期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Bending Failure Mode and Prediction Method of the Compressive Strain Capacity of A Submarine Pipeline with Dent Defects
1
作者 HOU Fu-heng JIA Lu-sheng +3 位作者 CHEN Yan-fei ZHANG Qi ZHONG Rong-feng WANG Chun-sha 《China Ocean Engineering》 SCIE EI CSCD 2024年第4期636-647,共12页
A dent is a common type of defects for submarine pipeline.For submarine pipelines,high hydrostatic pressure and internal pressure are the main loads.Once pipelines bend due to complex subsea conditions,the compression... A dent is a common type of defects for submarine pipeline.For submarine pipelines,high hydrostatic pressure and internal pressure are the main loads.Once pipelines bend due to complex subsea conditions,the compression strain capacity may be exceeded.Research into the local buckling failure and accurate prediction of the compressive strain capacity are important.A finite element model of a pipeline with a dent is established.Local buckling failure under a bending moment is investigated,and the compressive strain capacity is calculated.The effects of different parameters on pipeline local buckling are analyzed.The results show that the dent depth,external pressure and internal pressure lead to different local buckling failure modes of the pipeline.A higher internal pressure indicates a larger compressive strain capacity,and the opposite is true for external pressure.When the ratio of external pressure to collapse pressure of intact pipeline is greater than 0.1,the deeper the dent,the greater the compressive strain capacity of the pipeline.And as the ratio is less than 0.1,the opposite is true.On the basis of these results,a regression equation for predicting the compressive strain capacity of a dented submarine pipeline is proposed,which can be referred to during the integrity assessment of a submarine pipeline. 展开更多
关键词 submarine pipeline dent defect bending load local buckling compressive strain capacity
下载PDF
Tensile Strain Capacity Prediction of Engineered Cementitious Composites (ECC) Using Soft Computing Techniques
2
作者 Rabar H.Faraj Hemn Unis Ahmed +2 位作者 Hardi Saadullah Fathullah Alan Saeed Abdulrahman Farid Abed 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2925-2954,共30页
Plain concrete is strong in compression but brittle in tension,having a low tensile strain capacity that can significantly degrade the long-term performance of concrete structures,even when steel reinforcing is presen... Plain concrete is strong in compression but brittle in tension,having a low tensile strain capacity that can significantly degrade the long-term performance of concrete structures,even when steel reinforcing is present.In order to address these challenges,short polymer fibers are randomly dispersed in a cement-based matrix to forma highly ductile engineered cementitious composite(ECC).Thismaterial exhibits high ductility under tensile forces,with its tensile strain being several hundred times greater than conventional concrete.Since concrete is inherently weak in tension,the tensile strain capacity(TSC)has become one of the most extensively researched properties.As a result,developing a model to predict the TSC of the ECC and to optimize the mixture proportions becomes challenging.Meanwhile,the effort required for laboratory trial batches to determine the TSC is reduced.To achieve the research objectives,five distinct models,artificial neural network(ANN),nonlinear model(NLR),linear relationship model(LR),multi-logistic model(MLR),and M5P-tree model(M5P),are investigated and employed to predict the TSCof ECCmixtures containing fly ash.Data from115 mixtures are gathered and analyzed to develop a new model.The input variables include mixture proportions,fiber length and diameter,and the time required for curing the various mixtures.The model’s effectiveness is evaluated and verified based on statistical parameters such as R2,mean absolute error(MAE),scatter index(SI),root mean squared error(RMSE),and objective function(OBJ)value.Consequently,the ANN model outperforms the others in predicting the TSC of the ECC,with RMSE,MAE,OBJ,SI,and R2 values of 0.42%,0.3%,0.33%,0.135%,and 0.98,respectively. 展开更多
关键词 Engineered cementitious composites fly ash curing time tensile strain capacity MODELING
下载PDF
Numerical study on the strain capacity of girth-welded X80 grade pipes
3
作者 Xu Wang Jian Shuai +2 位作者 Sheng-Zhu Zhang Wei Ren Xue-Ming Zhu 《Petroleum Science》 SCIE CAS CSCD 2022年第5期2399-2412,共14页
Strain capacity is an important performance indicator for designing and evaluating high-grade steel pipelines.Due to the inhomogeneity of material properties in welded structures,girth welds are one of the main factor... Strain capacity is an important performance indicator for designing and evaluating high-grade steel pipelines.Due to the inhomogeneity of material properties in welded structures,girth welds are one of the main factors that restrict the strain capacity of pipelines.In this paper,girth-welded pipes with cracks in the inner surface of the weld have been studied,and the ductile crack initiation and propagation behavior have been simulated using the Gurson model.The corresponding nominal strain at the onset of crack initiation was defined as the characteristic value of strain capacity.The influencing factors on the strain concentration area,strain concentration factor,and strain capacity of girth-welded pipes were quantitatively analyzed.A semiempirical calculation formula for the strain capacity of typical girthwelded X80 grade pipes has been proposed as a function of the crack size,mismatch coefficient of the weld,and softening degree of the heat affected zone(HAZ).This study can facilitate the defect assessment of girth-welded pipes. 展开更多
关键词 strain capacity Girth-welded X80 grade pipes Mismatch and softening
下载PDF
Strength, strain capacity and toughness of five dual-phase pipeline steels 被引量:1
4
作者 Yi Ren Xian-bo Shi +4 位作者 Zhen-guo Yang Yi-yin Shan Wei Ye Gui-xi Cai Ke Yang 《Journal of Iron and Steel Research International》 SCIE EI CSCD 2021年第6期752-761,共10页
The effect of microstructures on strength,strain capacity and low temperature toughness of a micro-alloyed pipeline steel was elucidated.Five various dual-phase microstructures,namely,acicular ferrite and a small amou... The effect of microstructures on strength,strain capacity and low temperature toughness of a micro-alloyed pipeline steel was elucidated.Five various dual-phase microstructures,namely,acicular ferrite and a small amount of(around 2 vol.%)polygonal ferrite(AF+PF),polygonal ferrite and bainite(PF+B),polygonal ferrite and martensite/austenite islands(PF+M/A),polygonal ferrite and martensite(PF+M)and elongated polygonal ferrite and martensite(ePF+M),have been studied.Experimental results show that AF+PF microstructure has high yield strength and excellent low temperature toughness,whereas its yield ratio is the highest.Polygonal ferrite-based dual-phase steels,PF+B,PF+M/A and PF+M microstructures show better strain capacity and low temperature toughness.The strain capacity and low temperature toughness of ePF+M microstructure are the worst due to its high strength.The relationship between microstructure,strength,strain capacity and toughness has been established.Based on the results,the optimum microstructure for a better combination of strength,strain capacity and toughness is suggested to be the one having appropriate polygonal ferrite as second phase in an acicular ferrite matrix. 展开更多
关键词 Pipeline steel Dual-phase microstructure STRENGTH strain capacity TOUGHNESS
原文传递
Assessment of liquefaction potential based on shear wave velocity:Strain energy approach
5
作者 Mohammad Hassan Baziar Mahdi Alibolandi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3733-3745,共13页
Liquefaction assessment based on strain energy is significantly superior to conventional stress-based methods.The main purpose of the present study is to investigate the correlation between shear wave velocity and str... Liquefaction assessment based on strain energy is significantly superior to conventional stress-based methods.The main purpose of the present study is to investigate the correlation between shear wave velocity and strain energy capacity of silty sands.The dissipated energy until liquefaction occurs was calculated by analyzing the results of three series of comprehensive cyclic direct simple shear and triaxial tests on Ottawa F65,Nevada,and Firoozkuh sands with varying silt content by weight and relative densities.Additionally,the shear wave velocity of each series was obtained using bender element or resonant column tests.Consequently,for the first time,a liquefaction triggering criterion,relating to effective overburden normalized liquefaction capacity energy(WL=s’c)to effective overburden stresscorrected shear wave velocity(eVs1)has been introduced.The accuracy of the proposed criteria was evaluated using in situ data.The results confirm the ability of shear wave velocity as a distinguishing parameter for separating liquefied and non-liquefied soils when it is calculated against liquefaction capacity energy(WL=s’c).However,the proposed WL=s’c-Vs1 curve,similar to previously proposed cyclic resistance ratio(CRR)-Vs1 relationships,should be used conservatively for fields vulnerable to liquefaction-induced lateral spreading. 展开更多
关键词 LIQUEFACTION strain energy capacity Shear wave velocity Cyclic triaxial test Cyclic direct simple shear test Resonant column test Bender element test
下载PDF
Seismic Liquefaction Resistance Based on Strain Energy Concept Considering Fine Content Value Effect and Performance Parametric Sensitivity Analysis 被引量:1
6
作者 Nima Pirhadi Xusheng Wan +3 位作者 Jianguo Lu Jilei Hu Mahmood Ahmad Farzaneh Tahmoorian 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第4期733-754,共22页
Liquefaction is one of the most destructive phenomena caused by earthquakes,which has been studied in the issues of potential,triggering and hazard analysis.The strain energy approach is a common method to investigate... Liquefaction is one of the most destructive phenomena caused by earthquakes,which has been studied in the issues of potential,triggering and hazard analysis.The strain energy approach is a common method to investigate liquefaction potential.In this study,two Artificial Neural Network(ANN)models were developed to estimate the liquefaction resistance of sandy soil based on the capacity strain energy concept(W)by using laboratory test data.A large database was collected from the literature.One group of the dataset was utilized for validating the process in order to prevent overtraining the presented model.To investigate the complex influence of fine content(FC)on liquefaction resistance,according to previous studies,the second database was arranged by samples with FC of less than 28%and was used to train the second ANN model.Then,two presented ANN models in this study,in addition to four extra available models,were applied to an additional 20 new samples for comparing their results to show the capability and accuracy of the presented models herein.Furthermore,a parametric sensitivity analysis was performed through Monte Carlo Simulation(MCS)to evaluate the effects of parameters and their uncertainties on the liquefaction resistance of soils.According to the results,the developed models provide a higher accuracy prediction performance than the previously publishedmodels.The sensitivity analysis illustrated that the uncertainties of grading parameters significantly affect the liquefaction resistance of soils. 展开更多
关键词 Liquefaction resistance capacity strain energy artificial neural network sensitivity analysis Monte Carlo Simulation
下载PDF
Plate reinforced square hollow section X-joints subjected to in-plane moment 被引量:2
7
作者 陈希湘 陈誉 陈栋芬 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期1002-1015,共14页
The static test of 13 square hollow section(SHS) X-joints with different β and different types of plate reinforcement under in-plane moment in brace was carried out. Experimental test schemes, failure modes of specim... The static test of 13 square hollow section(SHS) X-joints with different β and different types of plate reinforcement under in-plane moment in brace was carried out. Experimental test schemes, failure modes of specimens, moment-vertical displacement curves, moment-deformation of the chord, and strain strength distribution curves were presented. The effect of β and plate reinforcement types on in-plane flexural property of SHS X-joints was studied. Results show that punching shear of chord face disappears, brace material fracture appears and concave and convex deformation of chord decrease when either collar plates or doubler plates were welded on chord face. Moment-vertical displacement curves of all specimens have obvious elastic, elastic-plastic and plastic stages. As β increases, the in-plane flexural ultimate capacity and initial stiffness of joints of the same plate reinforcement type increase, but ductility of joints decreases. With the same β, the in-plane flexural initial stiffness and ultimate capacity of doubler plate reinforced joints, collar plate reinforced joints, and unreinforced joints decrease progressively. Thickness of reinforcement plate has no obvious effect on in-plane flexural initial stiffness and ultimate capacity of joints. As thickness of reinforcement plate increases, the ductility of reinforced X-joints decreases. The concave and convex deformation of every specimen has good symmetry;as β increases, the yield and ultimate deformation of chord decrease. 展开更多
关键词 failure analysis square hollow section(SHS) X-joints plate reinforcement types in-plane flexural property ultimate capacity initial stiffness strain strength distribution ductility
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部