期刊文献+
共找到337篇文章
< 1 2 17 >
每页显示 20 50 100
Responses of leaf stomatal and mesophyll conductance to abiotic stress factors 被引量:2
1
作者 LI Sheng-lan TAN Ting-ting +9 位作者 FAN Yuan-fang Muhammad Ali RAZA WANG Zhong-lin WANG Bei-bei ZHANG Jia-wei TAN Xian-ming CHEN Ping Iram SHAFIQ YANG Wen-yu YANG Feng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第10期2787-2804,共18页
Plant photosynthesis assimilates CO_(2)from the atmosphere,and CO_(2)diffusion efficiency is mainly constrained by stomatal and mesophyll resistance.The stomatal and mesophyll conductance of plants are sensitive to ab... Plant photosynthesis assimilates CO_(2)from the atmosphere,and CO_(2)diffusion efficiency is mainly constrained by stomatal and mesophyll resistance.The stomatal and mesophyll conductance of plants are sensitive to abiotic stress factors,which affect the CO_(2)concentrations at carboxylation sites to control photosynthetic rates.Early studies conducted relevant reviews on the responses of stomatal conductance to the environment and the limitations of mesophyll conductance by internal structure and biochemical factors.However,reviews on the abiotic stress factors that systematically regulate plant CO_(2)diffusion are rare.Therefore,in this review,the rapid and long-term responses of stomatal and mesophyll conductance to abiotic stress factors(such as light intensity,drought,CO_(2)concentration and temperature)and their physiological mechanisms are summarized.Finally,future research trends are also investigated. 展开更多
关键词 CO_(2)diffusion abiotic stress factors stomatal conductance mesophyll conductance
下载PDF
Numerical Computation of Stress Intensity Factors for Bolt-hole Corner Crack in Mechanical Joints 被引量:3
2
作者 王立清 盖秉政 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第5期411-416,共6页
The three-dimensional finite element method is used to solve the problem of the quarter-elliptical comer crack of the bolt-hole in mechanical joints being subjected to remote tension. The square-root stress singularit... The three-dimensional finite element method is used to solve the problem of the quarter-elliptical comer crack of the bolt-hole in mechanical joints being subjected to remote tension. The square-root stress singularity around the corner crack front is simulated using the collapsed 20-node quarter point singular elements. The contact interaction between the bolt and the hole boundary is considered in the finite element analysis. The stress intensity factors (SIFs) along the crack front are evaluated by using the displacement correlation technique. The effects of the amount of clearance between the hole and the bolt on the SIFs are investigated. The numerical results indicate that the SIF for mode I decrease with the decreases in clearance, and in the cases of clearance being present, the corner crack is in a mix-mode, even if mode I loading is dominant. 展开更多
关键词 bolt-hole comer crack contact stress intensity factor mechanical joint CLEARANCE finite element method
下载PDF
DETERMINATION OF THE DYNAMIC STRESS INTENSITY FACTORS,K_Ⅰ~d AND K_Ⅱ~d,FOR A MIXED-MODE PROPAGATING CRACK 被引量:4
3
作者 Liu Cheng (Department of Mechanics,Peking University) 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1989年第3期244-252,共9页
In this paper,the dynamic propagation problem of a mixed-mode crack was studied by means of the experimental method of caustics.The initial curve and caustic equations were derived un- der the mixed-mode dynamic condi... In this paper,the dynamic propagation problem of a mixed-mode crack was studied by means of the experimental method of caustics.The initial curve and caustic equations were derived un- der the mixed-mode dynamic condition.A multi-point measurement method for determining the dy- namic stress intensity factors,K_Ⅰ~d and K_Ⅱ~d,and the position of the crack tip was developed.Several other methods were adopted to check this method,and showed that it has a good precision.Finally, the dynamic propagating process of a mixed-mode crack in a three-point bending beam specimen was investigated with our method. 展开更多
关键词 caustic method stress intensity factor dynamic fracture
下载PDF
Evaluation of Stress Intensity Factors for Multiple Cracked Circular Disks Under Crack Surface Tractions with SBFEM 被引量:3
4
作者 刘钧玉 林皋 +1 位作者 李晓川 徐凤琳 《China Ocean Engineering》 SCIE EI CSCD 2013年第3期417-426,共10页
Stress intensity factors (SIFs) for the cracked circular disks under different distributing surface tractions are evaluated with the scaled boundary finite element method (SBFEM). In the SBFEM, the analytical adva... Stress intensity factors (SIFs) for the cracked circular disks under different distributing surface tractions are evaluated with the scaled boundary finite element method (SBFEM). In the SBFEM, the analytical advantage of the solution in the radial direction allows SIFs to be directly determined from its definition, therefore no special crack-tip treatment is necessary. Furthermore anisotropic material behavior can be treated easily. Different distributions of surface tractions are considered for the center and double-edge-cracked disks. The benchmark examples are modeled and an excellent agreement between the results in the present study and those in published literature is found. It shows that SBFEM is effective and possesses high accuracy. The SIFs of the cracked orthotropic material circular disks subjected to different surface tractions are also evaluated. The technique of substructure is applied to handle the multiple cracks problem. 展开更多
关键词 stress intensity factors scaled boundary finite element method circular disk orthotropic material surfacetraction
下载PDF
Evaluation of stress intensity factors for bi-material interface cracks using displacement jump methods 被引量:3
5
作者 K. C. Nehar B. E. Hachi +1 位作者 F. Cazes M. Haboussi 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第6期1051-1064,共14页
The aim of the present work is to investigate the numerical modeling of interfacial cracks that may appear at the interface between two isotropic elastic materials. The extended finite element method is employed to an... The aim of the present work is to investigate the numerical modeling of interfacial cracks that may appear at the interface between two isotropic elastic materials. The extended finite element method is employed to analyze brittle and bi-material interfacial fatigue crack growth by computing the mixed mode stress intensity factors(SIF). Three different approaches are introduced to compute the SIFs. In the first one, mixed mode SIF is deduced from the computation of the contour integral as per the classical J-integral method,whereas a displacement method is used to evaluate the SIF by using either one or two displacement jumps located along the crack path in the second and third approaches. The displacement jump method is rather classical for mono-materials,but has to our knowledge not been used up to now for a bimaterial. Hence, use of displacement jump for characterizing bi-material cracks constitutes the main contribution of the present study. Several benchmark tests including parametric studies are performed to show the effectiveness of these computational methodologies for SIF considering static and fatigue problems of bi-material structures. It is found that results based on the displacement jump methods are in a very good agreement with those of exact solutions, such as for the J-integral method, but with a larger domain of applicability and a better numerical efficiency(less time consuming and less spurious boundary effect). 展开更多
关键词 Bi-material interface crack Mixed mode stress intensity factor Displacement jump X-FEM Fatigue crack growth
下载PDF
Finite element simulation of stress intensity factors in elastic-plastic crack growth 被引量:3
6
作者 ALSHOAIBI Abdulnaser M ARIFFIN Ahmad Kamal 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第8期1336-1342,共7页
A finite element program developed elastic-plastic crack propagation simulation using Fortran language. At each propagation step, the adaptive mesh is automatically refined based on a posteriori h-type refinement usin... A finite element program developed elastic-plastic crack propagation simulation using Fortran language. At each propagation step, the adaptive mesh is automatically refined based on a posteriori h-type refinement using norm stress error estimator. A rosette of quarter-point elements is then constructed around the crack tip to facilitate the prediction of crack growth based on the maximum normal stress criterion and to calculate stress intensity factors under plane stress and plane strain conditions. Crack was modelled to propagate through the inter-element in the mesh. Some examples are presented to show the results of the implementation. 展开更多
关键词 Crack propagation Nodal displacement stress intensity factor Adaptive mesh Finite element method (FEM)
下载PDF
Evaluation of Stress Intensity Factors Subjected to Arbitrarily Distributed Tractions on Crack Surfaces 被引量:3
7
作者 刘钧玉 林皋 《China Ocean Engineering》 SCIE EI 2007年第2期293-303,共11页
The stress intensity factors (SIF) considering arbitrarily distributed surface tractions are evaluated based on the sealed boundary finite element method (SBFEM). The semi-analytical solving process for the stress... The stress intensity factors (SIF) considering arbitrarily distributed surface tractions are evaluated based on the sealed boundary finite element method (SBFEM). The semi-analytical solving process for the stress intensity factors including the effects of surface tractions is presented. Provided are the numerical examples for the evaluation of mode I and Ⅱ stress intensity factors with linear and non-linear distributing forces loaded on the crack surfaces. The crack problems of anisotropy and bimaterial interface are also studied and the stress intensity factors of single-edge-cracked orthotropic material and bi-material interface problems with surface tractions are calculated. Comparisons with the analytical solutions show that the proposed approach is effective and possesses high accuracy. 展开更多
关键词 stress intensity factor scaled boundary finite element method surface tractions anisotropic materials bimaterial interface
下载PDF
THE EVALUATION OF STRESS INTENSITY FACTORS OF PLANE CRACK FOR ORTHOTROPIC PLATE WITH EQUAL PARAMETER BY F2LFEM 被引量:3
8
作者 Fan Jie Zhang Xiaochun +1 位作者 A.Y.T. LEUNG Zhong Weifang 《Acta Mechanica Solida Sinica》 SCIE EI 2006年第2期128-134,共7页
In this paper, the evaluation of stress intensity factor of plane crack problems for orthotropic plate of equal-parameter is investigated using a fractal two-level finite element method (F2LFEM). The general solutio... In this paper, the evaluation of stress intensity factor of plane crack problems for orthotropic plate of equal-parameter is investigated using a fractal two-level finite element method (F2LFEM). The general solution of an orthotropic crack problem is obtained by assimilating the problem with isotropic crack problem, and is employed as the global interpolation function in F2LFEM. In the neighborhood of crack tip of the crack plate, the fractal geometry concept is introduced to achieve the similar meshes having similarity ratio less than one and generate an infinitesimal mesh so that the relationship between the stiffness matrices of two adjacent layers is equal. A large number of degrees of freedom around the crack tip are transformed to a small set of generalized coordinates. Numerical examples show that this method is efficient and accurate in evaluating the stress intensity factor (SIF). 展开更多
关键词 plane crack orthotropic plate fractal finite element stress intensity factor
下载PDF
STRESS INTENSITY FACTORS FOR A FINITE PLATE WITH AN INCLINED CRACK BY BOUNDARY COLLOCATION 被引量:3
9
作者 Xing Li Xuemei You 《Analysis in Theory and Applications》 2005年第3期258-265,共8页
In this paper, we combine the Muskhelishvili's complex variable method and boundary collocation method, and choose a set of new stress function based on the stress boundary condition of crack surface, the higher prec... In this paper, we combine the Muskhelishvili's complex variable method and boundary collocation method, and choose a set of new stress function based on the stress boundary condition of crack surface, the higher precision and less computation are reached. This method is applied to calculating the stress intensity factor for a finite plate with an inclined crack. The influence of θ (the obliquity of crack) on the stress intensity factors, as well as the number of summation terms on the stress intensity factor are studied and graphically represented. 展开更多
关键词 boundary collocation method stress intensity factor CRACK numerical solution
下载PDF
A fractional differential constitutive model for dynamic stress intensity factors of an anti-plane crack in viscoelastic materials 被引量:2
10
作者 Run-Tao Zhan Zhao-Xia Li Lei Wang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第3期403-409,共7页
Fractional differential constitutive relationships are introduced to depict the history of dynamic stress inten- sity factors (DSIFs) for a semi-infinite crack in infinite viscoelastic material subjected to anti-pla... Fractional differential constitutive relationships are introduced to depict the history of dynamic stress inten- sity factors (DSIFs) for a semi-infinite crack in infinite viscoelastic material subjected to anti-plane shear impact load. The basic equations which govern the anti-plane deformation behavior are converted to a fractional wave-like equation. By utilizing Laplace and Fourier integral transforms, the fractional wave-like equation is cast into an ordinary differential equation (ODE). The unknown function in the solution of ODE is obtained by applying Fourier transform directly to the boundary conditions of fractional wave-like equation in Laplace domain instead of solving dual integral equations. Analytical solutions of DSIFs in Laplace domain are derived by Wiener-Hopf technique and the numerical solutions of DSIFs in time domain are obtained by Talbot algorithm. The effects of four parameters α, β, b1, b2 of the fractional dif- ferential constitutive model on DSIFs are discussed. The numerical results show that the present fractional differential constitutive model can well describe the behavior of DSIFs of anti-plane fracture in viscoelastic materials, and the model is also compatible with solutions of DSIFs of anti-plane fracture in elastic materials. 展开更多
关键词 Dynamic fracture stress intensity factors Fractional differentiation - Anti-plane fracture Viscoelasticmaterial WIENER-HOPF
下载PDF
Simulation Research on Stress Intensity Factors of Different Crack Aspect Ratios on Hollow Axles 被引量:2
11
作者 ZHOU Suxia XIE Jilong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第5期766-771,共6页
Because of the wicked service environment of the high speed train, it is possible that the hollow axle of the train may encounter the foreign object damage and form a sharp notch. Under the fatigue loading a crack can... Because of the wicked service environment of the high speed train, it is possible that the hollow axle of the train may encounter the foreign object damage and form a sharp notch. Under the fatigue loading a crack can initiate from the notch and propagate to failure. It is noted that the stress intensity factor is the control parameter of the crack propagating, for the purpose of getting the more exact propagation characteristics, the stress intensity factor is studied mainly. The service loads of hollow axles are defined, and the stress distribution of hollow axles is obtained according to the load spectrum. The semi-ellipse crack configuration is defined with three parameters: the aspect ratio, the relative depth and the relative location along the crack front. Quarter point 20-node isoparametric degenerate singular elements are used for the region near the crack tip. The finite element model of crack extension of hollow axle is created, and the crack front is dispersed which can realize orthogonal extension. Based on this the stress intensity factors of crack front were calculated, and the distribution rules of the stress intensity factors of different initial crack shapes are obtained. The conclusions are compared with that of the analytic method and they agree with each other very well, and the calculating results show that there is a close relationship between the stress intensity factor and the initial crack shape. For a round crack the stress intensity factor at the surface point increases faster than the one at the center point with the crock propagation. However, for a narrow crack, the results are in contrast with that of a round one. So, all the cracks with different shapes propagate toward to a similar shape, and they grow at this shape to end. The study may contribute to the crack propagate characteristics research. 展开更多
关键词 hollow axle surface crack propagation stress intensity factor finite element
下载PDF
Evaluation of mixed-mode stress intensity factors by extended finite element method 被引量:3
12
作者 茹忠亮 赵洪波 尹顺德 《Journal of Central South University》 SCIE EI CAS 2013年第5期1420-1425,共6页
Extended finite element method (XFEM) implementation of the interaction integral methodology for evaluating the stress intensity factors (SIF) of the mixed-mode crack problem is presented. A discontinuous function... Extended finite element method (XFEM) implementation of the interaction integral methodology for evaluating the stress intensity factors (SIF) of the mixed-mode crack problem is presented. A discontinuous function and the near-tip asymptotic function are added to the classic finite element approximation to model the crack behavior. Two-state integral by the superposition of actual and auxiliary fields is derived to calculate the SIFs. Applications of the proposed technique to the inclined centre crack plate with inclined angle from 0° to 90° and slant edge crack plate with slant angle 45°, 67.5° and 90° are presented, and comparisons are made with closed form solutions. The results show that the proposed method is convenient, accurate and computationallv efficient. 展开更多
关键词 stress intensity factor (SIF) interaction integral method extended finite element method (XFEM)
下载PDF
SEMI-WEIGHT FUNCTION METHOD ON COMPUTATION OF STRESS INTENSITY FACTORS IN DISSIMILAR MATERIALS 被引量:2
13
作者 马开平 柳春图 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2004年第11期1241-1248,共8页
Semi_weight function method is developed to solve the plane problem of two bonded dissimilar materials containing a crack along the bond. From equilibrium equation, stress and strain relationship, conditions of contin... Semi_weight function method is developed to solve the plane problem of two bonded dissimilar materials containing a crack along the bond. From equilibrium equation, stress and strain relationship, conditions of continuity across interface and free crack surface, the stress and displacement fields were obtained. The eigenvalue of these fields is lambda. Semi_weight functions were obtained as virtual displacement and stress fields with eigenvalue?_lambda. Integral expression of fracture parameters, K Ⅰ and K Ⅱ, were obtained from reciprocal work theorem with semi_weight functions and approximate displacement and stress values on any integral path around crack tip. The calculation results of applications show that the semi_weight function method is a simple, convenient and high precision calculation method. 展开更多
关键词 dissimilar material interface crack stress intensity factor semi-weight function method plane fracture problem
下载PDF
Analysis of Geometrical Parameters of Tubular TY-Joints on Stress Concentration Factors Due to Axial Loads 被引量:1
14
作者 Mohamadou Aminou Sambo Guy Richard Kol Gambo Betchewe 《Journal of Marine Science and Application》 CSCD 2022年第2期133-143,共11页
In this paper,the influence of geometric parameters on the stress concentration factors due to three different types of axial loading on 81 TY tubular structures is studied.Our results reveal that,geometric parameters... In this paper,the influence of geometric parameters on the stress concentration factors due to three different types of axial loading on 81 TY tubular structures is studied.Our results reveal that,geometric parameters have a considerable impact on the variation of stress concentration factors on tubular TY-joints under axial loads.Thus,the highest stress concentration factor values are observed on the vertical brace than on the inclined one.The finite element results of the tubular structures were verified by parametric equations and experimental data.A parametric study was carried out by analyses using the nonlinear regression method to obtain parametric equations.These equations are used to calculate stress concentration factors and to analyse the fatigue resistance of TY-joints due to axial loads. 展开更多
关键词 Offshore structure Tubular TY-joint stress Concentration Factor FATIGUE Axial load
下载PDF
STRESS INTENSITY FACTORS CALCULATION IN ANTI-PLANE FRACTURE PROBLEM BY ORTHOGONAL INTEGRAL EXTRACTION METHOD BASED ON FEMOL 被引量:1
15
作者 Xu Yongjun Yuau Si 《Acta Mechanica Solida Sinica》 SCIE EI 2007年第1期87-94,共8页
For an anti-plane problem, the differential operator is self-adjoint and the corresponding eigenfunctions belong to the Hilbert space. The orthogonal property between eigenfunctions (or between the derivatives of eig... For an anti-plane problem, the differential operator is self-adjoint and the corresponding eigenfunctions belong to the Hilbert space. The orthogonal property between eigenfunctions (or between the derivatives of eigenfunctions) of anti-plane problem is exploited. We developed for the first time two sets of radius-independent orthogonal integrals for extraction of stress intensity factors (SIFs), so any order SIF can be extracted based on a certain known solution of displacement (an analytic result or a numerical result). Many numerical examples based on the finite element method of lines (FEMOL) show that the present method is very powerful and efficient. 展开更多
关键词 anti-plane problem Hilbert space eigenvalue EIGENFUNCTION orthogonal relationship stress intensity factor finite element method of lines
下载PDF
Comprehensive investigation of stress intensity factors in rotating disks containing three-dimensional semi-elliptical cracks 被引量:1
16
作者 M.FAKOOR S.M.N.GHOREISHI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第11期1565-1578,共14页
Initiation and propagation of cracks in rotating disks may cause catastrophic failures. Therefore, determination of fracture parameters under different working con- ditions is an essential issue. In this paper, a comp... Initiation and propagation of cracks in rotating disks may cause catastrophic failures. Therefore, determination of fracture parameters under different working con- ditions is an essential issue. In this paper, a comprehensive study of stress intensity factors (SIFs) in rotating disks containing three-dimensional (3D) semi-elliptical cracks subjected to different working conditions is carried out. The effects of mechanical prop- erties, rotational velocity, and orientation of cracks on SIFs in rotating disks under cen- trifugal loading are investigated. Also, the effects of using composite patches to reduce SIFs in rotating disks are studied. The effects of patching design variables such as mechanical properties, thickness, and ply angle are investigated separately. The modeling and analytical procedure are verified in comparison with previously reported results in the literature. 展开更多
关键词 stress intensity factor (SIF) semi-elliptical crack rotating disk finite ele-ment analysis (FEA)
下载PDF
Solution of stress intensity factors of multiple cracks in plane elasticity with eigen COD formulation of boundary integral equation 被引量:1
17
作者 郭钊 马杭 《Journal of Shanghai University(English Edition)》 CAS 2011年第3期173-179,共7页
The concept of eigen crack opening displacement (COD) can be defined as the COD of a crack in infinite plate under the tractions acting on the crack surface. By introducing this concept, the eigen COD formulation of... The concept of eigen crack opening displacement (COD) can be defined as the COD of a crack in infinite plate under the tractions acting on the crack surface. By introducing this concept, the eigen COD formulation of boundary integral equation is proposed in this paper, together with the solution procedures for multiple crack problems in plane elasticity. With the proposed approach, the multiple crack problems can be solved with the conventional displacement discontinuity boundary integral equations in an iterative fashion with a small size of system matrix as that in the numerical Green’s function (NGF) approach but without the trouble to determine the complementary solutions since the standard boundary element discretization on the crack surface is no longer required with the proposed approach. Some numerical examples computing the stress intensity factors are presented and compared with those in literature to show the accuracy and the effectiveness of the proposed approach. 展开更多
关键词 crack opening displacement (COD) multiple cracks stress intensity factor boundary integral equation ITERATION
下载PDF
STUDY ON DYNAMIC STRESS INTENSITY FACTORS OF DISK WITH A RADIAL EDGE CRACK SUBJECTED TO EXTERNAL IMPULSIVE PRESSURE 被引量:1
18
作者 Chen Aijun 《Acta Mechanica Solida Sinica》 SCIE EI 2007年第1期41-49,共9页
A dynamic weight function method is presented for dynamic stress intensity factors of circular disk with a radial edge crack under external impulsive pressure. The dynamic stresses in a circular disk are solved under ... A dynamic weight function method is presented for dynamic stress intensity factors of circular disk with a radial edge crack under external impulsive pressure. The dynamic stresses in a circular disk are solved under abrupt step external pressure using the eigenfunction method. The solution consists of a quasi-static solution satisfying inhomogeneous boundary conditions and a dynamic solution satisfying homogeneous boundary conditions. By making use of Fourier- Bessel series expansion, the history and distribution of dynamic stresses in the circular disk are derived. Furthermore, the equation for stress intensity factors under uniform pressure is used as the reference case, the weight function equation for the circular disk containing an edge crack is worked out, and the dynamic stress intensity factor equation for the circular disk containing a radial edge crack can be given. The results indicate that the stress intensity factors under sudden step external pressure vary periodically with time, and the ratio of the maximum value of dynamic stress intensity factors to the corresponding static value is about 2.0. 展开更多
关键词 circular disk cracks dynamic stress intensity factors dynamic weight function Fourier-Bessel series
下载PDF
Analysis of dynamic stress intensity factors of thick-walled cylinder under internal impulsive pressure 被引量:3
19
作者 Aijun Chen Lianfang Liao Dingguo Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第6期803-809,共7页
Dynamic stress intensity factors are evaluated for thick-walled cylinder with a radial edge crack under internal impulsive pressure. Firstly, the equation for stress intensity factors under static uniform pressure is ... Dynamic stress intensity factors are evaluated for thick-walled cylinder with a radial edge crack under internal impulsive pressure. Firstly, the equation for stress intensity factors under static uniform pressure is used as the reference case, and then the weight function for a thick-walled cylinder containing a radial edge crack can be worked out. Secondly, the dynamic stresses in uncracked thick-walled cylinders are solved under internal impulsive pressure by using mode shape function method. The solution consists of a quasi-static solution satisfying inhomogeneous boundary conditions and a dynamic solution satisfying homogeneous boundary condi- tions, and the history and distribution of dynamic stresses in thick-walled cylinders are derived in terms of Fourier-Bessel series. Finally, the dynamic stress intensity factor equations for thick-walled cylinder containing a radial edge crack sub- jected to internal impulsive pressure are given by dynamic weight function method. The finite element method is utilized to verify the results of numerical examples, showing the validity and feasibility of the proposed method. 展开更多
关键词 Thick-walled cylinder . Cracks .Dynamic stress intensity factors . Weight function methodMode shape function
下载PDF
Influence of geometric parameters on stress concentration factors of undermatched butt joint with single V-groove under three-point bending load 被引量:1
20
作者 王佳杰 董志波 +3 位作者 刘雪松 张敬强 方洪渊 刚铁 《China Welding》 EI CAS 2014年第3期59-62,共4页
In order to improve the bending load-carrying capacity (BLCC) of undermatched butt joint under three-point bending load, the influence of joint geometric parameters on stress concentration factors (SCF) at the wel... In order to improve the bending load-carrying capacity (BLCC) of undermatched butt joint under three-point bending load, the influence of joint geometric parameters on stress concentration factors (SCF) at the weld bottom center and the weld toe of uudermatched butt joint with single V-groove are studied respectively based on the finite element method in this paper. Results show that the reinforcement height and the cover pass width play decisive role in the BLCC for undermatched butt joint. BLCC of undermatched butt joint can be improved by choosing the appropriate joint geometric parameters. 展开更多
关键词 undermatched butt joint with single V-groove joint geometric parameters stress concentration factors finiteelement method
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部