Stiffness degradation will occur due to the generation of accumulated pore pressure in saturated soft clays under cyclic loading. The soil static-dynamic multi-purpose triaxial and torsional shear apparatus in Dalian ...Stiffness degradation will occur due to the generation of accumulated pore pressure in saturated soft clays under cyclic loading. The soil static-dynamic multi-purpose triaxial and torsional shear apparatus in Dalian University of Technology was employed to perform different types of test on the saturated soft marine clay in the Yangtze Estuary. Undisturbed samples of the clay were subjected to undrained cyclic vertical and torsional coupling shear and cyclic torsional shear after three-directional anisotropic consolidation with different initial consolidation parameters. Investigated were the effects of the initial orientation angle of the major principal stress, initial ratio of deviatoric stress, initial coefficient of intermediate principal stress and continuous rotation of principal stress axes on the stiffness degradation. It is found that the degradation index decreases (or degradation degree increases) significantly with increasing initial orientation angle of the major principal stress and initial ratio of deviatoric stress. Compared with the effects of the initial orientation angle of the major principal stress and initial ratio of deviatoric stress, the effect of initial coefficient of intermediate principal stress is less evident and this trend is more clearly reflected by the results of the cyclic torsional shear tests than those of the cyclic coupling shear tests. At the same cycle number, the degradation index obtained from the cyclic torsional shear test is higher than that from the cyclic coupling shear test. The main reason is that the continuous rotation in principal stress directions during cyclic coupling shear damages the original structure of the soil more than the cyclic torsional shear does.Based on a series of experiments, a mathematical model for stiffness degradation is proposed and the relevant parameters are determined.展开更多
By using GDS dynamic hollow cylinder torsional apparatus, a series of cyclic torsional triaxial tests under complex initial consolidation condition are performed on Nanjing saturated fine sand. The effects of the init...By using GDS dynamic hollow cylinder torsional apparatus, a series of cyclic torsional triaxial tests under complex initial consolidation condition are performed on Nanjing saturated fine sand. The effects of the initial principal stress direction αo, the initial ratio of deviatoric stress η0, the initial average effective principal stress Po and the initial intermediate principal stress parameter b0 on the threshold shear strain γt of Nanjing saturated fine sand are then systematically investigated. The results show that γt increases as η0,p0 and b0 increase respectively, while the other three parameters remain constant. ao has a great influence on γt, which is reduced when ao increases from 0° to 45°and increased when α0 increases from 45° to 90°. The effect of α0 on γt, plays a leading role and the effect of η0 will weaken when ao is approximately 45°.展开更多
There exists a critical cyclic stress ratio when sand or clay is subjected to cyclic loading. It is an index dis-tinguishing stable state or failure state. The soil static and dynamic universal triaxial and torsional ...There exists a critical cyclic stress ratio when sand or clay is subjected to cyclic loading. It is an index dis-tinguishing stable state or failure state. The soil static and dynamic universal triaxial and torsional shear apparatus de-veloped by Dalian University of Technology in China was employed to perform different types of tests on saturated soft marine clay in the Yangtze estuary. Undisturbed samples were subjected to undrained cyclic vertical and torsional coupling shear and cyclic torsional shear after three-directional anisotropic consolidation with different initial consoli-dation parameters. The effects of initial orientation angle of major principal stress, initial ratio of deviatoric stress,initial coefficient of intermediate principal stress and stress mode of cyclic shear on the critical cyclic stress ratio wereinvestigated. It is found that the critical cyclic stress ratio decreases significantly with increasing initial orientation angle of major principal stress and initial ratio of deviatoric stress. Compared with the effects of the initial orientationangle of major principal stress and initial ratio of deviatoric stress, the effect of initial coefficient of intermediate prin-cipal stress is less evident. Under the same consolidation condition, the critical cyclic stress ratio from the cyclic cou-pling shear test is lower than that from the cyclic torsional shear test, indicating that the stress mode of cyclic shear has an obvious effect on the critical cyclic stress ratio. The main reason is that the continuous rotation in principal stressdirections during cyclic coupling shear damages the original structure of soil more than the cyclic torsional shear does.展开更多
The advanced computerized tomography is applied to study the damage propagation of rock. The real time CT scanning is carried out to the damage propagation of rock under triaxial stress condition. The damage propagati...The advanced computerized tomography is applied to study the damage propagation of rock. The real time CT scanning is carried out to the damage propagation of rock under triaxial stress condition. The damage propagation constitutive relation of rock under triaxial stress condition is analyzed at last.展开更多
The main aim of this work was to investigate the effects of salt stress conditions on the inorganic and organic compounds of extracts from six filamentous cyanobacteria: Arthospira platensis, Oscillatoria sp., Oscill...The main aim of this work was to investigate the effects of salt stress conditions on the inorganic and organic compounds of extracts from six filamentous cyanobacteria: Arthospira platensis, Oscillatoria sp., Oscillatoria salina, Tolypothrix sp., Oscillatoria sp. SWU (Srinakharinwirot University)121 and Tolypothrix sp. SWU213. All cyanobacteria were cultures in BG (blue-green algae)11 medium: pH 7.5 at 35 ℃ for 30 days of sodium chloride in the culture medium presented 0-1.0 M. The cyanobacteria isolates grew well in BGH medium, nevertheless, growth of the majority of isolates was reduced by about 50% in the same medium containing 0.5 M NaCl. The inorganic compounds such as, Na^+, K^+, Ca^2+, Mg^2+, NH4^+ and NO3^- were determined. All ions were reduced when NaCI was increased and Na^+ showed highest amount in the medium followed with Mg^2+, NH4^+, NO3^- and Ca^2+ in all cyanobaeteria. The organic compounds such as, betaine, proline and total lipid were determined under normal and salt stress conditions. We found that all cyanobacteria increased interesting organic compound under salt stress condition at least two folds to compare with normal condition. This is the first finding indicated that freshwater filamentous cyanobacteria could grow under salt stresses by accumulation of some organic compounds as osmoprotectants such as betaine and amino acids, being the reduction related to the amount of inorganies compounds present in cultures.展开更多
Arabis stelleri var. japonica evidenced stronger osmotic stress tolerance than Arabidopsis thaliana. Using an A. thaliana microarray chip, we determined changes in the expression of approximately 2 800 genes between A...Arabis stelleri var. japonica evidenced stronger osmotic stress tolerance than Arabidopsis thaliana. Using an A. thaliana microarray chip, we determined changes in the expression of approximately 2 800 genes between A. stelleri plants treated with 0.2 M mannitol versus mock-treated plants. The most significant changes in the gene expression patterns were in genes defining cellular components or in genes associated with the endomembrane system, stimulus response, stress response, chemical stimulus response, and defense response. The expression patterns of three de novo proline biosynthesis enzymes were evaluated in A. stelleri var. japonica seedlings treated with 0.2 M mannitol, 0.2 M sorbitol, and 0.2 M NaCI. The expression of At-pyrroline-5-carboxylate synthetase was not affected by NaCI stress but was similarly induced by mannitol and sorbitol. The proline dehydrogenase gene, which is known to be repressed by dehydration stress and induced by free L-proline, was induced at an early stage by mannitol treatment, but the level of proline dehydrogenase was increased later by treatment with both mannitol and NaCI. The level of free L-proline accumulation increased progressively in response to treatments with mannitol, sorbitol, and NaCI. Mannitol induced L-proline accumulation more rapidly than NaCI or sorbitol. These findings demonstrate that the osmotic tolerance of the novel halophyte, Arabis stelleri, is associated with the accumulation of L-proline.展开更多
The thermal characteristics of high voltage gg-LDMOS under ESD stress conditions are investigated in detail based on the Sentaurus process and device simulators.The total heat and lattice temperature distributions alo...The thermal characteristics of high voltage gg-LDMOS under ESD stress conditions are investigated in detail based on the Sentaurus process and device simulators.The total heat and lattice temperature distributions along the Si–SiO2 interface under different stress conditions are presented and the physical mechanisms are discussed in detail.The influence of structure parameters on peak lattice temperature is also discussed,which is useful for designers to optimize the parameters of LDMSO for better ESD performance.展开更多
The thermal boundary condition has very important effects on the accuracy of thermal stress calculation of a water-cooled W/Cu divertor. In this paper, phase-change heat transfer was simulated based on the Euler homog...The thermal boundary condition has very important effects on the accuracy of thermal stress calculation of a water-cooled W/Cu divertor. In this paper, phase-change heat transfer was simulated based on the Euler homogeneous phase model, and local differences of liquid physical properties were considered under one-sided high heating conditions. The steady-state temperature field and thermal stress field under nonuniform thermal boundary conditions were obtained through numerical calculation. By comparison with the case of traditional uniform thermal boundary conditions, the results show that the distribution of thermal stress under nonuniform thermal boundary conditions exhibits tbe same trend as that under uniform thermal boundary conditions, but is larger in value. The maximum difference of maximum von Mises stress is up to 42% under the highest heating conditions. These results provide a valuable reference for the thermal stress caleulat.ion of water-cooled W/Cu divertors.展开更多
The mechanical behaviors of deep rocks have always posed a challenge for the implementation and safe operation of major underground engineering projects.To this end,this study modified the existing mainstream rock mec...The mechanical behaviors of deep rocks have always posed a challenge for the implementation and safe operation of major underground engineering projects.To this end,this study modified the existing mainstream rock mechanics instruments equipped with a dynamic disturbance loading system and developed a second‐generation TFD‐2000/D triaxial instrument.The first‐generation device is equipped with an independent disturbance system and an advanced EDC‐580 all‐digital servo controller,which can apply disturbing load independently,implement the function of cyclic disturbance,and combine dynamic and static disturbances.The instrument was found to be reliable for use in analyzing the damage process of rocks in the disturbance test of marbles.The second‐generation instrument tackles three limitations of the first‐generation instrument:(i)it upgrades the strain measurement system and uses extensometers with linear variable differential transformers to accurately measure deformation;(ii)it uses the self‐balanced chamber to replace the Hoek–Franklin triaxial cell and auto‐balancing triaxial pressure chamber;and(iii)the loading rod is independently equipped with an EDC‐580 all‐digital servo controller,which measures precise loads.The experimental findings confirmed that the second‐generation instrument can be used for rock mechanics testing under cyclic disturbance loading,the disturbance–stress relaxation cycle,and the creep–fatigue cycle.In this sense,the second‐generation instrument can be a useful addition to deep rock mechanical instruments and provide a valuable reference.展开更多
As P-wave velocity is sensitive to the variations in coal reservoir parameters,it is possible to monitor the injected CO_(2)through P-wave velocity during CO_(2)sequestration in coal.However,the effects of CO_(2)on th...As P-wave velocity is sensitive to the variations in coal reservoir parameters,it is possible to monitor the injected CO_(2)through P-wave velocity during CO_(2)sequestration in coal.However,the effects of CO_(2)on the coal P-wave velocity under triaxial stress are not clearly discerned.In the present study,different boundary conditions and gases were utilised to investigate the factors affecting the P-wave velocity after the interaction of coal with CO_(2).Experiments with helium indicated that the pore pressure primarily affected the P-wave velocity by altering the effective stress.Experiments with CH4 and CO_(2)indicated that matrix swelling induced-cleats porosity decline significantly promoted P-wave velocity.Moreover,CO_(2)caused a wider scale and severe weakening of coal matrix than CH4,thereby significantly decreasing the P-wave velocity,and the decline in P-wave velocity increases with vitrinite content.Furthermore,experiments under different boundary conditions showed that with the boundary condition having more constraints,the decrement of pore pressure on P-wave velocity is more weaken,whereas the improvement of matrix swelling on P-wave velocity is more evident.This study contributes to understanding the mechanism of effect of CO_(2)on P-wave velocity under triaxial stress condition and provides guidance for monitoring CO_(2)sequestration in coal.展开更多
The crack-tip field under plane stress condition for an incompressible rubbermaterial ̄[1] is investigated by. the use of the fully nonlinear equilibrium theory. It isfound thai the crack-tip field is composed of two ...The crack-tip field under plane stress condition for an incompressible rubbermaterial ̄[1] is investigated by. the use of the fully nonlinear equilibrium theory. It isfound thai the crack-tip field is composed of two shrink sectors and one expansion se-ctor. At the crack-tip, stress and strain possess the singularity of R ̄(-1) and R ̄(-1n), respec-tively, (R is the distance to the crack-tip before deformation, n is the material const-ant). When the crack-tip is approached, the thickness of the sheet shrinks to zerowith the order of R ̄(1.4n). The results obtained in this paper are consistent with that ob-tained in [8] when s→∞ .展开更多
Weak rock zone (soft interlayer, fault zone and soft rock) is the highlight of large-scale geological engineering research. It is an important boundary for analysis of rock mass stability. Weak rock zone has been form...Weak rock zone (soft interlayer, fault zone and soft rock) is the highlight of large-scale geological engineering research. It is an important boundary for analysis of rock mass stability. Weak rock zone has been formed in a long geological period, and in this period, various rocks have undergone long-term consolidation of geostatic stress and tectonic stress; therefore, under in-situ conditions, their density and modulus of deformation are relatively high. Due to its fragmentary nature, once being exposed to the earth's surface, the structure of weak rock zone will soon be loosened, its density will be reduced, and its modulus of deformation will also be reduced significantly. Generally, weak rock zone can be found in large construction projects, especially in the dam foundation rocks of hydropower stations. These rocks cannot be eliminated completely by excavation. Furthermore, all tests nowadays are carried out after the exposure of weak rock zone, modulus of deformation under in-situ conditions cannot be revealed. In this paper, a test method explored by the authors has been introduced. This method is a whole multilayered medium deformation method. It is unnecessary to eliminate the relatively complete rocks covering on weak rock zone. A theoretical formula to obtain the modulus of deformation in various mediums has also been introduced. On-site comparative trials and indoor deformation modulus tests under equivalent density conditions have been carried out. We adopted several methods for the prediction researches of the deformation modulus of weak rock zone under in-situ conditions, and revealed a fact that under in-situ conditions, the deformation modulus of weak rock zone are several times higher than the test results obtained after the exposure. In a perspective of geological engineering, the research findings have fundamentally changed peoples' concepts on the deformation modulus of weak rock zone, provided important theories and methods for precise definition of deformation modulus of deep weak rock zone under cap rock conditions, as well as for reasonable engineering applications.展开更多
This paper discusses the calculation of plastic zone properties around circular tunnels to rock-masses that satisfy the Hoek–Brown failure criterion in non-hydrostatic condition,and reviews the calculation of plastic...This paper discusses the calculation of plastic zone properties around circular tunnels to rock-masses that satisfy the Hoek–Brown failure criterion in non-hydrostatic condition,and reviews the calculation of plastic zone and displacement,and the basis of the convergence–confinement method in hydrostatic condition.A two-dimensional numerical simulation model was developed to gain understanding of the plastic zone shape.Plastic zone radius in any angles around the tunnel is analyzed and measured,using different values of overburden(four states)and stress ratio(nine states).Plastic zone radius equations were obtained from fitting curve to data which are dependent on the values of stress ratio,angle and plastic zone radius in hydrostatic condition.Finally validation of this equation indicate that results predict the real plastic zone radius appropriately.展开更多
The storage of hydrogen gas in underground lined rock caverns(LRCs)enables the implementation of the first fossil-free steelmaking process to meet the large demand for crude steel.Predicting the response of rock mass ...The storage of hydrogen gas in underground lined rock caverns(LRCs)enables the implementation of the first fossil-free steelmaking process to meet the large demand for crude steel.Predicting the response of rock mass is important to ensure that gas leakage due to rupture of the steel lining does not occur.Analytical and numerical models can be used to estimate the rock mass response to high internal pressure;however,the fitness of these models under different in situ stress conditions and cavern shapes has not been studied.In this paper,the suitability of analytical and numerical models to estimate the maximum cavern wall tangential strain under high internal pressure is studied.The analytical model is derived in detail and finite element(FE)models considering both two-dimensional(2D)and three-dimensional(3D)geometries are presented.These models are verified with field measurements from the LRC in Skallen,southwestern Sweden.The analytical model is inexpensive to implement and gives good results for isotropic in situ stress conditions and large cavern heights.For the case of anisotropic horizontal in situ stresses,as the conditions in Skallen,the 3D FE model is the best approach.展开更多
基金supported bythe National Natural Science Foundation of China(Grant Nos.50579006,50639010 and 50909014)
文摘Stiffness degradation will occur due to the generation of accumulated pore pressure in saturated soft clays under cyclic loading. The soil static-dynamic multi-purpose triaxial and torsional shear apparatus in Dalian University of Technology was employed to perform different types of test on the saturated soft marine clay in the Yangtze Estuary. Undisturbed samples of the clay were subjected to undrained cyclic vertical and torsional coupling shear and cyclic torsional shear after three-directional anisotropic consolidation with different initial consolidation parameters. Investigated were the effects of the initial orientation angle of the major principal stress, initial ratio of deviatoric stress, initial coefficient of intermediate principal stress and continuous rotation of principal stress axes on the stiffness degradation. It is found that the degradation index decreases (or degradation degree increases) significantly with increasing initial orientation angle of the major principal stress and initial ratio of deviatoric stress. Compared with the effects of the initial orientation angle of the major principal stress and initial ratio of deviatoric stress, the effect of initial coefficient of intermediate principal stress is less evident and this trend is more clearly reflected by the results of the cyclic torsional shear tests than those of the cyclic coupling shear tests. At the same cycle number, the degradation index obtained from the cyclic torsional shear test is higher than that from the cyclic coupling shear test. The main reason is that the continuous rotation in principal stress directions during cyclic coupling shear damages the original structure of the soil more than the cyclic torsional shear does.Based on a series of experiments, a mathematical model for stiffness degradation is proposed and the relevant parameters are determined.
基金supported by the Key Research Project of National Natural Science Foundation of China under grant No. 90715018the Special Fund for the Commonweal Industry of China under grant No. 200808022the Key Basic Research Program of Natural Science of University in Jiangsu Province under grant No. 08KJA560001
文摘By using GDS dynamic hollow cylinder torsional apparatus, a series of cyclic torsional triaxial tests under complex initial consolidation condition are performed on Nanjing saturated fine sand. The effects of the initial principal stress direction αo, the initial ratio of deviatoric stress η0, the initial average effective principal stress Po and the initial intermediate principal stress parameter b0 on the threshold shear strain γt of Nanjing saturated fine sand are then systematically investigated. The results show that γt increases as η0,p0 and b0 increase respectively, while the other three parameters remain constant. ao has a great influence on γt, which is reduced when ao increases from 0° to 45°and increased when α0 increases from 45° to 90°. The effect of α0 on γt, plays a leading role and the effect of η0 will weaken when ao is approximately 45°.
基金Supported by National Natural Science Foundation of China (No. 50639010, 50779003 and 50909014)
文摘There exists a critical cyclic stress ratio when sand or clay is subjected to cyclic loading. It is an index dis-tinguishing stable state or failure state. The soil static and dynamic universal triaxial and torsional shear apparatus de-veloped by Dalian University of Technology in China was employed to perform different types of tests on saturated soft marine clay in the Yangtze estuary. Undisturbed samples were subjected to undrained cyclic vertical and torsional coupling shear and cyclic torsional shear after three-directional anisotropic consolidation with different initial consoli-dation parameters. The effects of initial orientation angle of major principal stress, initial ratio of deviatoric stress,initial coefficient of intermediate principal stress and stress mode of cyclic shear on the critical cyclic stress ratio wereinvestigated. It is found that the critical cyclic stress ratio decreases significantly with increasing initial orientation angle of major principal stress and initial ratio of deviatoric stress. Compared with the effects of the initial orientationangle of major principal stress and initial ratio of deviatoric stress, the effect of initial coefficient of intermediate prin-cipal stress is less evident. Under the same consolidation condition, the critical cyclic stress ratio from the cyclic cou-pling shear test is lower than that from the cyclic torsional shear test, indicating that the stress mode of cyclic shear has an obvious effect on the critical cyclic stress ratio. The main reason is that the continuous rotation in principal stressdirections during cyclic coupling shear damages the original structure of soil more than the cyclic torsional shear does.
文摘The advanced computerized tomography is applied to study the damage propagation of rock. The real time CT scanning is carried out to the damage propagation of rock under triaxial stress condition. The damage propagation constitutive relation of rock under triaxial stress condition is analyzed at last.
文摘The main aim of this work was to investigate the effects of salt stress conditions on the inorganic and organic compounds of extracts from six filamentous cyanobacteria: Arthospira platensis, Oscillatoria sp., Oscillatoria salina, Tolypothrix sp., Oscillatoria sp. SWU (Srinakharinwirot University)121 and Tolypothrix sp. SWU213. All cyanobacteria were cultures in BG (blue-green algae)11 medium: pH 7.5 at 35 ℃ for 30 days of sodium chloride in the culture medium presented 0-1.0 M. The cyanobacteria isolates grew well in BGH medium, nevertheless, growth of the majority of isolates was reduced by about 50% in the same medium containing 0.5 M NaCl. The inorganic compounds such as, Na^+, K^+, Ca^2+, Mg^2+, NH4^+ and NO3^- were determined. All ions were reduced when NaCI was increased and Na^+ showed highest amount in the medium followed with Mg^2+, NH4^+, NO3^- and Ca^2+ in all cyanobaeteria. The organic compounds such as, betaine, proline and total lipid were determined under normal and salt stress conditions. We found that all cyanobacteria increased interesting organic compound under salt stress condition at least two folds to compare with normal condition. This is the first finding indicated that freshwater filamentous cyanobacteria could grow under salt stresses by accumulation of some organic compounds as osmoprotectants such as betaine and amino acids, being the reduction related to the amount of inorganies compounds present in cultures.
基金supported by a grant from the Cooperative Research Projects for Bioenergy Crop Development RDA (RIMS20070201036026)
文摘Arabis stelleri var. japonica evidenced stronger osmotic stress tolerance than Arabidopsis thaliana. Using an A. thaliana microarray chip, we determined changes in the expression of approximately 2 800 genes between A. stelleri plants treated with 0.2 M mannitol versus mock-treated plants. The most significant changes in the gene expression patterns were in genes defining cellular components or in genes associated with the endomembrane system, stimulus response, stress response, chemical stimulus response, and defense response. The expression patterns of three de novo proline biosynthesis enzymes were evaluated in A. stelleri var. japonica seedlings treated with 0.2 M mannitol, 0.2 M sorbitol, and 0.2 M NaCI. The expression of At-pyrroline-5-carboxylate synthetase was not affected by NaCI stress but was similarly induced by mannitol and sorbitol. The proline dehydrogenase gene, which is known to be repressed by dehydration stress and induced by free L-proline, was induced at an early stage by mannitol treatment, but the level of proline dehydrogenase was increased later by treatment with both mannitol and NaCI. The level of free L-proline accumulation increased progressively in response to treatments with mannitol, sorbitol, and NaCI. Mannitol induced L-proline accumulation more rapidly than NaCI or sorbitol. These findings demonstrate that the osmotic tolerance of the novel halophyte, Arabis stelleri, is associated with the accumulation of L-proline.
基金supported by the Natural Science Foundation of the Jiangsu Province(No.BK2008287)the Advanced Research of National Natural Science Foundation of Southeast University(No.XJ2008312)
文摘The thermal characteristics of high voltage gg-LDMOS under ESD stress conditions are investigated in detail based on the Sentaurus process and device simulators.The total heat and lattice temperature distributions along the Si–SiO2 interface under different stress conditions are presented and the physical mechanisms are discussed in detail.The influence of structure parameters on peak lattice temperature is also discussed,which is useful for designers to optimize the parameters of LDMSO for better ESD performance.
基金supported by National Magnetic Confinement Fusion Science Program of China(No.2010GB104005)
文摘The thermal boundary condition has very important effects on the accuracy of thermal stress calculation of a water-cooled W/Cu divertor. In this paper, phase-change heat transfer was simulated based on the Euler homogeneous phase model, and local differences of liquid physical properties were considered under one-sided high heating conditions. The steady-state temperature field and thermal stress field under nonuniform thermal boundary conditions were obtained through numerical calculation. By comparison with the case of traditional uniform thermal boundary conditions, the results show that the distribution of thermal stress under nonuniform thermal boundary conditions exhibits tbe same trend as that under uniform thermal boundary conditions, but is larger in value. The maximum difference of maximum von Mises stress is up to 42% under the highest heating conditions. These results provide a valuable reference for the thermal stress caleulat.ion of water-cooled W/Cu divertors.
基金financial support from the National Natural Science Foundation of China(52278351 and 51978292).
文摘The mechanical behaviors of deep rocks have always posed a challenge for the implementation and safe operation of major underground engineering projects.To this end,this study modified the existing mainstream rock mechanics instruments equipped with a dynamic disturbance loading system and developed a second‐generation TFD‐2000/D triaxial instrument.The first‐generation device is equipped with an independent disturbance system and an advanced EDC‐580 all‐digital servo controller,which can apply disturbing load independently,implement the function of cyclic disturbance,and combine dynamic and static disturbances.The instrument was found to be reliable for use in analyzing the damage process of rocks in the disturbance test of marbles.The second‐generation instrument tackles three limitations of the first‐generation instrument:(i)it upgrades the strain measurement system and uses extensometers with linear variable differential transformers to accurately measure deformation;(ii)it uses the self‐balanced chamber to replace the Hoek–Franklin triaxial cell and auto‐balancing triaxial pressure chamber;and(iii)the loading rod is independently equipped with an EDC‐580 all‐digital servo controller,which measures precise loads.The experimental findings confirmed that the second‐generation instrument can be used for rock mechanics testing under cyclic disturbance loading,the disturbance–stress relaxation cycle,and the creep–fatigue cycle.In this sense,the second‐generation instrument can be a useful addition to deep rock mechanical instruments and provide a valuable reference.
基金supported by the National Natural Science Foundation of China(No.51974304)the Natural Science Foundation of Hebei Province(No.E2020402075)+2 种基金the 2nd Xplorer Prize sponsored by the Tencent Foundationthe Program for Changjiang Scholars and Innovative Research Team in University(No.IRT 17R103)the Qinglan Project of Jiangsu Province.
文摘As P-wave velocity is sensitive to the variations in coal reservoir parameters,it is possible to monitor the injected CO_(2)through P-wave velocity during CO_(2)sequestration in coal.However,the effects of CO_(2)on the coal P-wave velocity under triaxial stress are not clearly discerned.In the present study,different boundary conditions and gases were utilised to investigate the factors affecting the P-wave velocity after the interaction of coal with CO_(2).Experiments with helium indicated that the pore pressure primarily affected the P-wave velocity by altering the effective stress.Experiments with CH4 and CO_(2)indicated that matrix swelling induced-cleats porosity decline significantly promoted P-wave velocity.Moreover,CO_(2)caused a wider scale and severe weakening of coal matrix than CH4,thereby significantly decreasing the P-wave velocity,and the decline in P-wave velocity increases with vitrinite content.Furthermore,experiments under different boundary conditions showed that with the boundary condition having more constraints,the decrement of pore pressure on P-wave velocity is more weaken,whereas the improvement of matrix swelling on P-wave velocity is more evident.This study contributes to understanding the mechanism of effect of CO_(2)on P-wave velocity under triaxial stress condition and provides guidance for monitoring CO_(2)sequestration in coal.
文摘The crack-tip field under plane stress condition for an incompressible rubbermaterial ̄[1] is investigated by. the use of the fully nonlinear equilibrium theory. It isfound thai the crack-tip field is composed of two shrink sectors and one expansion se-ctor. At the crack-tip, stress and strain possess the singularity of R ̄(-1) and R ̄(-1n), respec-tively, (R is the distance to the crack-tip before deformation, n is the material const-ant). When the crack-tip is approached, the thickness of the sheet shrinks to zerowith the order of R ̄(1.4n). The results obtained in this paper are consistent with that ob-tained in [8] when s→∞ .
文摘Weak rock zone (soft interlayer, fault zone and soft rock) is the highlight of large-scale geological engineering research. It is an important boundary for analysis of rock mass stability. Weak rock zone has been formed in a long geological period, and in this period, various rocks have undergone long-term consolidation of geostatic stress and tectonic stress; therefore, under in-situ conditions, their density and modulus of deformation are relatively high. Due to its fragmentary nature, once being exposed to the earth's surface, the structure of weak rock zone will soon be loosened, its density will be reduced, and its modulus of deformation will also be reduced significantly. Generally, weak rock zone can be found in large construction projects, especially in the dam foundation rocks of hydropower stations. These rocks cannot be eliminated completely by excavation. Furthermore, all tests nowadays are carried out after the exposure of weak rock zone, modulus of deformation under in-situ conditions cannot be revealed. In this paper, a test method explored by the authors has been introduced. This method is a whole multilayered medium deformation method. It is unnecessary to eliminate the relatively complete rocks covering on weak rock zone. A theoretical formula to obtain the modulus of deformation in various mediums has also been introduced. On-site comparative trials and indoor deformation modulus tests under equivalent density conditions have been carried out. We adopted several methods for the prediction researches of the deformation modulus of weak rock zone under in-situ conditions, and revealed a fact that under in-situ conditions, the deformation modulus of weak rock zone are several times higher than the test results obtained after the exposure. In a perspective of geological engineering, the research findings have fundamentally changed peoples' concepts on the deformation modulus of weak rock zone, provided important theories and methods for precise definition of deformation modulus of deep weak rock zone under cap rock conditions, as well as for reasonable engineering applications.
文摘This paper discusses the calculation of plastic zone properties around circular tunnels to rock-masses that satisfy the Hoek–Brown failure criterion in non-hydrostatic condition,and reviews the calculation of plastic zone and displacement,and the basis of the convergence–confinement method in hydrostatic condition.A two-dimensional numerical simulation model was developed to gain understanding of the plastic zone shape.Plastic zone radius in any angles around the tunnel is analyzed and measured,using different values of overburden(four states)and stress ratio(nine states).Plastic zone radius equations were obtained from fitting curve to data which are dependent on the values of stress ratio,angle and plastic zone radius in hydrostatic condition.Finally validation of this equation indicate that results predict the real plastic zone radius appropriately.
基金This work has been conducted as part of the HYBRIT research project RP-1.This research was financially supported by the Swedish Energy Agency(Grant No.42684e2).
文摘The storage of hydrogen gas in underground lined rock caverns(LRCs)enables the implementation of the first fossil-free steelmaking process to meet the large demand for crude steel.Predicting the response of rock mass is important to ensure that gas leakage due to rupture of the steel lining does not occur.Analytical and numerical models can be used to estimate the rock mass response to high internal pressure;however,the fitness of these models under different in situ stress conditions and cavern shapes has not been studied.In this paper,the suitability of analytical and numerical models to estimate the maximum cavern wall tangential strain under high internal pressure is studied.The analytical model is derived in detail and finite element(FE)models considering both two-dimensional(2D)and three-dimensional(3D)geometries are presented.These models are verified with field measurements from the LRC in Skallen,southwestern Sweden.The analytical model is inexpensive to implement and gives good results for isotropic in situ stress conditions and large cavern heights.For the case of anisotropic horizontal in situ stresses,as the conditions in Skallen,the 3D FE model is the best approach.