期刊文献+
共找到3,482篇文章
< 1 2 175 >
每页显示 20 50 100
The attenuation of stress waves in fluid saturated porous rock
1
作者 席道瑛 程经毅 +1 位作者 易良坤 张斌 《Acta Seismologica Sinica(English Edition)》 CSCD 1997年第5期13-18,共6页
The dynamic mechanical frequency spectrum and temperature spectrum measurements of dry and saturated sandstone with three different porosity are conducted by use of the viscoelastic spectrum instrument in the 0.01~10... The dynamic mechanical frequency spectrum and temperature spectrum measurements of dry and saturated sandstone with three different porosity are conducted by use of the viscoelastic spectrum instrument in the 0.01~100 Hz frequency region. The frequency responses of the attenuation and modulus at different temperature peaks are obtained. With increase of the porosity and the loss of the complex modulus, the attenuation in the saturated sandstones is increased, and the frequency dispersion is enhanced. The relation between the frequency spectrum and the temperature spectrum are also discussed. 展开更多
关键词 dynamic response stress wave ATTENUATION saturated sandstone
下载PDF
Macro Meso Response and Stress Wave Propagation Characteristics of MCT High-Voltage Switch Under Shock load
2
作者 Yuyang Guo Chuang Chen +1 位作者 Ruizhi Wang Enling Tang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期317-335,共19页
In order to study the dynamic and electrical coupling response characteristics of Metal Oxide Semiconductor Controlled Thyristor(MCT)high-voltage switch under the synergic action of mechanical load and high voltage,th... In order to study the dynamic and electrical coupling response characteristics of Metal Oxide Semiconductor Controlled Thyristor(MCT)high-voltage switch under the synergic action of mechanical load and high voltage,the separated Hopkinson pressure bar(SHPB)test system was used to simulate different impact load environments,and combined with the multi-layer high-voltage ceramic capacitor charging and discharging system,the instantaneous electrical signals of MCT high-voltage switch were collected.Combined with numerical simulation and theoretical analysis,the failure mode and stress wave propagation characteristics of MCT high voltage switch were determined.The mechanical and electrical coupling response characteristics and failure mechanism of MCT high voltage switch under dynamic load were revealed from macroscopic and microscopic levels.The results show that the damage modes of MCT high-voltage switches can be divided into non-functional damage,recoverable functional damage,non-recoverable damage and structural damage.Due to the gap between the metal gate and the oxide layer,the insulating oxide layer was charged.After placing for a period of time,the elastic deformation of the metal gate partially recovered and the accumulated charge disappeared,which induced the recoverable functional damage failure of the device.In addition,obvious cracks appeared on both sides of the monocrystalline silicon inside the MCT high-voltage switch,leading to unrecoverable damage of the device. 展开更多
关键词 MCT Impact load Failure analysis stress wave Numerical simulation
下载PDF
Effect of Blasting Stress Wave on Dynamic Crack Propagation
3
作者 Huizhen Liu Duanying Wan +2 位作者 Meng Wang Zheming Zhu Liyun Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期349-368,共20页
Stress waves affect the stress field at the crack tip and dominate the dynamic crack propagation.Therefore,evaluating the influence of blasting stress waves on the crack propagation behavior and the mechanical charact... Stress waves affect the stress field at the crack tip and dominate the dynamic crack propagation.Therefore,evaluating the influence of blasting stress waves on the crack propagation behavior and the mechanical characteristics of crack propagation is of great significance for engineering blasting.In this study,ANSYS/LS-DYNA was used for blasting numerical simulation,in which the propagation characteristics of blasting stress waves and stress field distribution at the crack tip were closely observed.Moreover,ABAQUS was applied for simulating the crack propagation path and calculating dynamic stress intensity factors(DSIFs).The universal function was calculated by the fractalmethod.The results show that:the compressive wave causes the crack to close and the reflected tensile wave drives the crack to initiate and propagate,and failure mode is mainly tensile failure.The crack propagation velocity varies with time,which increases at first and then decreases,and the crack arrest occurs due to the attenuation of stress waves and dissipation of the blasting energy.In addition,crack arrest toughness is smaller than the crack initiation toughness,applied pressure waveforms(such as the peak pressure,duration,waveforms,wavelengths and loading rates)have a great influence on DSIFs.It is conducive to our deep understanding or the study of blasting stress waves dominated fracture,suggesting a broad reference for the further development of rock blasting in engineering practice. 展开更多
关键词 Crack propagation blasting stress wave dynamic stress intensity factor pressure waveform numerical simulation
下载PDF
Isolated Hyperacute T-Waves in West Nile Encephalitis Indicating Atypical Variant of Stress-Induced Cardiomyopathy
4
作者 Soomal Rafique Nadeem Khan Momin Siddique 《Journal of Biosciences and Medicines》 2024年第2期303-310,共8页
Several cardiac outcomes have been reported with West Nile-encephalitis;however, the underlying pathophysiology remains complex. We present a 42-year-old female, with multiple sclerosis, whose neurological symptoms an... Several cardiac outcomes have been reported with West Nile-encephalitis;however, the underlying pathophysiology remains complex. We present a 42-year-old female, with multiple sclerosis, whose neurological symptoms and respiratory decline were finally explained by the diagnosis of West Nile-encephalitis. During her admission, the isolated peaked T-waves indicated the underlying stress-induced cardiomyopathy. The absence of all other causes of hyperacute T-waves, their subsequent resolution with the resolution of infection and improvement in wall motion abnormalities, further supported the association. This case highlights the importance of considering hyperacute T-waves in an approach towards the diagnosis of WNV-encephalitis related atypical variant of stress-induced cardiomyopathy. 展开更多
关键词 West Nile Virus encephalitis WNV Hyperacute T-waves Takotsubo Cardiomyopathy Atypical/Inverted Variant of stress-Induced Cardiomyopathy CMP
下载PDF
Effect of sensor quantity on measurement accuracy of log inner defects by using stress wave 被引量:10
5
作者 WANG Li-hai XU Hua-dong ZHOU Ci-lin LI Li YANG Xue-chun 《Journal of Forestry Research》 SCIE CAS CSCD 2007年第3期221-225,共5页
Wood nondestructive testing (NDT) is one of the high efficient methods in utilizing wood. This paper explained the principle of log defect testing by using stress wave, and analyzed the effects of sensor quantity on... Wood nondestructive testing (NDT) is one of the high efficient methods in utilizing wood. This paper explained the principle of log defect testing by using stress wave, and analyzed the effects of sensor quantity on defect testing results by using stress wave in terms of image fitting degree and error rate. The results showed that for logs with diameter ranging from 20 to 40 cm, at least 12 sensors were needed to meet the requirement which ensure a high testing accuracy of roughly 90% of fitness with 0.1 of error rate. And 10 sensors were recommended to judge the possible locations of defects and 6 sensors were sufficient to decide whether there were defects or not. 展开更多
关键词 Sensor quantity Log defect testing stress wave Image fitting degree
下载PDF
Dynamic response and failure of rock in initial gradientstress field under stress wave loading 被引量:10
6
作者 WENG Lei WU Qiu-hong +1 位作者 ZHAO Yan-lin WANG Shi-ming 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第3期963-972,共10页
Once an opening is created in deep underground,the stresses surrounding the opening will be redistributed,inducing a gradient stress field.To understand how the ground rock in such a gradient stress field responses to... Once an opening is created in deep underground,the stresses surrounding the opening will be redistributed,inducing a gradient stress field.To understand how the ground rock in such a gradient stress field responses to dynamic stress loading,the gradient stress distribution at a circular opening was first analyzed and the propagation of 1D stress wave in rock mass under gradient stress field was theoretically derived.By using an implicit to explicit solution method in LS-DYNA code,the dynamic mechanical behaviors of rock in gradient stress field were numerically investigated.The results indicate that the damage is mainly produced at or near the free face,partly due to the straight action of compressive stress wave and the tensile stress wave generated at the free face.The range of the induced damage zone is narrowed under the conditions of higher gradient stress rate and lower dynamic stress amplitude.However,under lower gradient stress field and higher dynamic stress,the damage becomes severer and wider with discontinuous failure regions. 展开更多
关键词 deep opening gradient stress rate(GSR) stress wave damage zone LS-DYNA
下载PDF
An extended displacement discontinuity method for analysis of stress wave propagation in viscoelastic rock mass 被引量:8
7
作者 L.F.Fan1,F.Ren1,G.W.Ma2 1 School of Civil and Environmental Engineering,Nanyang Technological University,Singapore,639798,Singapore 2 School of Civil and Resource Engineering,The University of Western Australia,Crawley,WA 6009,Australia 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2011年第1期73-81,共9页
An extended displacement discontinuity method (EDDM) is proposed to analyze the stress wave propagation in jointed viscoelastic rock mass (VRM).The discontinuities in a rock mass are divided into two groups.The primar... An extended displacement discontinuity method (EDDM) is proposed to analyze the stress wave propagation in jointed viscoelastic rock mass (VRM).The discontinuities in a rock mass are divided into two groups.The primary group with an average geometrical size larger than or in the same order of magnitude of wavelength of a concerned stress wave is defined as 'macro-joints',while the secondary group with a high density and relatively small geometrical size compared to the wavelength is known as 'micro-defects'.The rock mass with micro-defects is modeled as an equivalent viscoelastic medium while the macro-joints in the rock mass are modeled explicitly as physical discontinuities.Viscoelastic properties of a micro-defected sedimentary rock are obtained by longitudinally impacting a cored long sedimentary rod with a pendulum.Wave propagation coefficient and dynamic viscoelastic modulus are measured.The EDDM is then successfully employed to analyze the wave propagation across macro-joint in VRM.The effect of the rock viscosity on the stress wave propagation is evaluated by comparing the results of VRM from the presented EDDM with those of an elastic rock mass (ERM) from the conventional displacement discontinuity method (CDDM).The CDDM is a special case of the EDDM under the condition that the rock viscosity is ignored.Comparison of the reflected and transmitted waves shows that the essential rock viscosity has a significant effect on stress wave attenuation.When a short propagation distance of a stress wave is considered,the results obtained from the CDDM approximate to the EDDM solutions,however,when the propagation distance is sufficiently long relative to the wavelength,the effect of rock viscosity on the stress wave propagation cannot be ignored. 展开更多
关键词 stress wave propagation extended displacement discontinuity method (EDDM) viscoelastic rock mass (VRM) micro-defect macro-joint
下载PDF
Effects of imperfect experimental conditions on stress waves in SHPB experiments 被引量:5
8
作者 Xianqian Wu Qiuyun Yin +1 位作者 Yanpeng Wei Chenguang Huang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第6期827-836,共10页
Experimental and numerical simulations were undertaken to estimate the effects of imperfect conditions on stress waves in split Hopkinson pressure bar (SHPB) experiments. The photonic Doppler velocimetry (PDV) mea... Experimental and numerical simulations were undertaken to estimate the effects of imperfect conditions on stress waves in split Hopkinson pressure bar (SHPB) experiments. The photonic Doppler velocimetry (PDV) measurement results show that the rise and fall times of an incident wave increases with an increasing inclination angle; also, the fluctuations of the incident wave disappear gradually with the increase of inclination angle. The following characteristics for various defects in the SHPB were obtained by numerical simulation: (1) the influence of a curved bar was negligible; (2) misalignment modestly affects the fluctuation characteristics, and bending waves were generated at this condition; (3) inclination and indentation of the impact end- surface had a great impact on the incident waves, and both of them increase the rise time of the incident wave by increasing the degree of defects. In view of the results, misalignment, inclination, and indentation in SHPB experiments should be minimized. 展开更多
关键词 Imperfect experimental conditions SHPBexperiments stress waves PDV measurement. Numericalsimulation
下载PDF
Physical simulation of rock burst induced by stress waves 被引量:16
9
作者 LU Ai-hong MAO Xian-biao LIU Hai-shun 《Journal of China University of Mining and Technology》 EI 2008年第3期401-405,共5页
The behavior of stress wave propagation in rock walls and the process of rock bursts were simulated by application tests of material similar to rock. Results show that 1) the attenuation characteristics of stress wave... The behavior of stress wave propagation in rock walls and the process of rock bursts were simulated by application tests of material similar to rock. Results show that 1) the attenuation characteristics of stress waves were related to the material proper-ties, stress waves attenuate more quickly in soft material and 2) when the explosion load was applied at the top of the roadway, the number and the length of the cracks increased with a decrease in the distance between the explosive point and roof of the roadway. When the distance was 280 mm, only some chips appeared near the source, when the distance was 210 mm, some small cracks started to appear near the road-rib and when the distance was reduced to 140 mm, larger cracks appeared at the road-rib. It can be concluded that, under a given stress the number of cracks is closely related to the intensity of stress waves. The cracks in the sur-rounding rock can be reduced by controlling the intensity of the stress waves and rock bursts can be avoided to some extent by pre-venting the formation of layered crack structures. A new experimental approach has been provided for studying rock bursts by using physical simulation. 展开更多
关键词 similar material stress wave physical simulation rock burst
下载PDF
Tomography of the dynamic stress coefficient for stress wave prediction in sedimentary rock layer under the mining additional stress 被引量:7
10
作者 Wenlong Shen Guocang Shi +3 位作者 Yungang Wang Jianbiao Bai Ruifeng Zhang Xiangyu Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第4期653-663,共11页
In this study,the tomography of dynamic stress coefficient(TDSC)was established based on a mechanical model of stress wave propagation in bedding planes and a mathematical model of the stress wave attenuation in rock ... In this study,the tomography of dynamic stress coefficient(TDSC)was established based on a mechanical model of stress wave propagation in bedding planes and a mathematical model of the stress wave attenuation in rock masses.The reliability of the TDSC was verified by a linear bedding plane model and field monitoring.Generally,the TDSC in the dynamic stress propagation of bedding planes increases with the following conditions:(1)the increase of the normal stiffness of the bedding plane,(2)the increase of the incident angle of the stress wave,(3)the decrease of the incident frequency of the stress wave,or(4)the growth of three ratios(the ratios of rock densities,elastic moduli,and the Poisson’s ratios)of rocks on either side of bedding planes.The additional stress weakens TDSC linearly and slowly during the stress wave propagation in bedding planes,and the weakening effect increases with the growth of the three ratios.Besides,the TDSC decreases exponentially in the rock mass as propagation distance increases.In a field case,the TDSC decreases significantly as vertical and horizontal distances increase and its wave range increases as vertical distance increases in the sedimentary rock layers. 展开更多
关键词 Tomography of the dynamic stress COEFFICIENT stress wave attenuation Mining additional stress Sedimentary rock layer
下载PDF
Effects of axial static stress on stress wave propagation in rock considering porosity compaction and damage evolution 被引量:7
11
作者 JIN Jie-fang YUAN Wei +1 位作者 WU Yue GUO Zhong-qun 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第2期592-607,共16页
A wave equation of rock under axial static stress is established using the equivalent medium method by modifying the Kelvin-Voigt model.The analytical formulas of longitudinal velocity,space and time attenuation coeff... A wave equation of rock under axial static stress is established using the equivalent medium method by modifying the Kelvin-Voigt model.The analytical formulas of longitudinal velocity,space and time attenuation coefficients and response frequency are obtained by solving the equation using the harmonic method.A series of experiments on stress wave propagation through rock under different axial static stresses have been conducted.The proposed models of stress wave propagation are then verified by comparing experimental results with theoretical solutions.Based on the verified theoretical models,the influences of axial static stress on longitudinal velocity,space and time attenuation coefficients and response frequency are investigated by detailed parametric studies.The results show that the proposed theoretical models can be used to effectively investigate the effects of axial static stress on the stress wave propagation in rock.The axial static stress influences stress wave propagation characteristics of porous rock by varying the level of rock porosity and damage.Moreover,the initial porosity,initial elastic modulus of the rock voids and skeleton,viscous coefficient and vibration frequency have significant effects on the P-wave velocity,attenuation characteristics and response frequency of the stress wave in porous rock under axial static stress. 展开更多
关键词 stress wave propagation axial static stress porosity compaction space and time attenuation response frequency
下载PDF
Experimental Investigation on Transmission of Stress Waves in Sandwich Samples Made of Foam Concrete 被引量:4
12
作者 SHEN Jun REN Xinjian 《Defence Technology(防务技术)》 SCIE EI CAS 2013年第2期139-144,共6页
A series of impact tests of sandwich samples were completed using a large-diameter split Hopkinson pressure bar (SHPB)device at different velocities. The interlayer is made of foam concrete, loess or sand. The stress ... A series of impact tests of sandwich samples were completed using a large-diameter split Hopkinson pressure bar (SHPB)device at different velocities. The interlayer is made of foam concrete, loess or sand. The stress peak value decay, energy decay and waveform dispersion characters are studied by comparing the incident waves with the transmission waves. The tests indicate that the foam concrete has the best capabilities of shock resistance and energy absorption, the loess comes second, and the sand takes third place. 展开更多
关键词 non-metallic inorganic material foam concrete SHPB stress wave energy absorption
下载PDF
SCATTERING OF HARMONIC ANTI-PLANE SHEAR STRESS WAVES BY A CRACK IN FUNCTIONALLY GRADED PIEZOELECTRIC/PIEZOMAGNETIC MATERIALS 被引量:6
13
作者 Liang Jun 《Acta Mechanica Solida Sinica》 SCIE EI 2007年第1期75-86,共12页
In this paper, the dynamic behavior of a permeable crack in functionally graded piezoelectric/piezomagnetic materials is investigated. To make the analysis tractable, it is assumed that the material properties vary ex... In this paper, the dynamic behavior of a permeable crack in functionally graded piezoelectric/piezomagnetic materials is investigated. To make the analysis tractable, it is assumed that the material properties vary exponentially with the coordinate parallel to the crack. By using the Fourier transform, the problem can be solved with the help of a pair of dual integral equations in which the unknown is the jump of displacements across the crack surfaces. These equations are solved to obtain the relations between the electric filed, the magnetic flux field and the dynamic stress field near the crack tips using the Schmidt method. Numerical examples are provided to show the effect of the functionally graded parameter and the circular frequency of the incident waves upon the stress, the electric displacement and the magnetic flux intensity factors of the crack. 展开更多
关键词 functionally graded piezoelectric/piezomagnetic materials CRACK stress wave
下载PDF
Influences of Stress Wave Propagation upon Studying Dynamic Response of Materials at High Strain Rates 被引量:4
14
作者 王礼立 《Journal of Beijing Institute of Technology》 EI CAS 2004年第3期225-235,共11页
How the wave propagation analysis plays a key role in the studies of dynamic response of materials at high strain rates is analyzed. For the wave propagation technique, the followings are important: the loading and un... How the wave propagation analysis plays a key role in the studies of dynamic response of materials at high strain rates is analyzed. For the wave propagation technique, the followings are important: the loading and unloading constitutive relation presumed, the positions of the sensors embedded, the interactions between loading waves and unloading waves. For the split Hopkinson pressure bar (SHPB) technique, the assumption of one-dimensional stress wave propagation and the assumption of stress uniformity along the specimen should be satisfied. When the larger diameter bars are employed, the wave dispersion effects should be considered, including the high frequency oscillations, non-uniform stress distribution across the bar section, increase of rise time, and amplitude attenuation. The stress uniformity along the specimen is influenced by the reflection times in specimen, the wave impedance ratio of the specimen and the bar, and the waveform. 展开更多
关键词 stress wave dynamic response of materials high strain rates SHPB
下载PDF
Response and energy dissipation of rock under stochastic stress waves 被引量:4
15
作者 邓建 边利 《Journal of Central South University of Technology》 EI 2007年第1期111-114,共4页
The response and energy dissipation of rock under stochastic stress waves were analyzed based on dynamic fracture criterion of brittle materials integrating with Fourier transform methods of spectral analysis. When th... The response and energy dissipation of rock under stochastic stress waves were analyzed based on dynamic fracture criterion of brittle materials integrating with Fourier transform methods of spectral analysis. When the stochastic stress waves transmit through rocks, the frequency and energy ratio of harmonic components were calculated by analytical and discrete analysis methods. The stress waves in shale, malmstone and liparite were taken as examples to illustrate the proposed analysis methods. The results show the harder the rock, the less absorption of energy, the more the useless elastic waves transmitting through rock, and the narrower the cutoff frequency to fracture rock. When the whole stress energy doubles either by doubling the duration time or by increasing the amplitude of stress wave, ratio of the energy of elastic waves transmitting through rock to the whole stress energy (i.e. energy dissipation ratio) is decreased to 10%-15%. When doubling the duration time, the cutoff frequency to fracture rock remains constant. However, with the increase of the amplitude of stress wave, the cutoff frequency increases accordingly. 展开更多
关键词 stochastic stress waves dynamic fracture criterion Fourier transform energy dissipation ROCK
下载PDF
SCATTERING OF THE HARMONIC STRESS WAVE BY CRACKS IN FUNCTIONALLY GRADED PIEZOELECTRIC MATERIALS 被引量:2
16
作者 Ma Li Nie Wu +1 位作者 Wu Linzhi Zhou Zhengong 《Acta Mechanica Solida Sinica》 SCIE EI 2005年第4期295-301,共7页
The present paper considers the scattering of the time harmonic stress wave by a single crack and two collinear cracks in functionally graded piezoelectric material (FGPM). It is assumed that the properties of the F... The present paper considers the scattering of the time harmonic stress wave by a single crack and two collinear cracks in functionally graded piezoelectric material (FGPM). It is assumed that the properties of the FGPM vary continuously as an exponential function. By using the Fourier transform and defining the jumps of displacements and electric potential components across the crack surface as the unknown functions, two pairs of dual integral equations are derived. To solve the dual integral equations, the jumps of the displacement and electric potential components across the crack surface are expanded in a series of Jacobi polynomials. Numerical examples are provided to show the influences of material properties on the dynamic stress and the electric displacement intensity factors. 展开更多
关键词 functionally graded piezoelectric materials CRACK stress intensity factor stress wave
下载PDF
Theoretical analysis of JMC effect on stress wave transmission and reflection 被引量:5
17
作者 Xin Chen Mei-feng Cai +1 位作者 Jian-chuan Li Wen-hui Tan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第11期1237-1245,共9页
Taking the joint matching coefficient(JMC) which represents the contact area ratio of the joint in rock masses as the key parameter, a one-dimensional contacted interface model(CIM-JMC) was established in this study t... Taking the joint matching coefficient(JMC) which represents the contact area ratio of the joint in rock masses as the key parameter, a one-dimensional contacted interface model(CIM-JMC) was established in this study to describe the wave propagation across a single joint. According to this model, the reflected and transmitted waves at the joint were obtained, and the energy coefficients of reflection and transmission were calculated. Compared with the modified Split Hopkinson pressure bar(SHPB) experiment, it was validated by taking the incident wave of the SHPB test as the input condition in the CIM-JMC, and the reflected and transmitted waves across the joint were calculated by the model. The effects of four sets of JMCs(0.81, 0.64, 0.49, and 0.36) on the transmission and reflection of the stress wave propagation across the joint were analyzed and compared with the experimental results. It demonstrated that the values of CIM-JMC could represent both the transmission and reflection of the stress wave accurately when JMC > 0.5, but could relatively accurately represent the reflection rather than the transmission when JMC < 0.5. By contrasting energy coefficients of joints with different JMCs, it was revealed that energy dissipated sharply along the decrease of JMC when JMC > 0.5. 展开更多
关键词 joint MATCHING COEFFICIENT stress wave TRANSMISSION REFLECTION energy COEFFICIENT ROCK dynamics
下载PDF
Propagation of combined longitudinal and torsional stress waves in a functionally graded thin-walled tube 被引量:2
18
作者 Shitang CUI Xiaojun NI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第12期1717-1732,共16页
An analytical model for the propagation of combined stress waves in a functionally graded thin-walled tube subjected to combined longitudinal and torsional impact loading is established.The material properties of the ... An analytical model for the propagation of combined stress waves in a functionally graded thin-walled tube subjected to combined longitudinal and torsional impact loading is established.The material properties of the tube are assumed to be continuously graded along the length according to a power law function with respect to the volume fractions of the constituents.The generalized characteristic theory is used to analyze the main features of the characteristic wave speeds and simple wave solutions in the functionally graded thin-walled tube.The finite difference method is used to discretize the governing equations.Two types of typical solutions are obtained for the functionally graded tube and the homogeneous tube subjected to combined longitudinal and torsional step loading.The numerical results reveal some abnormal phenomena in the stress path and wave process of the functionally graded thin-walled tube. 展开更多
关键词 elastoplastic behavior combined stress wave finite difference scheme thinwalled tube
下载PDF
A STUDY ON THE EFFECT OF RADIAL INERTIA ON THE ELASTO-PLASTIC COMBINED STRESS WAVE PROPAGATION IN THIN-WALLED TUBES 被引量:2
19
作者 Li Yongchi Huang Chengyi Yuan Fuping Jin Yongmei 《Acta Mechanica Solida Sinica》 SCIE EI 2001年第1期58-66,共9页
An in-depth analysis of propagation characteristics ofelasto-plastic combined stress waves in circular thin-walled tubeshas been made. In obtaining the simple-wave solution, however, mostresearches have ignored the in... An in-depth analysis of propagation characteristics ofelasto-plastic combined stress waves in circular thin-walled tubeshas been made. In obtaining the simple-wave solution, however, mostresearches have ignored the influence of the circumferential stressrelated to the radial inertial ef- fect in the tubes. In this paperthe incremental elasto-plastic constitutive relations which areconve- nient for dynamic numerical analysis are adopted, and thefinite-difference method is used to study the evolution adpropagation of elasto-plastic combined stress waves in a thin-walledtube with the radial inertial effect of the tube considered. Thecalculation results are compared with those obtained when the radialinertial effect is not considered. The calculation results show thatthe radial inertial effect of a tube has a fairly great influence onthe propagation of elasto-plastic combined stress waves. 展开更多
关键词 circular thin-walled tube elasto-plastic combined stress waves radialinertial effect
下载PDF
Effects of bottom shear stresses on the wave-induced dynamic response in a porous seabed:PORO-WSSI (shear) model 被引量:7
20
作者 J.Ye D.-S.Jeng 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第6期898-910,共13页
When ocean waves propagate over the sea floor,dynamic wave pressures and bottom shear stresses exert on the surface of seabed.The bottom shear stresses provide a horizontal loading in the wave-seabed interaction syste... When ocean waves propagate over the sea floor,dynamic wave pressures and bottom shear stresses exert on the surface of seabed.The bottom shear stresses provide a horizontal loading in the wave-seabed interaction system,while dynamic wave pressures provide a vertical loading in the system.However,the bottom shear stresses have been ignored in most previous studies in the past.In this study,the effects of the bottom shear stresses on the dynamic response in a seabed of finite thickness under wave loading will be examined,based on Biot's dynamic poro-elastic theory.In the model,an "u-p" approximation will be adopted instead of quasi-static model that have been used in most previous studies.Numerical results indicate that the bottom shear stresses has certain influences on the wave-induced seabed dynamic response.Furthermore,wave and soil characteristics have considerable influences on the relative difference of seabed response between the previous model(without shear stresses) and the present model(with shear stresses).As shown in the parametric study,the relative differences between two models could up to 10% of p0,depending on the amplitude of bottom shear stresses. 展开更多
关键词 Bottom shear stresses wave-induced dynamicresponse Porous seabed - "u-p" approximation - Biot's the-ory
下载PDF
上一页 1 2 175 下一页 到第
使用帮助 返回顶部