effectively reduce the dynamic response of storage tanks induced by earthquakes.Shaking table testing is used to assess the seismic performance of VCFPB isolated storage tanks.However,the vertical pressure and friction coefficient of the scaled VCFPB in the shaking table tests cannot match the equivalent values of these parameters in the prototype.To avoid this drawback,a real-time hybrid simulation(RTHS)test was developed.Using RTHS testing,a 1/8 scaled tank isolated by VCFPB was tested.The experimental results showed that the displacement dynamic magnification factor of VCFPB,peak reduction factors of the acceleration,shear force,and overturning moment at bottom of the tank,were negative exponential functions of the ratio of peak ground acceleration(PGA)and friction coefficient.The peak reduction factors of displacement,acceleration,force and overturning moment,which were obtained from the experimental results,are compared with those calculated by the Housner model.It can be concluded that the Housner model is applicable in estimation of the acceleration,shear force,and overturning moment of liquid storage tank,but not for the sliding displacement of VCFPBs. 展开更多
关键词 liquid storage tank base isolation variable curvature friction pendulum bearing seismic performance real-time hybrid simulation test
下载PDF
Attenuating water hammer pressure by means of gas storage tank 被引量:1
17
作者 韩文亮 韩军 +2 位作者 方红卫 邹伟生 夏建新 《中国有色金属学会会刊:英文版》 CSCD 2001年第3期438-443,共6页
The basic equations for computing the volume of gas storage tank were derived from the principles of attenuating water hammer pressure. Verifications using experiments indicate that the proposed equation can provide a... The basic equations for computing the volume of gas storage tank were derived from the principles of attenuating water hammer pressure. Verifications using experiments indicate that the proposed equation can provide a fare precision in the predictions. By using the model of solid liquid two phase flow, the gas storage tank, pressure relief valves and slow closure reverse control valves were compared with practical engineering problems, and the functions of gas storage tank in attenuating water hammer pressure were further investigated. [ 展开更多
关键词 water hammer pressure protective equipment gas storage tank water hammer model
下载PDF
Comprehensive Molten Salt Storage Shell and Supporting Structure Design and Analysis-Part I:A Conductive and Convective Theoretical Heat Transfer Analysis for Molten Salt Cylindrical Shells at 565℃ and 700℃ 被引量:2
18
作者 Nathan Loyd Samaan Ladkany William Culbreth 《Journal of Energy and Power Engineering》 2022年第2期33-51,共19页
In this paper a full theoretical thermal analysis of a large molten salt container,80-foot in diameter and 46-foot high,including a four-foot elliptic shell roof,is presented for two temperatures,the standard 565℃ an... In this paper a full theoretical thermal analysis of a large molten salt container,80-foot in diameter and 46-foot high,including a four-foot elliptic shell roof,is presented for two temperatures,the standard 565℃ and a futuristic 700℃,which substantially improves the efficiency of the molten salt containers through the use of a highly stable chloride salt called SS700(SaltStream 700).The theoretical analysis includes conductive and convective heat transfer analysis in the steel container,elliptic roof shell,the fiberglass insulation,and firebrick insulation,and includes thermal insulation designs to safeguard against energy losses at high temperatures.The underlying soil and the high temperature concrete foundation were analyzed theoretically using conductive heat transfer,however the area surrounding the soil surface around the bottom of the molten salt storage tank had convective heat transfer analysis included.The final designs presented in this paper seek to limit heat losses to a maximum of 250 W/m^(2) while being able to operate at a minimum external ambient temperature of-10℃,which determines the thicknesses of the fiberglass and firebrick insulation. 展开更多
关键词 Molten salts storage tank design solar energy CONDUCTIVE CONVECTIVE heat transfer INSULATION theoretical analysis.
下载PDF
Non-destructive Testing Robots (NDTBOTs) for In-Service Storage Tank Inspection 被引量:1
19
作者 Richard Anvo Tariq P. Sattar +1 位作者 Tat-Hean Gan Ivan Pinson 《Journal of Mechanics Engineering and Automation》 2018年第3期103-109,共7页
Petrochemical storage tanks are generally inspected when the tank is offline mostly to assess the extent of underside corrosion on the tank floor. Emptying, cleaning and opening a tank for inspection take many months ... Petrochemical storage tanks are generally inspected when the tank is offline mostly to assess the extent of underside corrosion on the tank floor. Emptying, cleaning and opening a tank for inspection take many months and are very expensive. Inspection costs can be reduced significantly by inserting robots through manholes on the tank roof to pertbrm non-destructive testing (NDT). The challenge is to develop robots that can operate safely in explosive and hazardous environments and measure the thickness of floor plates using ultrasound sensors. This paper reports on the development of a small and inexpensive prototype robot (NDTBOT) which is designed to be intrinsically safe for zone zero operation. The robot "hops" across the floor to make measurements, without any external moving parts. The paper describes the design, experimental testing of the NDTBOT and presents results of steel plate thickness measurements made under water. 展开更多
关键词 storage tank inspection NDTBOT in-service inspection.
下载PDF
Comprehensive Molten Salt Storage Shell and Supporting Structure Design and Analysis-Part II:A Conductive and Convective Numerical Finite Element Heat Transfer Analysis for Molten Salt Cylindrical Shells at 700℃,and Comparison with Theoretical Analysis
20
作者 Nathan Loyd Samaan Ladkany William Culbreth 《Journal of Energy and Power Engineering》 2022年第2期52-70,共19页
In this paper a finite element thermal analysis model-using COMSOL-of a large molten salt container,80-foot in diameter and 46-foot high that includes a four-foot elliptic shell roof,is presented for a futuristic 700... In this paper a finite element thermal analysis model-using COMSOL-of a large molten salt container,80-foot in diameter and 46-foot high that includes a four-foot elliptic shell roof,is presented for a futuristic 700℃ design,which uses a highly stable chloride salt called SS700(SaltStream 700)that improves the efficiency of the tank when compared to the traditional 565℃.The FEA(finite element analysis)includes conductive and convective heat transfer analysis in the steel container,elliptic roof shell,the fiberglass insulation,and firebrick insulation,and includes thermal insulation designs to safeguard against energy losses at high temperatures.The underlying soil and the high temperature concrete foundation were analyzed by finite element using conductive heat transfer,however the area surrounding the soil surface around the bottom of the MS storage tank had convective heat transfer analysis included.The finite elements analyses presented are to verify the final fiberglass and firebrick insulation designs,which seeks to limit heat losses to a maximum of 250 W/m^(2) while being able to operate at a minimum external ambient temperature of-10℃.These results are also compared to previously calculated theoretical results. 展开更多
关键词 Molten salts storage tank design solar energy CONDUCTIVE CONVECTIVE heat transfer insulation finite element
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部