Wireless interrogation of a rectangular microstrip patch antenna for strain measurement is investigated by simulations.To analyze the antenna performance,a microstrip line-feeding patch antenna at 10 GHz is designed.A...Wireless interrogation of a rectangular microstrip patch antenna for strain measurement is investigated by simulations.To analyze the antenna performance,a microstrip line-feeding patch antenna at 10 GHz is designed.A patch antenna wirelessly fed by a horn is proposed to measure the strain.The direction information of strain detected by the patch antenna is also considered.The strain can be detected both in the width and length directions.It is shown that the strain can be measured wirelessly using a standard horn antenna.This kind of wireless strain-sensing technique offers significant potential for wireless structural health monitoring(SHM),especially for high-end equipment.展开更多
The stress-strain state of the structure is a matter of interest to designer. The strain measurement of superconducting magnets at cryogenic temperature is a specific technique. Based on strain measurement of TF coil ...The stress-strain state of the structure is a matter of interest to designer. The strain measurement of superconducting magnets at cryogenic temperature is a specific technique. Based on strain measurement of TF coil case for EAST, this paper presents a measuring technique at cryogenic temperature and on intense magnetic field. The compensation methods for both temperature and magnetic field effects of the gauges, together with the measured results are involved, and the discussions of the measured results are given in the paper.展开更多
The deformation and residual stress generated by the welding process can seriously affect the use of components.As a result,it is very important to understand the evolution of stress and strain during the welding proc...The deformation and residual stress generated by the welding process can seriously affect the use of components.As a result,it is very important to understand the evolution of stress and strain during the welding process.The strain measurement method based on digital image correlation(DIC)is an excellent method to detect welding strain and residual stress.The out-of-plane translation and out-of-plane rotation introduce errors to the two-dimensional DIC.In this paper,the causes of errors are analyzed theoretically,and the formulas of errors caused by the out-of-plane displacement and the out-of-plane rotation are derived.The out-of-plane translation experiment and the out-of-plane rotation experiment were carried out to verify the theory,and the experimental results are consistent with the theoretical analysis results.The error caused by the out-of-plane translation can be reduced by increasing the object distance;the error caused by the out-of-plane rotation is greatly affected by the rotation angle.展开更多
Gives a new technique to measure the dynamic deformation behavior and strain development of a hollow steel projectile during its penetration of concrete targets. Direct strain measurement was performed by applying str...Gives a new technique to measure the dynamic deformation behavior and strain development of a hollow steel projectile during its penetration of concrete targets. Direct strain measurement was performed by applying strain gages attached to the inner walls of the hollow projectile, linked with on-board testing and storage recorder. This on-board test-record system is easy to operate, cost-effective and can provide reasonable, accurate and detailed information. Obverse ballistic experiments were carried out on ogival-nose hollow projectiles normally impacting concrete targets at velocities from 150 m/s to 300 m/s. The deformation process of projectiles was measured, recorded and played back. Profiles of voltage-time relationship were successively obtained and transfered to strain-time relationship with the aid of calibration tables. It was found that projectiles go through a series of compression and tension deformations intermittently. Relationships between strain development and projectile deformation process were discussed.展开更多
The smart composite structure is a new type of structure developed in recent years. It can be used in aircraft or some other important devices. The smart composite structure in which some sensors, actuators and other ...The smart composite structure is a new type of structure developed in recent years. It can be used in aircraft or some other important devices. The smart composite structure in which some sensors, actuators and other components are embedded can perform the tasks such damage evaluation, strain measurement, changing stress and suppressing vibration by itself. In the Performance of the tasks above, many parameters must be measured, among which the measurement of strain field is very important. In this paper, some distributed and quasi-distributed embedding optic fiber strain sensors are introduced, and their specialities are discussed.展开更多
In this paper a new technique for measuring strain is presented. Using grating as the strain sensor, we can obtain strain and stress components by measuring the deformation of the space position of diffraction spots. ...In this paper a new technique for measuring strain is presented. Using grating as the strain sensor, we can obtain strain and stress components by measuring the deformation of the space position of diffraction spots. The cost of the holographic grating by embossing is much reduced. By using the video and computer techniques the strain and stress values can be obtained automatically.展开更多
In this paper, we demonstrate a new optical method for tiny strain measurements based on the principle of carrier fringes of moire interferometry. A cross-line grating with frequency of 1200 lp/mm is replicated on the...In this paper, we demonstrate a new optical method for tiny strain measurements based on the principle of carrier fringes of moire interferometry. A cross-line grating with frequency of 1200 lp/mm is replicated on the specimen surface, and the strain can be deduced from the changes in carrier fringes before and after the deformation of an object. Four coherent laser beams are used to obtain the carrier fringe patterns of field U and V. Both theoretical analysis and numerical simulation indicate that the ideal accuracy of strain can be controlled within a range of ±1με. Case study of a plane extension experiment shows that the measurement accuracy of strain can be controlled within the range of ±10με. The average strain values of every row of field U and every column of field V can be obtained by using this method, and approximated strain of every pixel in the whole-field can be further acquired, and thus it is possible to measure tiny strains occurred in a micro-field. The technology in this paper can provide comprehensive information for analyzing related mechanical content in the field of MEMS.展开更多
Instantaneous creep in face-centered cubic metals, 5N Al(99.999%), 2N Al (99%) and 4N Cu (99.99%) with different grain sizes, was firstly investigated by sudden stress-change experiments at ultra- low strain rat...Instantaneous creep in face-centered cubic metals, 5N Al(99.999%), 2N Al (99%) and 4N Cu (99.99%) with different grain sizes, was firstly investigated by sudden stress-change experiments at ultra- low strain rates ε ≤10-10 s-1 and temperature T 〈 0.32 Tn. The experimental results indicate that the observed instantaneous creep is strongly dependent on grain size, the concentration of impurity, and stacking fault energy. Creep in high-purity aluminum, 5N Al, with a very large grain size, d 〉 1600μm, shows non-viscous behavior, and is controlled by the recovery of dislocations in the boundary of dislocation cells. On the other hand, for 5N A1 with a small grain size, d=30μm, and low-purity aluminum, 2N A1, with d8= 25μm, creep shows viscous behavior and may be related to 'low temperature grain boundary sliding'. For high-purity copper, 4N Cu, with d= 40 grn and lower stacking fault energy, creep shows a non-viscous behavior, and is controlled by the recovery process of dislocations. For all of the samples, creep shows anelastic behavior.展开更多
A liquid modified photonic crystal fiber(PCF)integrated with an embedded directional coupler and multi-mode interferometer is fabricated by infiltrating three adjacent air holes of the innermost layer with standard 1....A liquid modified photonic crystal fiber(PCF)integrated with an embedded directional coupler and multi-mode interferometer is fabricated by infiltrating three adjacent air holes of the innermost layer with standard 1.48 refractive index liquids.The refractive index of the filled liquid is higher than that of background silica,which can not only support the transmitting rod modes but also the"liquid modified core"modes propagating between the PCF core and the liquid rods.Hence,the light propagating in the liquid modified core can be efficiently coupled into the satellite waveguides under the phase-matching conditions,resulting in a dramatic decrease of the resonant wavelength intensity.Furthermore,there is a multi-mode interference produced by modified core modes and rod modes.Such a compact(~0.91 cm)device integrated with an embedded coupler and interferometer is demonstrated for high-sensitivity simultaneous temperature(~14.72 nm∕℃)and strain(~13.01 pm∕με)measurement.展开更多
A novel method of measuring non-uniform strain along a fiber Bragg grating(FBG) using optical frequency domain reflectometry(OFDR) is proposed and experimentally demonstrated. This method can overcome the problems of ...A novel method of measuring non-uniform strain along a fiber Bragg grating(FBG) using optical frequency domain reflectometry(OFDR) is proposed and experimentally demonstrated. This method can overcome the problems of traditional non-uniform strain measurement methods for FBGs, i.e., the likelihood of chirping and multiple peaking in the spectrum when FBG is subjected to inhomogeneous strain fields. Wavelength interrogation is realized by OFDR with a narrow-line-width tunable laser as the optical source. When non-uniform strain distributions along areas adjacent to structural damage are measured by this method, good agreement is obtained between measurements and theoretical simulation results.展开更多
This paper was focused on the elasticoluminescence(ELS)characteristics,especially a response to small strain(below 1000μst),of mechanoluminescence(ML)sensor using strontium aluminate doped with small amount of europi...This paper was focused on the elasticoluminescence(ELS)characteristics,especially a response to small strain(below 1000μst),of mechanoluminescence(ML)sensor using strontium aluminate doped with small amount of europium(SrAl_(2)O_(4):Eu)synthesized by different methods.By using nitrate decomposition method as a synthetic method of SrAl_(2)O_(4):Eu,the response to small strain of the ML sensor was enhanced in comparison with using a conventional solid-state reaction method.Based on SEM observation and thermoluminescence(ThL)measurement,we proposed a hypothesis that the sensing characteristic of small strain affect the platelike shape of SrAl_(2)O_(4):Eu grain and/or shallower carrier trap levels formed by nitrate decomposition method.展开更多
The distributed strain sensor has significant application in real time measurement of strain status for large and important engineering structures such as aircraft, bridge and dam. In this paper, a quasi distributed...The distributed strain sensor has significant application in real time measurement of strain status for large and important engineering structures such as aircraft, bridge and dam. In this paper, a quasi distributed optical fiber strain sensor system is set up using optical time domain reflect technique. The local strain sensors based on a novel microbend configuration are designed and applied to measure local strains along the optical fiber. As the result of the experimental research, the microbend sensors show high sensitivity, good linearity and repeatability in certain operation range.展开更多
Three dimensional(3D) displacements, which can be translated further into 3D strain, are key parameters tor design, manufacturing and quality control. Using different optical setups, phase-shift methods, and algorit...Three dimensional(3D) displacements, which can be translated further into 3D strain, are key parameters tor design, manufacturing and quality control. Using different optical setups, phase-shift methods, and algorithms, several different 3D electronic speckle pattern interferometry(ESPl) systems for displacement and strain measurements have been achieved and commercialized. This paper provides a review of the recent developments in ESPI systems for 3D displacement and strain measurement. After an overview of the fundamentals of ESP! theory, temporal phase-shift, and spatial phase-shift techniques, 3D deformation measurements by the temporal phase-shift ESPI system, which is suited well for static measurement, and by the spatial phase-shift ESPI system, which is particularly useful for dynamic measurement, are discussed. For each method, the basic theory, a brief derivation and different optical layouts are presented. The state of art application, potential and limitation of the ESPI systems are shown and demonstrated.展开更多
Based on the traditional hydraulic bulging process,an improved hydraulic bulging process with axial feeding in the bulging process was proposed.The finite element simulation and experiment of bellows formed by the tra...Based on the traditional hydraulic bulging process,an improved hydraulic bulging process with axial feeding in the bulging process was proposed.The finite element simulation and experiment of bellows formed by the traditional and improved hydraulic bulging processes were conducted.The grid strain measurement system analysis results of strain and wall thickness distribution of the metal bellows,obtained from simulation and experiment,show that the maximum thinning rates of the wall thickness under the traditional and improved processes were 15%and 10%,respectively.And the wall thickness distribution of the metal bellows formed with improved process was more uniform.The strain values from the root to crown of the waveform increased gradually.However,the strain values were smaller than those of traditional process due to the axial feeding of the improved process in bulging process.展开更多
Based on the continuous strain data recorded in Xinjiang since 1985, we discuss the mechanisms of Tianshan' s uplift and Tarim basin' s clockwise rotation. The results indicate : 1 ) The principal - compression di...Based on the continuous strain data recorded in Xinjiang since 1985, we discuss the mechanisms of Tianshan' s uplift and Tarim basin' s clockwise rotation. The results indicate : 1 ) The principal - compression directions in Tianshan are nearly NS, and their intersection angles with regional structures and mountains are nearly perpendicular, which is in accordance with Tianshan' s uplift and crustal shortening. 2)The principal compressions around Tarim basin tend to facilitate the regional faults' left-lateral strike-slip movements and the basin' s clockwise rotation. These phenomena of uplift/shortening and rotation are fundamentally the re- suits of India plate' s northward push on Euro-Asia plate, and the associated Pamir arc ' s rapid northward movement and regional blocks' interaction.展开更多
A computational and test method for calibrating the flight loads carried by aircraft wings is proposed.The wing load is measured in real-time based on the resistance and fiber Bragg grating strain gauges.The linear st...A computational and test method for calibrating the flight loads carried by aircraft wings is proposed.The wing load is measured in real-time based on the resistance and fiber Bragg grating strain gauges.The linear stepwise regression method is used to construct the load equations.The mean impact value algorithm is employed to select suitable bridges.In the ground calibration experiment,the wing load calculation equations in both forward and reverse installation states are calibrated.The correctness of the load equations was verified through equation error and inspection error analysis.Finally,the actual flight load of the wing was obtained through flight tests.展开更多
A reliable understanding of the properties of 3-D braided composites is of primary importance for proper utilization of these materials. A new method is introduced to study the mechanical performance of braided compos...A reliable understanding of the properties of 3-D braided composites is of primary importance for proper utilization of these materials. A new method is introduced to study the mechanical performance of braided composite materials using embedded optic fiber sensors. Experimental research is performed to devise a method of incorporating optic fibers into a 3-D braided composite structure. The efficacy of this new testing method is evaluated on two counts. First, the optical performance of optic fibers is studied before and after incorporated into 3-D braided composites, as well as after completion of the manufacturing process for 3-D braided composites, to validate the ability of the optic fiber to survive the manufacturing process. On the other hand, the influence of incorporated optic fiber on the original braided composite is also researched by tension and compression experiments. Second, two kinds of optic fiber sensors are co-embedded into 3-D braided composites to evaluate their respective ability to measure the internal strain. Experimental results show that multiple optic fiber sensors can be co-braided into 3-D braided composites to determine their internal strain which is difficult to be fulfilled by other current existing methods.展开更多
Modern opticai theory has shown that the far field or Fraunbofer diffraction equipment is identical to the Fourier spectral analyzer. In the Fourier speetral analyzer the Fourier spectra or the Fraunhofer diffaction p...Modern opticai theory has shown that the far field or Fraunbofer diffraction equipment is identical to the Fourier spectral analyzer. In the Fourier speetral analyzer the Fourier spectra or the Fraunhofer diffaction pattern of a graph is formed on the back focal plane when a laser beam is directed on the graph lying on the front foeal plane ; the Fourier spectra of the graph is also subjected to change during the deformation of the graph. Through analyzing the change of Fourier spectra the deformation of the graph can be obtained. A few years ago,based on the above principles the authors proposed a new technique of strain measurement by laser spectral analysis. Demonstration and discussion will be made in detail in this paper.展开更多
The magnitude of tensile stress and tensile strain at an anastomosis site under physiological stress is an important factor for the success of anastomosis following suturing in peripheral nerve injury treatment. Sciat...The magnitude of tensile stress and tensile strain at an anastomosis site under physiological stress is an important factor for the success of anastomosis following suturing in peripheral nerve injury treatment. Sciatic nerves from fresh adult cadavers were used to create models of sciatic nerve injury. The denervated specimens underwent epineurial and perineurial suturing. The elastic modulus (40.96 + 2.59 MPa) and Poisson ratio (0.37 + 0.02) of the normal sciatic nerve were measured by strain electrical measurement. A resistance strain gauge was pasted on the front, back left, and right of the edge of the anastomosis site after suturing. Strain electrical measurement results showed that the stress and strain values of the sciatic nerve following perineurial suturing were lower than those following epineurial suturing. Scanning electron microscopy revealed that the sciatic nerve fibers were disordered following epineurial compared with perineurial suturing. These results indicate that the effect of perineurial suturing in sciatic nerve injury repair is better than that of epineurial suturing.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 51575015,51235001,51505013)
文摘Wireless interrogation of a rectangular microstrip patch antenna for strain measurement is investigated by simulations.To analyze the antenna performance,a microstrip line-feeding patch antenna at 10 GHz is designed.A patch antenna wirelessly fed by a horn is proposed to measure the strain.The direction information of strain detected by the patch antenna is also considered.The strain can be detected both in the width and length directions.It is shown that the strain can be measured wirelessly using a standard horn antenna.This kind of wireless strain-sensing technique offers significant potential for wireless structural health monitoring(SHM),especially for high-end equipment.
基金The project supported by the National Meg-Science Engineering project of the Chinese Government
文摘The stress-strain state of the structure is a matter of interest to designer. The strain measurement of superconducting magnets at cryogenic temperature is a specific technique. Based on strain measurement of TF coil case for EAST, this paper presents a measuring technique at cryogenic temperature and on intense magnetic field. The compensation methods for both temperature and magnetic field effects of the gauges, together with the measured results are involved, and the discussions of the measured results are given in the paper.
文摘The deformation and residual stress generated by the welding process can seriously affect the use of components.As a result,it is very important to understand the evolution of stress and strain during the welding process.The strain measurement method based on digital image correlation(DIC)is an excellent method to detect welding strain and residual stress.The out-of-plane translation and out-of-plane rotation introduce errors to the two-dimensional DIC.In this paper,the causes of errors are analyzed theoretically,and the formulas of errors caused by the out-of-plane displacement and the out-of-plane rotation are derived.The out-of-plane translation experiment and the out-of-plane rotation experiment were carried out to verify the theory,and the experimental results are consistent with the theoretical analysis results.The error caused by the out-of-plane translation can be reduced by increasing the object distance;the error caused by the out-of-plane rotation is greatly affected by the rotation angle.
文摘Gives a new technique to measure the dynamic deformation behavior and strain development of a hollow steel projectile during its penetration of concrete targets. Direct strain measurement was performed by applying strain gages attached to the inner walls of the hollow projectile, linked with on-board testing and storage recorder. This on-board test-record system is easy to operate, cost-effective and can provide reasonable, accurate and detailed information. Obverse ballistic experiments were carried out on ogival-nose hollow projectiles normally impacting concrete targets at velocities from 150 m/s to 300 m/s. The deformation process of projectiles was measured, recorded and played back. Profiles of voltage-time relationship were successively obtained and transfered to strain-time relationship with the aid of calibration tables. It was found that projectiles go through a series of compression and tension deformations intermittently. Relationships between strain development and projectile deformation process were discussed.
文摘The smart composite structure is a new type of structure developed in recent years. It can be used in aircraft or some other important devices. The smart composite structure in which some sensors, actuators and other components are embedded can perform the tasks such damage evaluation, strain measurement, changing stress and suppressing vibration by itself. In the Performance of the tasks above, many parameters must be measured, among which the measurement of strain field is very important. In this paper, some distributed and quasi-distributed embedding optic fiber strain sensors are introduced, and their specialities are discussed.
基金Supported by National Natural Science Foundation.
文摘In this paper a new technique for measuring strain is presented. Using grating as the strain sensor, we can obtain strain and stress components by measuring the deformation of the space position of diffraction spots. The cost of the holographic grating by embossing is much reduced. By using the video and computer techniques the strain and stress values can be obtained automatically.
基金the Basal Research Funds of National Defence Science and Technology
文摘In this paper, we demonstrate a new optical method for tiny strain measurements based on the principle of carrier fringes of moire interferometry. A cross-line grating with frequency of 1200 lp/mm is replicated on the specimen surface, and the strain can be deduced from the changes in carrier fringes before and after the deformation of an object. Four coherent laser beams are used to obtain the carrier fringe patterns of field U and V. Both theoretical analysis and numerical simulation indicate that the ideal accuracy of strain can be controlled within a range of ±1με. Case study of a plane extension experiment shows that the measurement accuracy of strain can be controlled within the range of ±10με. The average strain values of every row of field U and every column of field V can be obtained by using this method, and approximated strain of every pixel in the whole-field can be further acquired, and thus it is possible to measure tiny strains occurred in a micro-field. The technology in this paper can provide comprehensive information for analyzing related mechanical content in the field of MEMS.
基金Funded by the Tianjin Research Program of Application Foundation and Advanced Technology(12JCYBJC32100)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministryin part by Grants-in-Aid from the Japan Society for the Promotion of Science(JSPS)
文摘Instantaneous creep in face-centered cubic metals, 5N Al(99.999%), 2N Al (99%) and 4N Cu (99.99%) with different grain sizes, was firstly investigated by sudden stress-change experiments at ultra- low strain rates ε ≤10-10 s-1 and temperature T 〈 0.32 Tn. The experimental results indicate that the observed instantaneous creep is strongly dependent on grain size, the concentration of impurity, and stacking fault energy. Creep in high-purity aluminum, 5N Al, with a very large grain size, d 〉 1600μm, shows non-viscous behavior, and is controlled by the recovery of dislocations in the boundary of dislocation cells. On the other hand, for 5N A1 with a small grain size, d=30μm, and low-purity aluminum, 2N A1, with d8= 25μm, creep shows viscous behavior and may be related to 'low temperature grain boundary sliding'. For high-purity copper, 4N Cu, with d= 40 grn and lower stacking fault energy, creep shows a non-viscous behavior, and is controlled by the recovery process of dislocations. For all of the samples, creep shows anelastic behavior.
基金National Natural Science Foundation of China(NSFC)(61635007,61425007,61377090,61575128)Guangdong Science and Technology Department(2014A030308007,2014B050504010,2015B010105007,2015A030313541)+1 种基金Science and Technology Innovation Commission of Shenzhen(GJHZ20150313093755757,JCYJ20160520163134575,JCYJ20160427104925452)Pearl River Scholar Fellowships
文摘A liquid modified photonic crystal fiber(PCF)integrated with an embedded directional coupler and multi-mode interferometer is fabricated by infiltrating three adjacent air holes of the innermost layer with standard 1.48 refractive index liquids.The refractive index of the filled liquid is higher than that of background silica,which can not only support the transmitting rod modes but also the"liquid modified core"modes propagating between the PCF core and the liquid rods.Hence,the light propagating in the liquid modified core can be efficiently coupled into the satellite waveguides under the phase-matching conditions,resulting in a dramatic decrease of the resonant wavelength intensity.Furthermore,there is a multi-mode interference produced by modified core modes and rod modes.Such a compact(~0.91 cm)device integrated with an embedded coupler and interferometer is demonstrated for high-sensitivity simultaneous temperature(~14.72 nm∕℃)and strain(~13.01 pm∕με)measurement.
基金supported by the National High Technology Research and Development Program of China under Grant No.2012AA041203
文摘A novel method of measuring non-uniform strain along a fiber Bragg grating(FBG) using optical frequency domain reflectometry(OFDR) is proposed and experimentally demonstrated. This method can overcome the problems of traditional non-uniform strain measurement methods for FBGs, i.e., the likelihood of chirping and multiple peaking in the spectrum when FBG is subjected to inhomogeneous strain fields. Wavelength interrogation is realized by OFDR with a narrow-line-width tunable laser as the optical source. When non-uniform strain distributions along areas adjacent to structural damage are measured by this method, good agreement is obtained between measurements and theoretical simulation results.
基金supported by Adaptable and Seamless Technology Transfer Program through target-driven R&D(AS251Z02284M)Japan Science and Technology Agency as well as Grant-in-Aid for Scientific Research(A)(Grant Number:25249100)from Japan Society for the Promotion of Science.
文摘This paper was focused on the elasticoluminescence(ELS)characteristics,especially a response to small strain(below 1000μst),of mechanoluminescence(ML)sensor using strontium aluminate doped with small amount of europium(SrAl_(2)O_(4):Eu)synthesized by different methods.By using nitrate decomposition method as a synthetic method of SrAl_(2)O_(4):Eu,the response to small strain of the ML sensor was enhanced in comparison with using a conventional solid-state reaction method.Based on SEM observation and thermoluminescence(ThL)measurement,we proposed a hypothesis that the sensing characteristic of small strain affect the platelike shape of SrAl_(2)O_(4):Eu grain and/or shallower carrier trap levels formed by nitrate decomposition method.
文摘The distributed strain sensor has significant application in real time measurement of strain status for large and important engineering structures such as aircraft, bridge and dam. In this paper, a quasi distributed optical fiber strain sensor system is set up using optical time domain reflect technique. The local strain sensors based on a novel microbend configuration are designed and applied to measure local strains along the optical fiber. As the result of the experimental research, the microbend sensors show high sensitivity, good linearity and repeatability in certain operation range.
基金supported by National Natural Science Foundation of China(Grant Nos.51275054,51075116)
文摘Three dimensional(3D) displacements, which can be translated further into 3D strain, are key parameters tor design, manufacturing and quality control. Using different optical setups, phase-shift methods, and algorithms, several different 3D electronic speckle pattern interferometry(ESPl) systems for displacement and strain measurements have been achieved and commercialized. This paper provides a review of the recent developments in ESPI systems for 3D displacement and strain measurement. After an overview of the fundamentals of ESP! theory, temporal phase-shift, and spatial phase-shift techniques, 3D deformation measurements by the temporal phase-shift ESPI system, which is suited well for static measurement, and by the spatial phase-shift ESPI system, which is particularly useful for dynamic measurement, are discussed. For each method, the basic theory, a brief derivation and different optical layouts are presented. The state of art application, potential and limitation of the ESPI systems are shown and demonstrated.
基金Project (51775479) supported by the National Natural Science Foundation of ChinaProject (E2017203046) supported by the Natural Science Foundation of Hebei Province,China
文摘Based on the traditional hydraulic bulging process,an improved hydraulic bulging process with axial feeding in the bulging process was proposed.The finite element simulation and experiment of bellows formed by the traditional and improved hydraulic bulging processes were conducted.The grid strain measurement system analysis results of strain and wall thickness distribution of the metal bellows,obtained from simulation and experiment,show that the maximum thinning rates of the wall thickness under the traditional and improved processes were 15%and 10%,respectively.And the wall thickness distribution of the metal bellows formed with improved process was more uniform.The strain values from the root to crown of the waveform increased gradually.However,the strain values were smaller than those of traditional process due to the axial feeding of the improved process in bulging process.
基金supported by the National Natural Science Foundation of China( 40864003,40562001)
文摘Based on the continuous strain data recorded in Xinjiang since 1985, we discuss the mechanisms of Tianshan' s uplift and Tarim basin' s clockwise rotation. The results indicate : 1 ) The principal - compression directions in Tianshan are nearly NS, and their intersection angles with regional structures and mountains are nearly perpendicular, which is in accordance with Tianshan' s uplift and crustal shortening. 2)The principal compressions around Tarim basin tend to facilitate the regional faults' left-lateral strike-slip movements and the basin' s clockwise rotation. These phenomena of uplift/shortening and rotation are fundamentally the re- suits of India plate' s northward push on Euro-Asia plate, and the associated Pamir arc ' s rapid northward movement and regional blocks' interaction.
基金supported by the National Natural Science Foundation of China(Grant No.11602237)the Middleaged and Young Teachers’Basic Ability Promotion Project of Guangxi(Grant No.2022KY1070)。
文摘A computational and test method for calibrating the flight loads carried by aircraft wings is proposed.The wing load is measured in real-time based on the resistance and fiber Bragg grating strain gauges.The linear stepwise regression method is used to construct the load equations.The mean impact value algorithm is employed to select suitable bridges.In the ground calibration experiment,the wing load calculation equations in both forward and reverse installation states are calibrated.The correctness of the load equations was verified through equation error and inspection error analysis.Finally,the actual flight load of the wing was obtained through flight tests.
基金Project supported by the Aeronautic Science Foundation of China (No. 01G52075) the Outstanding Youth Foun-dation of Jiangsu Province (No. BK2002416).
文摘A reliable understanding of the properties of 3-D braided composites is of primary importance for proper utilization of these materials. A new method is introduced to study the mechanical performance of braided composite materials using embedded optic fiber sensors. Experimental research is performed to devise a method of incorporating optic fibers into a 3-D braided composite structure. The efficacy of this new testing method is evaluated on two counts. First, the optical performance of optic fibers is studied before and after incorporated into 3-D braided composites, as well as after completion of the manufacturing process for 3-D braided composites, to validate the ability of the optic fiber to survive the manufacturing process. On the other hand, the influence of incorporated optic fiber on the original braided composite is also researched by tension and compression experiments. Second, two kinds of optic fiber sensors are co-embedded into 3-D braided composites to evaluate their respective ability to measure the internal strain. Experimental results show that multiple optic fiber sensors can be co-braided into 3-D braided composites to determine their internal strain which is difficult to be fulfilled by other current existing methods.
文摘Modern opticai theory has shown that the far field or Fraunbofer diffraction equipment is identical to the Fourier spectral analyzer. In the Fourier speetral analyzer the Fourier spectra or the Fraunhofer diffaction pattern of a graph is formed on the back focal plane when a laser beam is directed on the graph lying on the front foeal plane ; the Fourier spectra of the graph is also subjected to change during the deformation of the graph. Through analyzing the change of Fourier spectra the deformation of the graph can be obtained. A few years ago,based on the above principles the authors proposed a new technique of strain measurement by laser spectral analysis. Demonstration and discussion will be made in detail in this paper.
基金funded by the Key Project of Clinical Specialty of Ministry of Public Health,No.2007-353
文摘The magnitude of tensile stress and tensile strain at an anastomosis site under physiological stress is an important factor for the success of anastomosis following suturing in peripheral nerve injury treatment. Sciatic nerves from fresh adult cadavers were used to create models of sciatic nerve injury. The denervated specimens underwent epineurial and perineurial suturing. The elastic modulus (40.96 + 2.59 MPa) and Poisson ratio (0.37 + 0.02) of the normal sciatic nerve were measured by strain electrical measurement. A resistance strain gauge was pasted on the front, back left, and right of the edge of the anastomosis site after suturing. Strain electrical measurement results showed that the stress and strain values of the sciatic nerve following perineurial suturing were lower than those following epineurial suturing. Scanning electron microscopy revealed that the sciatic nerve fibers were disordered following epineurial compared with perineurial suturing. These results indicate that the effect of perineurial suturing in sciatic nerve injury repair is better than that of epineurial suturing.