期刊文献+
共找到2,772篇文章
< 1 2 139 >
每页显示 20 50 100
Straining流对柱状晶体在三元过冷熔体中生长的影响 被引量:1
1
作者 范海龙 陈明文 《物理学报》 SCIE EI CAS CSCD 北大核心 2020年第11期205-214,共10页
研究了三元过冷熔体中柱状晶体在非等温条件下受straining流作用的生长问题,给出了柱状晶体生长形态的近似解析表达式.发现流入的straining流加快了界面的生长速度,而流出的straining流减缓了界面的生长速度,即straining流使得柱状晶体... 研究了三元过冷熔体中柱状晶体在非等温条件下受straining流作用的生长问题,给出了柱状晶体生长形态的近似解析表达式.发现流入的straining流加快了界面的生长速度,而流出的straining流减缓了界面的生长速度,即straining流使得柱状晶体的界面发生变形.同时发现,随着流动速度的增大,界面变形也更为显著.通过比较straining流对纯熔体、二元熔体、三元熔体中柱状晶体界面的影响,发现相比于纯熔体,柱状晶体在稀合金熔体中的界面形态受straining流的影响更大. 展开更多
关键词 柱状晶体 三元熔体 straining 界面形态
下载PDF
Hot deformation behavior of microstructural constituents in a duplex stainless steel during high-temperature straining 被引量:11
2
作者 Amir Momeni Shahab Kazemi Ali Bahrani 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第10期953-960,共8页
The hot deformation characteristics of 1.4462 duplex stainless steel (DSS) were analyzed by considering strain partitioning between austenite and ferrite constituents. The individual behavior of ferrite and austenit... The hot deformation characteristics of 1.4462 duplex stainless steel (DSS) were analyzed by considering strain partitioning between austenite and ferrite constituents. The individual behavior of ferrite and austenite in microstructure was studied in an iso-stress condition. Hot compression tests were performed at temperatures of 800-1100~C and strain rates of 0.001-1 s-1. The flow stress was modeled by a hyperbolic sine constitutive equation, the corresponding constants and apparent activation energies were determined for the studied alloys. The constitutive equation and law of mixture were used to measure the contribution factor of each phase at any given strain. It is found that the contribution factor of ferrite exponentially declines as the Zener-HoUomon parameter (Z) increases. On the contrary, the austenite contribution polynomially increases with the increase of Z. At low Z values below 2.6. x 1015 (lnZ---35.5), a negative contribution factor is determined for austenite that is attributed to dynamic recrystallization. At high Z values, the contribution factor of austenite is about two orders of magnitude greater than that of ferrite, and therefore, austenite can accommodate more strain. Microstructural characterization via electron back-scattered diffraction (EBSD) confirms the mechanical results and shows that austenite recrystallization is possible only at high temperature and low strain rate. 展开更多
关键词 duplex stainless steel compression testing strain partitioning high temperature operations DEFORMATION
下载PDF
Comparative evaluation of commercial Douchi by different molds:biogenic amines,non-volatile and volatile compounds 被引量:1
3
作者 Aijun Li Gang Yang +4 位作者 Zhirong Wang Shenglan Liao Muying Du Jun Song Jianquan Kan 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期434-443,共10页
To provide new insights into the development and utilization of Douchi artificial starters,three common strains(Aspergillus oryzae,Mucor racemosus,and Rhizopus oligosporus)were used to study their influence on the fer... To provide new insights into the development and utilization of Douchi artificial starters,three common strains(Aspergillus oryzae,Mucor racemosus,and Rhizopus oligosporus)were used to study their influence on the fermentation of Douchi.The results showed that the biogenic amine contents of the three types of Douchi were all within the safe range and far lower than those of traditional fermented Douchi.Aspergillus-type Douchi produced more free amino acids than the other two types of Douchi,and its umami taste was more prominent in sensory evaluation(P<0.01),while Mucor-type and Rhizopus-type Douchi produced more esters and pyrazines,making the aroma,sauce,and Douchi flavor more abundant.According to the Pearson and PLS analyses results,sweetness was significantly negatively correlated with phenylalanine,cysteine,and acetic acid(P<0.05),bitterness was significantly negatively correlated with malic acid(P<0.05),the sour taste was significantly positively correlated with citric acid and most free amino acids(P<0.05),while astringency was significantly negatively correlated with glucose(P<0.001).Thirteen volatile compounds such as furfuryl alcohol,phenethyl alcohol,and benzaldehyde caused the flavor difference of three types of Douchi.This study provides theoretical basis for the selection of starting strains for commercial Douchi production. 展开更多
关键词 DOUCHI Starting strains Non-volatile compounds Volatile compounds Sensory evaluation
下载PDF
The role of strain in oxygen evolution reaction
4
作者 Zihang Feng Chuanlin Dai +5 位作者 Zhe Zhang Xuefei Lei Wenning Mu Rui Guo Xuanwen Liu Junhua You 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期322-344,I0009,共24页
The oxygen evolution reaction(OER)is a crucial step in metal-air batteries and water splitting technologies,playing a significant role in the efficiency and achievable heights of these two technologies.However,the OER... The oxygen evolution reaction(OER)is a crucial step in metal-air batteries and water splitting technologies,playing a significant role in the efficiency and achievable heights of these two technologies.However,the OER is a four-step,four-electron reaction,and its slow kinetics result in high overpotentials,posing a challenge.To address this issue,numerous strategies involving modified catalysts have been proposed and proven to be highly efficient.In these strategies,the introduction of strain has been widely reported because it is generally believed to effectively regulate the electronic structure of metal sites and alter the adsorption energy of catalyst surfaces with reaction intermediates.However,strain has many other effects that are not well known,making it an important yet unexplored area.Based on this,this review provides a detailed introduction to the various roles of strain in OER.To better explain these roles,the review also presents the definition of strain and elucidates the potential mechanisms of strain in OER based on the d-band center theory and adsorption volcano plot.Additionally,the review showcases various ways of introducing strain in OER through examples reported in the latest literature,aiming to provide a comprehensive perspective for the development of strain engineering.Finally,the review analyzes the appropriate proportion of strain introduction,compares compressive and tensile strain,and examines the impact of strain on stability.And the review offers prospects for future research directions in this emerging field. 展开更多
关键词 Oxygen evolution reaction Strain generation Tensile strain Compressive strain Strain mechanism Strain effects
下载PDF
Deformation Characteristics of Hydrate-Bearing Sediments
5
作者 DONG Lin LI Yanlong +4 位作者 ZHANG Yajuan HU Gaowei LIAO Hualin CHEN Qiang WU Nengyou 《Journal of Ocean University of China》 CAS CSCD 2024年第1期149-156,共8页
The safe and efficient development of natural gas hydrate requires a deep understanding of the deformation behaviors of reservoirs.In this study,a series of triaxial shearing tests are carried out to investigate the d... The safe and efficient development of natural gas hydrate requires a deep understanding of the deformation behaviors of reservoirs.In this study,a series of triaxial shearing tests are carried out to investigate the deformation properties of hydrate-bearing sediments.Variations of volumetric and lateral strains versus hydrate saturation are analyzed comprehensively.Results indicate that the sediments with high hydrate saturation show dilative behaviors,which lead to strain-softening characteristics during shearing.The volumetric strain curves have a tendency to transform gradually from dilatation to compression with the increase in effective confining pressure.An easy prediction model is proposed to describe the relationship between volumetric and axial strains.The model coefficientβis the key dominating factor for the shape of volumetric strain curves and can be determined by the hydrate saturation and stress state.Moreover,a modified model is established for the calculation of lateral strain.The corresponding determination method is provided for the easy estimation of model coefficients for medium sand sediments containing hydrate.This study provides a theoretical and experimental reference for deformation estimation in natural gas hydrate development. 展开更多
关键词 gas hydrate deformation characteristics volumetric strain lateral strain prediction model
下载PDF
Mechanical behavior of nanorubber reinforced epoxy over a wide strain rate loading
6
作者 Yinggang Miao Jianping Yin +1 位作者 Wenxuan Du Lianyang Chen 《Nano Materials Science》 EI CAS CSCD 2024年第1期106-114,共9页
Nanorubber/epoxy composites containing 0,2,6 and 10 wt%nanorubber are subjected to uniaxial compression over a wide range of strain rate from 8×10^(-4) s^(-1) to~2×10^(4) s^(-1).Unexpectedly,their strain rat... Nanorubber/epoxy composites containing 0,2,6 and 10 wt%nanorubber are subjected to uniaxial compression over a wide range of strain rate from 8×10^(-4) s^(-1) to~2×10^(4) s^(-1).Unexpectedly,their strain rate sensitivity and strain hardening index increase with increasing nanorubber content.Potential mechanisms are proposed based on numerical simulations using a unit cell model.An increase in the strain rate sensitivity with increasing nanorubber content results from the fact that the nanorubber becomes less incompressible at high strain,generating a higher hydro-static pressure.Adiabatic shear localization starts to occur in the epoxy under a strain rate of 22,000 s^(-1) when the strain exceeds 0.35.The presence of nanorubber in the epoxy reduces adiabatic shear localization by preventing it from propagating. 展开更多
关键词 Strain rate Strain hardening Nano rubber EPOXY Adiabatic shearing localization
下载PDF
Achieving High Strength and Tensile Ductility in Pure Nickel by Cryorolling with Subsequent Low-Temperature Short-Time Annealing
7
作者 Zhide Li Hao Gu +2 位作者 Kaiguang Luo Charlie Kong Hailiang Yu 《Engineering》 SCIE EI CAS CSCD 2024年第2期190-203,共14页
Ultra fine-grained pure metals and their alloys have high strength and low ductility.In this study,cryorolling under different strains followed by low-temperature short-time annealing was used to fabricate pure nickel... Ultra fine-grained pure metals and their alloys have high strength and low ductility.In this study,cryorolling under different strains followed by low-temperature short-time annealing was used to fabricate pure nickel sheets combining high strength with good ductility.The results show that,for different cryorolling strains,the uniform elongation was greatly increased without sacrificing the strength after annealing.A yield strength of 607 MPa and a uniform elongation of 11.7%were obtained after annealing at a small cryorolling strain(ε=0.22),while annealing at a large cryorolling strain(ε=1.6)resulted in a yield strength of 990 MPa and a uniform elongation of 6.4%.X-ray diffraction(XRD),transmission electron microscopy(TEM),scanning electron microscopy(SEM),and electron backscattered diffraction(EBSD)were used to characterize the microstructure of the specimens and showed that the high strength could be attributed to strain hardening during cryorolling,with an additional contribution from grain refinement and the formation of dislocation walls.The high ductility could be attributed to annealing twins and micro-shear bands during stretching,which improved the strain hardening capacity.The results show that the synergistic effect of strength and ductility can be regulated through low-temperature short-time annealing with different cryorolling strains,which provides a new reference for the design of future thermo-mechanical processes. 展开更多
关键词 CRYOROLLING ANNEALING NICKEL Strain hardening DUCTILITY
下载PDF
Valley filtering and valley-polarized collective modes in bulk graphene monolayers
8
作者 郑建龙 翟峰 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期1-15,共15页
The presence of two sublattices in hexagonal graphene brings two energetically degenerate extremes in the conduction and valence bands, which are identified by the valley quantum number. Recently, this valley degree o... The presence of two sublattices in hexagonal graphene brings two energetically degenerate extremes in the conduction and valence bands, which are identified by the valley quantum number. Recently, this valley degree of freedom has been suggested to encode and process information, which develops a new carbon-based electronics named graphene valleytronics. In this topical review, we present and discuss valley-related transport properties in bulk graphene monolayers,which are due to strain-induced pseudomagnetic fields and associated vector potential, sublattice-stagger potential, and the valley-Zeeman effect. These valley-related interactions can be utilized to obtain valley filtering, valley spatial separation, valley-resolved guiding modes, and valley-polarized collective modes such as edge or surface plasmons. The present challenges and the perspectives on graphene valleytronics are also provided in this review. 展开更多
关键词 valleytronics GRAPHENE strain valley-Zeeman effect PLASMONS
下载PDF
Present-day Upper-crustal Strain Rate Field in Southeastern Tibet and its Geodynamic Implications:Constraints from GPS Measurements with ABIC Method
9
作者 YANG Shaohua PAN Jiawei +1 位作者 LI Haibing SHI Yaolin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第1期265-275,共11页
The Earth’s surface kinematics and deformation are fundamental to understanding crustal evolution.An effective research approach is to estimate regional motion field and deformation fields based on modern geodetic ne... The Earth’s surface kinematics and deformation are fundamental to understanding crustal evolution.An effective research approach is to estimate regional motion field and deformation fields based on modern geodetic networks.If the discrete observed velocity field is obtained,the velocity related fields,such as dilatation rate and maximum shear strain rate,can be estimated by applying varied mathematical approaches.This study applied Akaike's Bayesian Information Criterion(ABIC)method to calculate strain rate fields constrained by GPS observations in the southeast Tibetan Plateau.Comparison with results derived from other three methods revealed that our ABIC-derived strain rate fields were more precise.The maximum shear strain rate highlighted the Xianshuihe–Xiaojiang fault system as the main boundary for the outward migration of material in southeastern Tibet,indicating rotation of eastern Tibet material around the eastern Himalaya rather than whole extrusion along a fixed channel.Additionally,distinct dilatation rate patterns in the northeast and southwest regions of the fault system were observed.The northeast region,represented by the Longmenshan area,exhibited negative dilatational anomalies;while the southwest region,represented by the Jinsha River area north of 29°N,displayed positive dilatational anomalies.This indicates compression in the former and extension in the latter.Combined with deep geophysical observations,we believe that the upper and lower crusts of the Jinsha River area north of 29°N are in an entire expanding state,probably caused by the escape-drag effect of material.The presence of a large,low-viscosity region south of 29°N may not enable the entire escape of the crust,but instead result in a differential escape of the lower crust faster than the upper crust. 展开更多
关键词 strain rate differential escape ABIC GPS southeastern Tibet
下载PDF
A bounding surface visco-plasticity model considering generalized spacing ratio of soils
10
作者 Xiaosen Kang Hongjian Liao +1 位作者 Qiangbing Huang Jianbing Peng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1832-1846,共15页
The non-unique critical state of soils with time-dependent behaviors is a significant issue in geotechnical engineering problems.However,previous bounding surface plasticity models cannot predict accurately the non-un... The non-unique critical state of soils with time-dependent behaviors is a significant issue in geotechnical engineering problems.However,previous bounding surface plasticity models cannot predict accurately the non-unique critical state of soils,because the distance between the compression line and critical state line charged by strain-rate effect is basically neglected.To fill this gap,a generalized spacing ratio of soils is defined in the elasto-viscoplastic framework,and a bounding surface visco-plasticity model is formulated and verified,which can consider the generalized spacing ratio.Specifically,the generalized spacing ratio of soils reflects the distance between the compression line and the critical state line of soils with time-dependent behaviors.Then,the generalized spacing ratio is introduced into an improved anisotropic bounding surface.A new expression of the visco-plastic multiplier is derived by solving the consistency equation of an anisotropic bounding surface.In the expression,a strain rate index is proposed to account for the strain-rate effect on visco-plastic strain increment,and a visco-plastic hardening modulus is derived to predict the visco-plastic response of soils in overconsolidation conditions.The model is then verified through constant strain rate tests and creep tests.Notably,it can capture the non-unique critical states of soils with time-dependent behaviors due to the generalized spacing ratio and the creep rupture of soils due to the visco-plastic multiplier that considers the stress ratio and visco-plastic strain rate. 展开更多
关键词 Soil Constitutive model Visco-plastic behavior Strain rate CREEP ANISOTROPIC
下载PDF
Effect of Pre-strain on Microstructure and Stamping Performance of High-strength Low-alloy Steel
11
作者 刘坡 WEN Zhicheng +1 位作者 LIU Zheng 许峰 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期774-780,共7页
In this study,pre-strain ranging from 0 to 0.12 was applied through uniaxial tension on high-strength low-alloy(HSLA)specimens with four kinds of grain size.Effect of pre-strain and grain size on me-chanical property ... In this study,pre-strain ranging from 0 to 0.12 was applied through uniaxial tension on high-strength low-alloy(HSLA)specimens with four kinds of grain size.Effect of pre-strain and grain size on me-chanical property was investigated through tensile tests.Microstructures of the pre-strained and tensile tested samples were analyzed,respectively.The 30.8°v-bending and following flattening,as well as Erichson cupping tests,were performed on the pre-strained samples.Results show the elongation ratio of grain and dislocation density increases with pre-strain.Yielding platform is removed when pre-strain is larger than 0.06 while yielding plateau period decreases with pre-strain less than 0.06 due to reduction of pinning effect.The 30.8°v-bending and the following flattening tests are successfully accomplished on all the pre-strained samples with different grain size.Decrease in grain size,along with increase in pre-strain,causes increase in strength and decrease in elongation rate as well as cupping value.Pre-strain causes very slight effect on bending ability,much less than that on mechanical property and cupping test value.Reciprocal impact of the pre-strain and grain size on HSLA steel deformability is inconspicuous. 展开更多
关键词 strain hardening DISLOCATION TEXTURE BENDING erichson cupping test
下载PDF
High performance wide bandgap perovskite solar cell with low V_(OC) deficit less than 0.4 V
12
作者 Haikuo Guo Fuhua Hou +8 位作者 Xuli Ning Xiaoqi Ren Haoran Yang Rui Liu Tiantian Li Chengjun Zhu Ying Zhao Wei Li Xiaodan Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期313-322,共10页
Wide bandgap perovskite solar cells(PSCs)have attracted significant attention because they can be applied to the top cells of tandem solar cells.However,high open-circuit voltage(V_(OC))deficit(>0.4 V)result from p... Wide bandgap perovskite solar cells(PSCs)have attracted significant attention because they can be applied to the top cells of tandem solar cells.However,high open-circuit voltage(V_(OC))deficit(>0.4 V)result from poor crystallization and high non-radiative recombination losses become a serious limitation in the pursuit of high performance.Here,the relevance between different Pbl_(2)proportions and performance parameters are revealed through analysis of surface morphology,residual stress,and photostability.The increase of Pbl_(2)proportion promotes crystal growth and reduces the work function of the perovskite film surface and promotes the energy level alignment with the carrier transport layer,which decreased the V_(OC)deficit.However,residual PbI_(2)exacerbated the stress level of perovskite film,and the resulting lattice disorder deteriorated the photostability of the device.Ultimately,after the synergistic passivation of residual PbI_(2)and PEAI,the V_(OC)achieves 1.266 V and V_(OC)deficit is less than 0.4 V,the record value in wide bandgap PSCs. 展开更多
关键词 Pb management Perovskite solar cell STRAIN Wide bandgap Stability
下载PDF
Anisotropic metal–insulator transition in strained VO_(2)(B) single crystal
13
作者 马泽成 闫胜楠 +8 位作者 刘增霖 徐涛 陈繁强 陈思成 曹天俊 孙立涛 程斌 梁世军 缪峰 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期56-61,共6页
Mechanical strain can induce noteworthy structural and electronic changes in vanadium dioxide, imparting substantial scientific importance to both the exploration of phase transitions and the development of potential ... Mechanical strain can induce noteworthy structural and electronic changes in vanadium dioxide, imparting substantial scientific importance to both the exploration of phase transitions and the development of potential technological applications. Unlike the traditional rutile(R) phase, bronze-phase vanadium dioxide [VO_(2)(B)] exhibits an in-plane anisotropic structure. When subjected to stretching along distinct crystallographic axes, VO_(2)(B) may further manifest the axial dependence in lattice–electron interactions, which is beneficial for gaining insights into the anisotropy of electronic transport.Here, we report an anisotropic room-temperature metal–insulator transition in single-crystal VO_(2)(B) by applying in-situ uniaxial tensile strain. This material exhibits significantly different electromechanical responses along two anisotropic axes.We reveal that such an anisotropic electromechanical response mainly arises from the preferential arrangement of a straininduced unidirectional stripe state in the conductive channel. This insulating stripe state could be attributed to the in-plane dimerization within the distorted zigzag chains of vanadium atoms, evidenced by strain-modulated Raman spectra. Our work may open up a promising avenue for exploiting the anisotropy of metal–insulator transition in vanadium dioxide for potential technological applications. 展开更多
关键词 vanadium dioxide STRAIN ANISOTROPY electrical transport
下载PDF
Numerical modelling of post-failure behaviors of coal specimens
14
作者 Ajeet Yadav Bhaskara Behera +1 位作者 Gauri Shankar Prasad Singh Sanjay Kumar Sharma 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期514-531,共18页
A modelling approach consisting of best-fit relations to estimate the post-yield strength parameters is presented for simulating post-peak behavior beyond the point of residual strength of coal pillars having differen... A modelling approach consisting of best-fit relations to estimate the post-yield strength parameters is presented for simulating post-peak behavior beyond the point of residual strength of coal pillars having different w/h ratios.The model was developed based on back-analysis of the complete stress-strain behavior of specimens belonging to six different Indian coal seams with different w/h ratios of 0.5 e13.5.It was found that the simultaneous degradation of the cohesion and friction angle of the Mohr-Coulomb rock material characterizes the post-peak strength behavior of the rock.The resulting expressions are simplistic as they require parameters that can be easily determined using uniaxial and triaxial compression results.Eventually,the developed model was validated by simulating the triaxial tests of coal specimens with different sizes under varying confining stresses and comparing its findings with the published test results.The study showed that its implementation in the numerical model could reproduce laboratory-observed mechanical response,deformation behavior,and failure mechanism very closely. 展开更多
关键词 Strain softening DILATANCY INTERFACE Shape effect Residual strength
下载PDF
Lotus root-like RuIr alloys with close-packed(0001)branches:Strain-driven performance for acidic water oxidation
15
作者 Mingyue Xiao Wanli Xu +5 位作者 Rongchao Li Yanhui Sun Jingjun Liu Feng Liu Jun Gan Shixin Gao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期579-590,共12页
Achieving composition tunability and structure editability of nanoalloys with high level strain may be an efficient strategy to remarkably boost catalytic performance toward oxygen evolution reaction(OER)in acidic wat... Achieving composition tunability and structure editability of nanoalloys with high level strain may be an efficient strategy to remarkably boost catalytic performance toward oxygen evolution reaction(OER)in acidic water oxidation.Herein,lotus root-like RuIr alloys with native micro-strain were constructed by an epitaxial growth of Ru-richened hcp-(0001)branches on Ir-richened fcc-(111)seeds using a polyol thermal synthesis strategy.The resultant Ru_(60)Ir_(40) alloy shows an OER overpotential of 197 mV at 10 mA cm^(-2) and a Tafel slope of 46.59 mV dec^(-1),showing no obvious activity decay for 80 h continuous chronopotentiometry test in 0.5 M H_(2)SO_(4).The related characterizations including X-ray absorption fine structure(XAFS)spectroscopy and density functional theory(DFT)calculations show that that the remarkably improved activity of the lotus root-like alloy can be attributed to the(0001)facet-triggered strain,which can efficiently optimize the electronic band structure of the active metal and the weakening of the chemisorption of oxygen-containing substances to boost OER electrocatalysis.Therefore,this work provides a new strategy to designing a class of advanced electrocatalysts with high strain using diverse nanostructures as building materials for carbon-free clean energy conversion systems. 展开更多
关键词 Rulr alloy Lotusroot-like structure STRAIN Oxygene volution reaction Activity
下载PDF
Ultra‑Efficient and Cost‑Effective Platinum Nanomembrane Electrocatalyst for Sustainable Hydrogen Production
16
作者 Xiang Gao Shicheng Dai +8 位作者 Yun Teng Qing Wang Zhibo Zhang Ziyin Yang Minhyuk Park Hang Wang Zhe Jia Yunjiang Wang Yong Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期95-110,共16页
Hydrogen production through hydrogen evolution reaction(HER)offers a promising solution to combat climate change by replacing fossil fuels with clean energy sources.However,the widespread adoption of efficient electro... Hydrogen production through hydrogen evolution reaction(HER)offers a promising solution to combat climate change by replacing fossil fuels with clean energy sources.However,the widespread adoption of efficient electrocatalysts,such as platinum(Pt),has been hindered by their high cost.In this study,we developed an easy-to-implement method to create ultrathin Pt nanomembranes,which catalyze HER at a cost significantly lower than commercial Pt/C and comparable to non-noble metal electrocatalysts.These Pt nanomembranes consist of highly distorted Pt nanocrystals and exhibit a heterogeneous elastic strain field,a characteristic rarely seen in conventional crystals.This unique feature results in significantly higher electrocatalytic efficiency than various forms of Pt electrocatalysts,including Pt/C,Pt foils,and numerous Pt singleatom or single-cluster catalysts.Our research offers a promising approach to develop highly efficient and cost-effective low-dimensional electrocatalysts for sustainable hydrogen production,potentially addressing the challenges posed by the climate crisis. 展开更多
关键词 PLATINUM Hydrogen evolution reaction Lattice distortion Heterogeneous strain
下载PDF
In-Situ Atomic-Scale Observation of Brownmillerite to Ruddlesden-Popper Phase Transition Tuned by Epitaxial Strain in Cobaltites
17
作者 林挺 高昂 +6 位作者 汤哲歆 林炜光 孙慕华 张庆华 王雪锋 郭尔佳 谷林 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第4期152-158,共7页
Phase transitions involving oxygen ion extraction within the framework of the crystallographic relevance have been widely exploited for sake of superconductivity,ferromagnetism,and ion conductivity in perovskiterelate... Phase transitions involving oxygen ion extraction within the framework of the crystallographic relevance have been widely exploited for sake of superconductivity,ferromagnetism,and ion conductivity in perovskiterelated oxides.However,atomic-scale pathways of phase transitions and ion extraction threshold are inadequately understood.Here we investigate the atomic structure evolution of LaCoO_(3) films upon oxygen extraction and subsequent Co migration,focusing on the key role of epitaxial strain.The brownmillerite to Ruddlesden-Popper phase transitions are discovered to stabilize at distinct crystal orientations in compressive-and tensile-strained cobaltites,which could be attributed to in-plane and out-of-plane Ruddlesden-Popper stacking faults,respectively.A two-stage process from exterior to interior phase transition is evidenced in compressive-strained LaCoO_(2.5),while a single-step nucleation process leaving bottom layer unchanged in tensile-strained situation.Strain analyses reveal that the former process is initiated by an expansion in Co layer at boundary,whereas the latter one is associated with an edge dislocation combined with antiphase boundary.These findings provide a chemomechanical perspective on the structure regulation of perovskite oxides and enrich insights into strain-dependent phase diagram in epitaxial oxides films. 展开更多
关键词 STRAINED Phase OXIDES
下载PDF
Mechanical properties and energy evolution of Beishan shallow-layer granite under different unloading paths
18
作者 WANG Chuanle LI Erbing +4 位作者 ZHANG Dengke HAN Yang LU Hui HE Kang DU Guangyin 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1728-1744,共17页
Rock has mechanical characteristics and a fracture damage mechanism that are closely related to its loading history and loading path. The mechanical properties, fracture damage features, acoustic emission(AE) characte... Rock has mechanical characteristics and a fracture damage mechanism that are closely related to its loading history and loading path. The mechanical properties, fracture damage features, acoustic emission(AE) characteristics, and strain energy evolution of the Beishan shallow-layer granite used in triaxial unloading tests were investigated in this study. Three groups of triaxial tests, namely, conventional triaxial compression test(Group Ⅰ), maintaining deviatoric stress synchronously unloading confining pressure test(Group Ⅱ), and loading axial pressure synchronously unloading confining pressure test(Group Ⅲ), were carried out for the cylindrical granite specimens. AE monitoring device was utilized in these tests to determine the degree to which the AE waves and AE events reflected the degree of rock damage. In addition, the crack stress thresholds of the specimens were determined by volumetric strain method and AE parameter method, and strain energy evolution of the rock was explored in different damage stages. The results show that the shallow-layer granite experiences brittle failure during the triaxial loading test and unloading test, and the rock has a greater damage degree during the unloading test. The crack stress thresholds of these samples vary greatly between tests, but the threshold ratios of all samples are similar in the same crack damage stage. The Mogi-Coulomb strength criterion can better describe the unloading failure strength of the rock. The evolution of the AE parameter characteristics and strain energy differs between the specimens used in different stress path tests. The dissipative strain energy is the largest in Group Ⅱ and the smallest in Group Ⅰ. 展开更多
关键词 Beishan granite Unloading test Mechanical properties Damage mechanism Acoustic emission Strain energy
下载PDF
Effect of strain on structure and electronic properties of monolayer C_(4)N_(4)
19
作者 陈昊 徐瑛 +1 位作者 赵家石 周丹 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期595-600,共6页
The first-principles calculations are performed to examine structural,mechanical,and electronic properties at large strain for a monolayer C_(4)N_(4),which has been predicted as an anchoring promising material to atte... The first-principles calculations are performed to examine structural,mechanical,and electronic properties at large strain for a monolayer C_(4)N_(4),which has been predicted as an anchoring promising material to attenuate shuttle effect in Li–S batteries stemming from its large absorption energy and low diffusion energy barrier.Our results show that the ideal strengths of C_(4)N_(4)under tension and pure shear deformation conditions reach 13.9 GPa and 12.5 GPa when the strains are 0.07 and 0.28,respectively.The folded five-membered rings and diverse bonding modes between carbon and nitrogen atoms enhance the ability to resist plastic deformation of C_(4)N_(4).The orderly bond-rearranging behaviors under the weak tensile loading path along the[100]direction cause the impressive semiconductor–metal transition and inverse semiconductor–metal transition.The present results enrich the knowledge of the structure and electronic properties of C_(4)N_(4)under deformations and shed light on exploring other two-dimensional materials under diverse loading conditions. 展开更多
关键词 two-dimensional materials strain effect structural evolution electronic properties
下载PDF
Interlayer Magnetic Interaction in the CrI_(3)/CrSe_(2) Heterostructure
20
作者 王秋皓 倪美燕 +3 位作者 李淑静 郑法伟 路洪艳 张平 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第5期85-89,共5页
Based on first-principles calculations, we systematically study the stacking energy and interlayer magnetic interaction of the heterobilayer composed of CrI_(3) and CrSe_(2) monolayers. It is found that the stacking o... Based on first-principles calculations, we systematically study the stacking energy and interlayer magnetic interaction of the heterobilayer composed of CrI_(3) and CrSe_(2) monolayers. It is found that the stacking order plays a crucial role in the interlayer magnetic coupling. Among all possible stacking structures, the AA-stacking is the most stable heterostructure, exhibiting interlayer antiferromagnetic interactions. Interestingly, the interlayer magnetic interaction can be effectively tuned by biaxial strain. A 4.3% compressive strain would result in a ferromagnetic interlayer interaction in all stacking orders. These results reveal the magnetic properties of CrI_(3)/CrSe_(2) heterostructure, which is expected to be applied to spintronic devices. 展开更多
关键词 STRAIN STACKING INTERLAYER
下载PDF
上一页 1 2 139 下一页 到第
使用帮助 返回顶部