The Strait of Malacca (SoM), the world's busiest sea-route, is increasingly polluted as the rapid develop- ment of world trades, affecting phytoplankton primary productivity therein. The variations of surface phy- ...The Strait of Malacca (SoM), the world's busiest sea-route, is increasingly polluted as the rapid develop- ment of world trades, affecting phytoplankton primary productivity therein. The variations of surface phy- toplankton biomass, size-structure and carbon fixation were investigated across the SoM during the spring period (May 4 to 9, 2011). Chlorophyll a concentration increased from 0.12 ptg/L at the northwest entrance of the SoM to a maximal 0.63 #g/L at narrowest section, and decreased to 0.10/.tg/L at the southeast entrance. Photosynthetic carbon fixation by phytoplankton coincided well with Chl a biomass, and increased from 10.8 to 22.3 pg C/(L.d), then decreased to 9.21/zg C/(L.d); while the carbon fixation rate showed an inverse pattern to the changes of Chl a, and decreased from 87.1 to 35.5 #g C/(#g Chl a.d) and increased thereafter to 95.3 btg C/(/2g Chl a.d). Picophytoplankton cells (〈3/2m) contributed to more than 60% and 50% of the total Chl a and carbon fixation at both the entry waters; while the contributions of pico-cells decreased sharply to the minimum of 18.3% and 27.5% at the narrowest part of the SoM. In particular, our results showed that the silicate concentration positively regulated Chl a biomass and carbon fixation, reflecting that the higher silicate favoured the growth of phytoplankton and thus led to higher primary production in this strait.展开更多
基金The National Natural Science Foundation of China under contract Nos 41130855,41206132 and 41276162the Natural Science Foundation of Guangdong under contract No.S2011040000151+2 种基金CAS Knowledge Innovation Program under contract No.SQ201115National Project of Sciences and Technology under contract No.2008FY110100CAS Strategic Pilot Science and Technology under contract No.XDA05030403
文摘The Strait of Malacca (SoM), the world's busiest sea-route, is increasingly polluted as the rapid develop- ment of world trades, affecting phytoplankton primary productivity therein. The variations of surface phy- toplankton biomass, size-structure and carbon fixation were investigated across the SoM during the spring period (May 4 to 9, 2011). Chlorophyll a concentration increased from 0.12 ptg/L at the northwest entrance of the SoM to a maximal 0.63 #g/L at narrowest section, and decreased to 0.10/.tg/L at the southeast entrance. Photosynthetic carbon fixation by phytoplankton coincided well with Chl a biomass, and increased from 10.8 to 22.3 pg C/(L.d), then decreased to 9.21/zg C/(L.d); while the carbon fixation rate showed an inverse pattern to the changes of Chl a, and decreased from 87.1 to 35.5 #g C/(#g Chl a.d) and increased thereafter to 95.3 btg C/(/2g Chl a.d). Picophytoplankton cells (〈3/2m) contributed to more than 60% and 50% of the total Chl a and carbon fixation at both the entry waters; while the contributions of pico-cells decreased sharply to the minimum of 18.3% and 27.5% at the narrowest part of the SoM. In particular, our results showed that the silicate concentration positively regulated Chl a biomass and carbon fixation, reflecting that the higher silicate favoured the growth of phytoplankton and thus led to higher primary production in this strait.