A system study of the three-dimensional normal stress for regulating electronic structure and magnetic property of Fe_2Ge is studied. The density states of Fe more than 92% contribution come from Fe 3d,the density sta...A system study of the three-dimensional normal stress for regulating electronic structure and magnetic property of Fe_2Ge is studied. The density states of Fe more than 92% contribution come from Fe 3d,the density states of Ge mainly contributed from Ge 4p and Ge 4s,and the Fe 3d spin induces the Ge 4p electron transfer. The inductive effect increases germanium electron energy,weakens the Fe spin density of states,opposes the stability of the ferromagnetic state. The magnetic moment varies from 5 to 3 μB with the stress charges from-30 to 30 GPa. The charge of Fe is negative whereas the Ge atom is positively charged,the Fe atom loses charge,the charge transfers to the Ge atom. The unevenly distributed charge forms the newoccupy state and spin polarization state in the Fe_2Ge electron structure system. The Fe is the electron donor,the total electron is transferred to Ge,but the total numbers of gain electron and total numbers of lost electron are not equal,so the Fe_2Ge electron system may have hybridization between the Fe 3d state and Ge 4p state.The magnetic of Fe_2Ge mainly comes from the unoccupied Fe 3d orbital,the Fe 3d is positive spinpolarization state and the spin-polarization strength is decreased,the Ge 4p is negative spin-polarization state and the spin-polarization strength are increased. M oreover,electrons-spin polarization is relevant to the structure parameters of the Fe_2Ge system,and controls spin-polarized electronic behavior by means of adjusting ferromagnetic.展开更多
The Jinping I hydropower station is a huge water conservancy project consisting of the highest concrete arch dam to date in the world and a highly complex and large underground powerhouse cavern. It is located on the ...The Jinping I hydropower station is a huge water conservancy project consisting of the highest concrete arch dam to date in the world and a highly complex and large underground powerhouse cavern. It is located on the right bank with extremely high in-situ stress and a few discontinuities observed in surrounding rock masses. The problems of rock mass deformation and failure result in considerable challenges related to project design and construction and have raised a wide range of concerns in the fields of rock mechanics and engineering. During the excavation of underground caverns, high in-situ stress and relatively low rock mass strength in combination with large excavation dimensions lead to large deformation of the surrounding rock mass and support. Existing experiences in excavation and support cannot deal with the large deformation of rock mass effectively, and further studies are needed. In this paper, the geological conditions, layout of caverns, and design of excavation and support are first introduced, and then detailed analyses of deformation and failure characteristics of rocks are presented. Based on this, the mechanisms of deformation and failure are discussed, and the support adjustments for controlling rock large deformation and subsequent excavation procedures are proposed. Finally, the effectiveness of support and excavation adjustments to maintain the stability of the rock mass is verified. The measures for controlling the large deformation of surrounding rocks enrich the practical experiences related to the design and construction of large underground openings, and the construction of caverns in the Jinping I hydropower station provides a good case study of large-scale excavation in highly stressed ground with complex geological structures, as well as a reference case for research on rock mechanics.展开更多
Based on Hartmann-Shack sensor technique, an online thin film stress measuring system was introduced to measure the film stresses of TiO2 and SiO2, and comparison was made between the film stresses prepared respective...Based on Hartmann-Shack sensor technique, an online thin film stress measuring system was introduced to measure the film stresses of TiO2 and SiO2, and comparison was made between the film stresses prepared respectively by the conventional process and the ion-beam assisted deposition. The effect of ion-beam assisted deposition on the film stresses of TiO2 and SiO2 was investigated in details, and the stress control methodologies using on-line adjustment and film doping were put forward. The results show that the film stress value of TiO2 prepared by ion-beam assisted deposition is 40 MPa lower than that prepared by conventional process, and the stress of TiO2 film changes gradually from tensile stress into compressive stress with increasing ion energy; while the film stress of SiO2 is a tensile stress under ion-beam assisted deposition because of the ion-beam sputtering effect, and the film refractive index decreases with increasing ion energy. A dynamic film stress control can be achieved through in-situ adjustment of the processing parameters based on the online film stress measuring technique, and the intrinsic stress of film can be effectively changed through film doping.展开更多
The characteristics of temperatures, stresses and strains fields have been studied numerically for a titanium alloy sheet welded with an improved gas tungsten arc welding method, in which a trailing spot heat sink is ...The characteristics of temperatures, stresses and strains fields have been studied numerically for a titanium alloy sheet welded with an improved gas tungsten arc welding method, in which a trailing spot heat sink is introduced to control the welding stress and distortion. The impinging jet model is employed to describe the internee heat transfer between the cooling media and the top suufuce of the workpiece. The influcnee of the distance between arc and heat sink is investigated. Results show that there is an ideal range of distance. Using the ideal distance, a low stress and no distortion welding structure can be derived.展开更多
This article reviews the constructs of stress, appraisal, coping, according to a transactional perspective, and executive function, and presents a stress control rating scale (ECOSTRESS), which design is founded in th...This article reviews the constructs of stress, appraisal, coping, according to a transactional perspective, and executive function, and presents a stress control rating scale (ECOSTRESS), which design is founded in these constructs. This psychometric tool is useful in the assessment of cognitive control of stress, correlated with the function of dorsolateral prefrontal cortex. It has been validated for its use in the assessment of Portuguese people in situations of stress related to unemployment and economic insufficiency. Also, within the context of the cognitive control of stress, it is highlighted the usefulness of low resolution brain electromagnetic tomography (LORETA).展开更多
GaN films grown on(111)Si substrate with different lattice parameters of the AlN buffer layer by metal–organic chemical vapor deposition are studied.The stress states obtained by different test methods are compared a...GaN films grown on(111)Si substrate with different lattice parameters of the AlN buffer layer by metal–organic chemical vapor deposition are studied.The stress states obtained by different test methods are compared and it is found that the lattice parameter of the AlN buffer layer may have a significant effect on the stress state in the initial stage of subsequent GaN film growth.A larger compressive stress is beneficial to improved surface morphology and crystal quality of GaN film.The results of further orthogonal experiments show that an important factor affecting the lattice parameter is the growth rate of the AlN buffer layer.This work may be helpful for realizing simple GaN-on-Si structures and thus reducing the costs of growth processes.展开更多
The Subtropolis Mine is a room-and-pillar mine extracting the Vanport limestone near Petersburg,Ohio,U.S.In February of 2018,mine management began implementing a heading re-orientation to better control the negative e...The Subtropolis Mine is a room-and-pillar mine extracting the Vanport limestone near Petersburg,Ohio,U.S.In February of 2018,mine management began implementing a heading re-orientation to better control the negative effects of excessive levels of horizontal stress.The conditions in the headings improved,but as expected,stress-related damage concentrated within crosscuts.The mine operator has worked to lessen the impact of the instabilities in the outby crosscuts by implementing several engineering controls.With the implementation of each control,conditions were monitored and analyzed using observational and measurement techniques including 3D LiDAR surveys.Since the heading re-orientation,several 3D LiDAR surveys have been conducted and analyzed by researchers from the National Institute for Occupational Safety and Health(NIOSH).This study examines(1)the characteristics of each 3D LiDAR survey,(2)the change in the detailed strata conditions in response to stress concentrations,and(3)the change detection techniques between 3D LiDAR surveys to assess entry stability.Ultimately,the 3D LiDAR surveys proved to be a useful tool for characterizing ground instability and assessing the effectiveness of the engineering controls used in the heading re-orientation at the Subtropolis Mine.展开更多
In order to effectively control the deformation and failure of surrounding rocks in a coal roadway in a deep tectonic region, the deformation and failure mechanism and stability control mechanism were studied. With su...In order to effectively control the deformation and failure of surrounding rocks in a coal roadway in a deep tectonic region, the deformation and failure mechanism and stability control mechanism were studied. With such methods as numerical simulation and field testing, the distribution law of the displacement, stress and plastic zone in the surrounding rocks was analyzed. The deformation and failure mechanisms of coal roadways in deep tectonic areas were revealed: under high tectonic stress, two sides will slide along the roof or floor; while the plastic zone of the two sides will extend along the roof or floor,leading to more serious deformation and failure in the corner of two sides and the bolt supporting the corners is readily cut off by the shear force or tension force. Aimed at controlling the large slippage deformation of the two sides, serious deformation and failure in the corners of the two sides and massive bolt breakage, a ‘‘controlling and yielding coupling support'' control technology is proposed. Firstly, bolts which do not pass through the bedding plane should be used in the corners of the roadway, allowing the two sides to have some degree of sliding to achieve the purpose of ‘‘yielding'' support, and which avoid breakage of the bolts in the corner. After yielding support, bolts in the corner of the roadway and which pass through the bedding plane should be used to control the deformation and failure of the coal in the corner. ‘‘Controlling and yielding coupling support'' technology has been successfully applied in engineering practice, and the stability of deep coal roadway has been greatly improved.展开更多
A new approach named as steel pile method is innovatively proposed in this study to control severe floor heaves in gob-side entry retaining. It is required that the steel piles be installed in the floor corners with a...A new approach named as steel pile method is innovatively proposed in this study to control severe floor heaves in gob-side entry retaining. It is required that the steel piles be installed in the floor corners with a certain interval before the influence of the dynamic pressure induced by current panel extraction. Using numerical simulation and theoretical analysis, this study investigated the interaction between the steel piles and the floor rocks during the service life of the steel piles, and revealed the mechanism of the steel piles in controlling floor heaves. The effect of the steel pile parameters on the control of floor heaves was presented and elaborated. It is found that the effectiveness of the steel piles in controlling floor heaves can be enhanced with greater installed dip angle, longer length and smaller interval of the steel piles.Compared with traditional methods, e.g., using floor anchor bolts and floor restoration, the advantages using steel pile were successfully defined in terms of controlling effect and economic benefits. It is hoped that the proposed method can contribute to the development of gob-side entry retaining technique.展开更多
Construction of mass concrete structures face more challenges in temperature difference and complex stress under low temperature than the ambient temperature. It has been proved by the practice that, not only improvin...Construction of mass concrete structures face more challenges in temperature difference and complex stress under low temperature than the ambient temperature. It has been proved by the practice that, not only improving tensile strength of structural concrete as soon as possible and removing of constrain as much as possible, but also calculation of the thermal stress in the process of construction and maintenance, controlling structure of concrete tensile strength and temperature difference stress ratio can ensure the safety and defect-free.展开更多
Controlled shear stress (CSS) test was used to study the effect of solid contents on the corresponding rheological parameters for sludge. Three types of sludge with or without conditioning, including activated slud...Controlled shear stress (CSS) test was used to study the effect of solid contents on the corresponding rheological parameters for sludge. Three types of sludge with or without conditioning, including activated sludge (AS), anaerobic digested sludge (ADS), and water treatment residuals (WTRs), were collected for the CSS test. Results showed that the yield stress and the cohesion energy of the sludge networks were improved with increased total suspending solid (TSS) contents in most cases. For the conditioned AS/ADS and the raw WTRs, exponential law was observed in the relationships between cohesion energy of material networks or yield stress and the TSS contents, whereas for the conditioned WTRs, only exponential law dependence was found between the parameters of shear modulus or critical strain and the TSS contents.展开更多
Creep-fatigue interaction is one of the main damage mechanisms in high temperature plants and their components. Assessment of creep-fatigue properties is of practical importance for design and operation of high temper...Creep-fatigue interaction is one of the main damage mechanisms in high temperature plants and their components. Assessment of creep-fatigue properties is of practical importance for design and operation of high temperature components. However, the standard evaluation techniques, i.e. time fraction rule and ductility exhaustion one have limitations in accounting for the effects of control mode on the cyclic deformations. It was found that conventional linear cumulative damage rule failed in accurately evaluating the creep-fatigue life under stress controlled condition. The calculated creep damages by time fraction rule were excessively high, which led to overly conservative prediction of failure lives. In the present study, it was suggested that such over estimation of creep damage was mainly caused by anelastic strain upon stress loading. For precise assessment under conditions of stress control, a modified creep damage model accounting for the effect of anelastic creep was proposed. The assessments of creep fatigue data under stress controlled condition were performed with the new approach developed in this paper for a rotor material and a boiler material used in ultra supercritical power plants. It was shown that a more moderate amount of creep damage was obtained by the new model, which gave better predictions of failure life.展开更多
We have demonstrated polarization insensitive AWGs by controlling the doping concentration of Boron in overcladding and the etching depth of waveguide. The proposed method uses the conventional fabrication process and...We have demonstrated polarization insensitive AWGs by controlling the doping concentration of Boron in overcladding and the etching depth of waveguide. The proposed method uses the conventional fabrication process and does not degrade optical properties and reliability characteristics.展开更多
As coal burst normally occurs in the area of high stress concentration,it is of significance to study the features of regional stress field in coal mines.Primitive stress field,mining-induced stress field and their co...As coal burst normally occurs in the area of high stress concentration,it is of significance to study the features of regional stress field in coal mines.Primitive stress field,mining-induced stress field and their coupling effect are investigated through the methods of theoretical analysis,field measurement,numerical simulation and wave velocity CT inversion,and the relationship among regional stress field,high-energy seismic events and coal bursts are analyzed.Investigation of the 3#mining district in Xingcun coal mine shows that:(1)Though stress concentration changes in the mining process,several special areas witnesses stress concentration in the whole mining process,such as the rise pillar area,several syncline axis areas and large fault areas;(2)Coal burst occurrence and high-energy seismic events have a close relationship with regional stress field.Coal bursts and high-energy seismic events tend to occur in areas of stable stress concentration,such as the rise area,several syncline axis areas and large fault areas.Targeted control of stress field for coal burst prevention is developed based on stress field detection.The process of targeted control of stress field for coal burst prevention is:detection of regional stress field based mainly on wave velocity CT,identification of stress concentration,implementation of destress measures to control the identified stress concentration.This method of stress field control was applied to LW3306 working face in Xingcun coal mine and coal burst hazards were effectively controlled in LW3306.展开更多
基金Sponsored by the Science and Technology Foundation of Guizhou Province,China(Grant Nos.LH[2016]7077,LH[2015]7218)the Youth Science and Technology Talents Growth Fund Program of GuiZhou Province Education Department,China(Grant No.KY[2016]166)the Innovation Group Major Program of Guizhou Province(Grant Nos.KY[2016]028,KY[2016]029,KY[2016]030)
文摘A system study of the three-dimensional normal stress for regulating electronic structure and magnetic property of Fe_2Ge is studied. The density states of Fe more than 92% contribution come from Fe 3d,the density states of Ge mainly contributed from Ge 4p and Ge 4s,and the Fe 3d spin induces the Ge 4p electron transfer. The inductive effect increases germanium electron energy,weakens the Fe spin density of states,opposes the stability of the ferromagnetic state. The magnetic moment varies from 5 to 3 μB with the stress charges from-30 to 30 GPa. The charge of Fe is negative whereas the Ge atom is positively charged,the Fe atom loses charge,the charge transfers to the Ge atom. The unevenly distributed charge forms the newoccupy state and spin polarization state in the Fe_2Ge electron structure system. The Fe is the electron donor,the total electron is transferred to Ge,but the total numbers of gain electron and total numbers of lost electron are not equal,so the Fe_2Ge electron system may have hybridization between the Fe 3d state and Ge 4p state.The magnetic of Fe_2Ge mainly comes from the unoccupied Fe 3d orbital,the Fe 3d is positive spinpolarization state and the spin-polarization strength is decreased,the Ge 4p is negative spin-polarization state and the spin-polarization strength are increased. M oreover,electrons-spin polarization is relevant to the structure parameters of the Fe_2Ge system,and controls spin-polarized electronic behavior by means of adjusting ferromagnetic.
文摘The Jinping I hydropower station is a huge water conservancy project consisting of the highest concrete arch dam to date in the world and a highly complex and large underground powerhouse cavern. It is located on the right bank with extremely high in-situ stress and a few discontinuities observed in surrounding rock masses. The problems of rock mass deformation and failure result in considerable challenges related to project design and construction and have raised a wide range of concerns in the fields of rock mechanics and engineering. During the excavation of underground caverns, high in-situ stress and relatively low rock mass strength in combination with large excavation dimensions lead to large deformation of the surrounding rock mass and support. Existing experiences in excavation and support cannot deal with the large deformation of rock mass effectively, and further studies are needed. In this paper, the geological conditions, layout of caverns, and design of excavation and support are first introduced, and then detailed analyses of deformation and failure characteristics of rocks are presented. Based on this, the mechanisms of deformation and failure are discussed, and the support adjustments for controlling rock large deformation and subsequent excavation procedures are proposed. Finally, the effectiveness of support and excavation adjustments to maintain the stability of the rock mass is verified. The measures for controlling the large deformation of surrounding rocks enrich the practical experiences related to the design and construction of large underground openings, and the construction of caverns in the Jinping I hydropower station provides a good case study of large-scale excavation in highly stressed ground with complex geological structures, as well as a reference case for research on rock mechanics.
文摘Based on Hartmann-Shack sensor technique, an online thin film stress measuring system was introduced to measure the film stresses of TiO2 and SiO2, and comparison was made between the film stresses prepared respectively by the conventional process and the ion-beam assisted deposition. The effect of ion-beam assisted deposition on the film stresses of TiO2 and SiO2 was investigated in details, and the stress control methodologies using on-line adjustment and film doping were put forward. The results show that the film stress value of TiO2 prepared by ion-beam assisted deposition is 40 MPa lower than that prepared by conventional process, and the stress of TiO2 film changes gradually from tensile stress into compressive stress with increasing ion energy; while the film stress of SiO2 is a tensile stress under ion-beam assisted deposition because of the ion-beam sputtering effect, and the film refractive index decreases with increasing ion energy. A dynamic film stress control can be achieved through in-situ adjustment of the processing parameters based on the online film stress measuring technique, and the intrinsic stress of film can be effectively changed through film doping.
基金This work is supported by The Aeronautical Funds of China
文摘The characteristics of temperatures, stresses and strains fields have been studied numerically for a titanium alloy sheet welded with an improved gas tungsten arc welding method, in which a trailing spot heat sink is introduced to control the welding stress and distortion. The impinging jet model is employed to describe the internee heat transfer between the cooling media and the top suufuce of the workpiece. The influcnee of the distance between arc and heat sink is investigated. Results show that there is an ideal range of distance. Using the ideal distance, a low stress and no distortion welding structure can be derived.
文摘This article reviews the constructs of stress, appraisal, coping, according to a transactional perspective, and executive function, and presents a stress control rating scale (ECOSTRESS), which design is founded in these constructs. This psychometric tool is useful in the assessment of cognitive control of stress, correlated with the function of dorsolateral prefrontal cortex. It has been validated for its use in the assessment of Portuguese people in situations of stress related to unemployment and economic insufficiency. Also, within the context of the cognitive control of stress, it is highlighted the usefulness of low resolution brain electromagnetic tomography (LORETA).
基金supported by Beijing Municipal Science&Technology Commission,Administrative Commission of Zhongguancun Science Park(Grant Nos.Z211100007921022 and Z211100004821001)the National Natural Science Foundation of China(Grant Nos.62034008,62074142,62074140,61974162,61904172,61874175,62127807,and U21B2061)+3 种基金Key Research and Development Program of Jiangsu Province(Grant No.BE2021008-1)Beijing Nova Program(Grant No.202093)Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB43030101)Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2019115).
文摘GaN films grown on(111)Si substrate with different lattice parameters of the AlN buffer layer by metal–organic chemical vapor deposition are studied.The stress states obtained by different test methods are compared and it is found that the lattice parameter of the AlN buffer layer may have a significant effect on the stress state in the initial stage of subsequent GaN film growth.A larger compressive stress is beneficial to improved surface morphology and crystal quality of GaN film.The results of further orthogonal experiments show that an important factor affecting the lattice parameter is the growth rate of the AlN buffer layer.This work may be helpful for realizing simple GaN-on-Si structures and thus reducing the costs of growth processes.
文摘The Subtropolis Mine is a room-and-pillar mine extracting the Vanport limestone near Petersburg,Ohio,U.S.In February of 2018,mine management began implementing a heading re-orientation to better control the negative effects of excessive levels of horizontal stress.The conditions in the headings improved,but as expected,stress-related damage concentrated within crosscuts.The mine operator has worked to lessen the impact of the instabilities in the outby crosscuts by implementing several engineering controls.With the implementation of each control,conditions were monitored and analyzed using observational and measurement techniques including 3D LiDAR surveys.Since the heading re-orientation,several 3D LiDAR surveys have been conducted and analyzed by researchers from the National Institute for Occupational Safety and Health(NIOSH).This study examines(1)the characteristics of each 3D LiDAR survey,(2)the change in the detailed strata conditions in response to stress concentrations,and(3)the change detection techniques between 3D LiDAR surveys to assess entry stability.Ultimately,the 3D LiDAR surveys proved to be a useful tool for characterizing ground instability and assessing the effectiveness of the engineering controls used in the heading re-orientation at the Subtropolis Mine.
基金Financial support for this work, provided by the National Natural Science Foundation of China (No. 51204166)the Henan Polytechnic University Doctor Foundation (No. B2012-081)
文摘In order to effectively control the deformation and failure of surrounding rocks in a coal roadway in a deep tectonic region, the deformation and failure mechanism and stability control mechanism were studied. With such methods as numerical simulation and field testing, the distribution law of the displacement, stress and plastic zone in the surrounding rocks was analyzed. The deformation and failure mechanisms of coal roadways in deep tectonic areas were revealed: under high tectonic stress, two sides will slide along the roof or floor; while the plastic zone of the two sides will extend along the roof or floor,leading to more serious deformation and failure in the corner of two sides and the bolt supporting the corners is readily cut off by the shear force or tension force. Aimed at controlling the large slippage deformation of the two sides, serious deformation and failure in the corners of the two sides and massive bolt breakage, a ‘‘controlling and yielding coupling support'' control technology is proposed. Firstly, bolts which do not pass through the bedding plane should be used in the corners of the roadway, allowing the two sides to have some degree of sliding to achieve the purpose of ‘‘yielding'' support, and which avoid breakage of the bolts in the corner. After yielding support, bolts in the corner of the roadway and which pass through the bedding plane should be used to control the deformation and failure of the coal in the corner. ‘‘Controlling and yielding coupling support'' technology has been successfully applied in engineering practice, and the stability of deep coal roadway has been greatly improved.
基金Financial supports for this work,provided by the National Natural Science Foundation of China(Nos.511204167 and 51574227)Chinese National Programs for Fundamental Research and Development(No.2013CB227905),are gratefully acknowledged
文摘A new approach named as steel pile method is innovatively proposed in this study to control severe floor heaves in gob-side entry retaining. It is required that the steel piles be installed in the floor corners with a certain interval before the influence of the dynamic pressure induced by current panel extraction. Using numerical simulation and theoretical analysis, this study investigated the interaction between the steel piles and the floor rocks during the service life of the steel piles, and revealed the mechanism of the steel piles in controlling floor heaves. The effect of the steel pile parameters on the control of floor heaves was presented and elaborated. It is found that the effectiveness of the steel piles in controlling floor heaves can be enhanced with greater installed dip angle, longer length and smaller interval of the steel piles.Compared with traditional methods, e.g., using floor anchor bolts and floor restoration, the advantages using steel pile were successfully defined in terms of controlling effect and economic benefits. It is hoped that the proposed method can contribute to the development of gob-side entry retaining technique.
文摘Construction of mass concrete structures face more challenges in temperature difference and complex stress under low temperature than the ambient temperature. It has been proved by the practice that, not only improving tensile strength of structural concrete as soon as possible and removing of constrain as much as possible, but also calculation of the thermal stress in the process of construction and maintenance, controlling structure of concrete tensile strength and temperature difference stress ratio can ensure the safety and defect-free.
基金supported by the National Natural Science Foundation of China (No.51078035, 20977008)the Fundamental Research Funds for the Central Universities (No.JC2011-1, TD2010-5)+2 种基金the Ph.D.Programs Foundation of Ministry of Education of China (No.20100014110004)the High-Tech Research and Development Program (863)of China (No.2007AA06Z301)the Major Projects onthe Control and Rectification of Water Body Pollution (No.2008ZX07422-002-004, 2008ZX07314-006)
文摘Controlled shear stress (CSS) test was used to study the effect of solid contents on the corresponding rheological parameters for sludge. Three types of sludge with or without conditioning, including activated sludge (AS), anaerobic digested sludge (ADS), and water treatment residuals (WTRs), were collected for the CSS test. Results showed that the yield stress and the cohesion energy of the sludge networks were improved with increased total suspending solid (TSS) contents in most cases. For the conditioned AS/ADS and the raw WTRs, exponential law was observed in the relationships between cohesion energy of material networks or yield stress and the TSS contents, whereas for the conditioned WTRs, only exponential law dependence was found between the parameters of shear modulus or critical strain and the TSS contents.
基金supported by the National Natural Science Foundations of China (Nos.50835003, 10972078 and 51005076)Natural Science Foundation of Shanghai (No.09JC1404400)Shanghai Postdoctoral Scientific Program (No.09R21411800)
文摘Creep-fatigue interaction is one of the main damage mechanisms in high temperature plants and their components. Assessment of creep-fatigue properties is of practical importance for design and operation of high temperature components. However, the standard evaluation techniques, i.e. time fraction rule and ductility exhaustion one have limitations in accounting for the effects of control mode on the cyclic deformations. It was found that conventional linear cumulative damage rule failed in accurately evaluating the creep-fatigue life under stress controlled condition. The calculated creep damages by time fraction rule were excessively high, which led to overly conservative prediction of failure lives. In the present study, it was suggested that such over estimation of creep damage was mainly caused by anelastic strain upon stress loading. For precise assessment under conditions of stress control, a modified creep damage model accounting for the effect of anelastic creep was proposed. The assessments of creep fatigue data under stress controlled condition were performed with the new approach developed in this paper for a rotor material and a boiler material used in ultra supercritical power plants. It was shown that a more moderate amount of creep damage was obtained by the new model, which gave better predictions of failure life.
文摘We have demonstrated polarization insensitive AWGs by controlling the doping concentration of Boron in overcladding and the etching depth of waveguide. The proposed method uses the conventional fabrication process and does not degrade optical properties and reliability characteristics.
基金funded by the National Key Research and Development Program of China(2020YFB1314200)the National Natural Science Foundation of China(51874292,51804303,51934007)the Natural Science Foundation of Jiangsu Province(BK20180643).
文摘As coal burst normally occurs in the area of high stress concentration,it is of significance to study the features of regional stress field in coal mines.Primitive stress field,mining-induced stress field and their coupling effect are investigated through the methods of theoretical analysis,field measurement,numerical simulation and wave velocity CT inversion,and the relationship among regional stress field,high-energy seismic events and coal bursts are analyzed.Investigation of the 3#mining district in Xingcun coal mine shows that:(1)Though stress concentration changes in the mining process,several special areas witnesses stress concentration in the whole mining process,such as the rise pillar area,several syncline axis areas and large fault areas;(2)Coal burst occurrence and high-energy seismic events have a close relationship with regional stress field.Coal bursts and high-energy seismic events tend to occur in areas of stable stress concentration,such as the rise area,several syncline axis areas and large fault areas.Targeted control of stress field for coal burst prevention is developed based on stress field detection.The process of targeted control of stress field for coal burst prevention is:detection of regional stress field based mainly on wave velocity CT,identification of stress concentration,implementation of destress measures to control the identified stress concentration.This method of stress field control was applied to LW3306 working face in Xingcun coal mine and coal burst hazards were effectively controlled in LW3306.