In this paper, double dissimilar orthotropic composite materials interfacial crack is studied by constructing new stress functions and employing the method of composite material complex. When the characteristic equati...In this paper, double dissimilar orthotropic composite materials interfacial crack is studied by constructing new stress functions and employing the method of composite material complex. When the characteristic equations' discriminants △1 〉 0 and △2 〉0, the theoretical formula of the stress field and the displacement field near the mode I interface crack tip are derived, indicating that there is no oscillation and interembedding between the interfaces of the crack.展开更多
A crack terminating at an interface of two dissimilar elastic materials is investigated.It is found that the asymptotic stress field near the crack tip is in general composed of two parts with each part be- ing charac...A crack terminating at an interface of two dissimilar elastic materials is investigated.It is found that the asymptotic stress field near the crack tip is in general composed of two parts with each part be- ing characterized by one singularity.The detailed relation of the two singularities with the bimaterial proper- ties is given for some special cases of the crack.展开更多
A generalized form of material gradation applicable to a more broad range of functionally graded materials(FGMs) was presented.With the material model,analytical expressions of crack tip higher order stress fields in ...A generalized form of material gradation applicable to a more broad range of functionally graded materials(FGMs) was presented.With the material model,analytical expressions of crack tip higher order stress fields in a series form for opening mode and shear mode cracks under quasi-static loading were developed through the approach of asymptotic analysis.Then,a numerical experiment was conducted to verify the accuracy of the developed expressions for representing crack tip stress fields and their validity in full field data analysis by using them to extract the stress intensity factors from the results of a finite element analysis by local collocation and then comparing the estimations with the existing solution.The expressions show that nonhomogeneity parameters are embedded in the angular functions associated with higher terms in a recursive manner and at least the first three terms in the expansions must be considered to explicitly account for material nonhomogeneity effects on crack tip stress fields in the case of FGMs.The numerical experiment further confirms that the addition of the nonhomogeneity specific terms in the expressions not only improves estimates of stress intensity factor,but also gives consistent estimates as the distance away from the crack tip increases.Hence,the analytical expressions are suitable for the representation of crack tip stress fields and the analysis of full field data.展开更多
Under the condition that all the perfectly plastic stress components at a crack tip are the functions of ? only, making use of equilibrium equations and Von-Mises yield condition containing Poisson ratio, in this pape...Under the condition that all the perfectly plastic stress components at a crack tip are the functions of ? only, making use of equilibrium equations and Von-Mises yield condition containing Poisson ratio, in this paper, we derive the generally analytical expressions of perfectly plastic stress field at a stationary plane-strain crack tip. Applying these generally analytical expressions to the concrete cracks, the analytical expressions of perfectly plastic stress fields at the stationary tips of Mode I, Mode II and Mixed-Mode I-II plane-strain cracks are obtained. These analytical expressions contain Poisson ratio.展开更多
In this paper, a weighted residual method for the elastic-plastic analysis near a crack tip is systematically given by taking the model of power-law hardening under plane strain condition as a sample. The elastic-plas...In this paper, a weighted residual method for the elastic-plastic analysis near a crack tip is systematically given by taking the model of power-law hardening under plane strain condition as a sample. The elastic-plastic solutions of the crack lip field and an approach based on the superposition of the nonlinear finite element method on the complete solution in the whole crack body field, to calculate the plastic stress intensity factors, are also developed. Therefore, a complete analvsis based on the calculation both for the crack tip field and for the whole crack body field is provided.展开更多
Under the hypothesis that all the perfectly plastic stress components at a orach tip are the functions of θ only, making use of yield conditions and equilibrium equations. we derive the generally analytical expressio...Under the hypothesis that all the perfectly plastic stress components at a orach tip are the functions of θ only, making use of yield conditions and equilibrium equations. we derive the generally analytical expressions of the perfectly plastic stress field at a crack tip. Applying these generally analytical expressions to the concrete cracks, the analytical expressions of perfectly plastic stress fields at the tips of Mode Ⅰ Mode Ⅱ, Mode Ⅲ and Mixed Mode Ⅰ-Ⅱ cracks are obtained.展开更多
Under the condition that all the stress components at a crack-tip are the functions of 0 only, making use of the equations of steady-state motion. Hill anisotropic yield condition and stress-strain relations, we obtai...Under the condition that all the stress components at a crack-tip are the functions of 0 only, making use of the equations of steady-state motion. Hill anisotropic yield condition and stress-strain relations, we obtain the general solution of anisotropic plastic field at a rapidly propagating plane-stress crack-tip. Applying this general solution to four particular cases of anisotropy, the general solutions of these four particular cases are derived. Finally, we give the anisotropic plastic field at the rapidly propagating plane-stress mode I crack-tip in the case of X=Y=Z展开更多
Under the condition that all the perfectly plastic stress components at a crack tip are the functions of only, making use of the Mises yield condition , steady-state moving equations and elastic perfectly-plastic cons...Under the condition that all the perfectly plastic stress components at a crack tip are the functions of only, making use of the Mises yield condition , steady-state moving equations and elastic perfectly-plastic constitutive equations, we derive the generally analytical expressions of perfectly plastic fields at a rapidly propagating plane-stress crack tip. Applying these generally analytical expressions to the concrete crack, we obtain the analytical expressions of perfectly plastic fields at the rapidly propagating tips of modes I and II plane-stress cracks.展开更多
Under the condition that any perfeetly plastic stress components at a crack tip are nothing but the Junctions of 0 only, making use of equilibriumequations,Hill ani.sutropic yield condition and unloading stress-strain...Under the condition that any perfeetly plastic stress components at a crack tip are nothing but the Junctions of 0 only, making use of equilibriumequations,Hill ani.sutropic yield condition and unloading stress-strain relations, in this paper, we derive the general analytical expressions of anisotropic plastiestress Jields at the slowly steadyhe slowly steady propagatin tips of plane and anti-phane strain,Applying these general analytical expressions to the concrete cracks the attchvtical expressions of anisotropie plastic stress fields at the slowly steady propagating tips of Motle I and Motle III cracks are obtained. For the isolropic plastic material, the anisotropic plastic stress fields at a slowly propagating crack tip become the perfeeby plastic mress fields展开更多
The crack-tip field under plane stress condition for an incompressible rubbermaterial ̄[1] is investigated by. the use of the fully nonlinear equilibrium theory. It isfound thai the crack-tip field is composed of two ...The crack-tip field under plane stress condition for an incompressible rubbermaterial ̄[1] is investigated by. the use of the fully nonlinear equilibrium theory. It isfound thai the crack-tip field is composed of two shrink sectors and one expansion se-ctor. At the crack-tip, stress and strain possess the singularity of R ̄(-1) and R ̄(-1n), respec-tively, (R is the distance to the crack-tip before deformation, n is the material const-ant). When the crack-tip is approached, the thickness of the sheet shrinks to zerowith the order of R ̄(1.4n). The results obtained in this paper are consistent with that ob-tained in [8] when s→∞ .展开更多
A plane strain mode 1 crack tip field with strain gradient effects is investigated.A new strain gradient theory is used.An elastic-power law hardening strain gradient material is considered and two hardening laws,i.e....A plane strain mode 1 crack tip field with strain gradient effects is investigated.A new strain gradient theory is used.An elastic-power law hardening strain gradient material is considered and two hardening laws,i.e.a separation law and an integration law are used respectively.As for the material with the separation law hardening,the angular distributions of stresses are consistent with the HRR field,which differs from the stress results;the angular distributions of couple stresses are the same as the couple stress results.For the material with the integration law hardening,the stress field and the couple stress field can not exist simultaneously,which is the same as the conclusion,but for the stress dominated field,the an- gular distributions of stresses are consistent with the HRR field;for the couple stress dominated field,the an- gular distributions of couple stresses are consistent with those in Ref.However,the increase in stresses is not observed in strain gradient plasticity because the present theory is based on the rotation gradient of the deformation only,while the crack tip field of mode 1 is dominated by the tension gradient,which will be shown in another paper.展开更多
The strain gradient effect becomes significant when the size of frac- ture process zone around a crack tip is comparable to the intrinsic material length l, typically of the order of microns. Using the new strain grad...The strain gradient effect becomes significant when the size of frac- ture process zone around a crack tip is comparable to the intrinsic material length l, typically of the order of microns. Using the new strain gradient deformation theory given by Chen and Wang, the asymptotic fields near a crack tip in an elastic-plastic material with strain gradient effects are investigated. It is established that the dom- inant strain field is irrotational. For mode Ⅰ plane stress crack tip asymptotic field, the stress asymptotic field and the couple stress asymptotic field can not exist si- multaneously. In the stress dominated asymptotic field, the angular distributions of stresses are consistent with the classical plane stress HRR field; In the couple stress dominated asymptotic field, the angular distributions of couple stresses are consistent with that obtained by Huang et al. For mode Ⅱ plane stress and plane strain crack tip asymptotic fields, only the stress-dominated asymptotic fields exist. The couple stress asymptotic field is less singular than the stress asymptotic fields. The stress asymptotic fields are the same as mode Ⅱ plane stress and plane strain HRR fields, respectively. The increase in stresses is not observed in strain gradient plasticity for mode Ⅰ and mode Ⅱ, because the present theory is based only on the rotational gradi- ent of deformation and the crack tip asymptotic fields are irrotational and dominated by the stretching gradient.展开更多
High-speed railway tunnels in various countries have continuously reported accidents of vault falling concrete blocks.Once the concrete block falling occurs,serious consequences follow,and traffic safety may be endang...High-speed railway tunnels in various countries have continuously reported accidents of vault falling concrete blocks.Once the concrete block falling occurs,serious consequences follow,and traffic safety may be endangered.The aerodynamic shockwave evolves from the initial compression wave may be an important inducement causing the tunnel lining cracks to grow and form falling concrete blocks.A joint calculation framework is established based on ANSYS Fluent,ABAQUS,and FRANC3D for calculating the crack tip field under the aerodynamic shockwave.The intensification effect of aerodynamic shockwaves in the crack is revealed,and the evolution characteristics of the crack tip field and the influence factors of stress intensity factor(SIF)are analyzed.Results show that(1)the aerodynamic shockwave intensifies after entering the crack,resulting in more significant pressure in the crack than the input pressure.The maximum pressure of the inclined and longitudinal cracks is higher than the corresponding values of the circumferential crack,respectively.(2)The maximum SIF of the circumferential,inclined,and longitudinal crack appears at 0.5,0.68,and 0.78 times the crack front length.The maximum SIF of the circumferential crack is higher than that of the inclined and longitudinal crack.The possibility of crack growth of the circumferential crack is the highest under aerodynamic shockwaves.(3)The influence of train speed on the SIF of the circumferential crack is more than 40%.When the train speed,crack depth,and crack length change,the change of pressure in the crack is the direct cause of the change of SIF.展开更多
An interface crack analysis is presented for further understanding the characteristics of the crack-tip field. The conditions under which the energy release rate components would exist are emphasized and the relations...An interface crack analysis is presented for further understanding the characteristics of the crack-tip field. The conditions under which the energy release rate components would exist are emphasized and the relations between energy release rate components and the stress intensity factors are given. Combining with the results of chasical plate theory analysis. a closed-form solution for stress intensity factors in terms of external loading as well as some geometric and material parameters for fairly general composite laminates is derived Then. an analytical solution for energy release rate components is deduced. In order to get energy release rate components under general loading condition. a mode mix parameter, Ω, must be determined separately. A methodology for determining Ω is discussed. Finally. several different kinds of laminates are examined and the results obtained could be used in engineering applications.展开更多
基金the Natural Science Foundation of Shanxi Province(No.2007011008)
文摘In this paper, double dissimilar orthotropic composite materials interfacial crack is studied by constructing new stress functions and employing the method of composite material complex. When the characteristic equations' discriminants △1 〉 0 and △2 〉0, the theoretical formula of the stress field and the displacement field near the mode I interface crack tip are derived, indicating that there is no oscillation and interembedding between the interfaces of the crack.
文摘A crack terminating at an interface of two dissimilar elastic materials is investigated.It is found that the asymptotic stress field near the crack tip is in general composed of two parts with each part be- ing characterized by one singularity.The detailed relation of the two singularities with the bimaterial proper- ties is given for some special cases of the crack.
基金Project(20080431344) supported by Postdoctoral Science Foundation of ChinaProject(51021001) supported by the National Natural Science Foundation of China
文摘A generalized form of material gradation applicable to a more broad range of functionally graded materials(FGMs) was presented.With the material model,analytical expressions of crack tip higher order stress fields in a series form for opening mode and shear mode cracks under quasi-static loading were developed through the approach of asymptotic analysis.Then,a numerical experiment was conducted to verify the accuracy of the developed expressions for representing crack tip stress fields and their validity in full field data analysis by using them to extract the stress intensity factors from the results of a finite element analysis by local collocation and then comparing the estimations with the existing solution.The expressions show that nonhomogeneity parameters are embedded in the angular functions associated with higher terms in a recursive manner and at least the first three terms in the expansions must be considered to explicitly account for material nonhomogeneity effects on crack tip stress fields in the case of FGMs.The numerical experiment further confirms that the addition of the nonhomogeneity specific terms in the expressions not only improves estimates of stress intensity factor,but also gives consistent estimates as the distance away from the crack tip increases.Hence,the analytical expressions are suitable for the representation of crack tip stress fields and the analysis of full field data.
文摘Under the condition that all the perfectly plastic stress components at a crack tip are the functions of ? only, making use of equilibrium equations and Von-Mises yield condition containing Poisson ratio, in this paper, we derive the generally analytical expressions of perfectly plastic stress field at a stationary plane-strain crack tip. Applying these generally analytical expressions to the concrete cracks, the analytical expressions of perfectly plastic stress fields at the stationary tips of Mode I, Mode II and Mixed-Mode I-II plane-strain cracks are obtained. These analytical expressions contain Poisson ratio.
文摘In this paper, a weighted residual method for the elastic-plastic analysis near a crack tip is systematically given by taking the model of power-law hardening under plane strain condition as a sample. The elastic-plastic solutions of the crack lip field and an approach based on the superposition of the nonlinear finite element method on the complete solution in the whole crack body field, to calculate the plastic stress intensity factors, are also developed. Therefore, a complete analvsis based on the calculation both for the crack tip field and for the whole crack body field is provided.
文摘Under the hypothesis that all the perfectly plastic stress components at a orach tip are the functions of θ only, making use of yield conditions and equilibrium equations. we derive the generally analytical expressions of the perfectly plastic stress field at a crack tip. Applying these generally analytical expressions to the concrete cracks, the analytical expressions of perfectly plastic stress fields at the tips of Mode Ⅰ Mode Ⅱ, Mode Ⅲ and Mixed Mode Ⅰ-Ⅱ cracks are obtained.
文摘Under the condition that all the stress components at a crack-tip are the functions of 0 only, making use of the equations of steady-state motion. Hill anisotropic yield condition and stress-strain relations, we obtain the general solution of anisotropic plastic field at a rapidly propagating plane-stress crack-tip. Applying this general solution to four particular cases of anisotropy, the general solutions of these four particular cases are derived. Finally, we give the anisotropic plastic field at the rapidly propagating plane-stress mode I crack-tip in the case of X=Y=Z
文摘Under the condition that all the perfectly plastic stress components at a crack tip are the functions of only, making use of the Mises yield condition , steady-state moving equations and elastic perfectly-plastic constitutive equations, we derive the generally analytical expressions of perfectly plastic fields at a rapidly propagating plane-stress crack tip. Applying these generally analytical expressions to the concrete crack, we obtain the analytical expressions of perfectly plastic fields at the rapidly propagating tips of modes I and II plane-stress cracks.
文摘Under the condition that any perfeetly plastic stress components at a crack tip are nothing but the Junctions of 0 only, making use of equilibriumequations,Hill ani.sutropic yield condition and unloading stress-strain relations, in this paper, we derive the general analytical expressions of anisotropic plastiestress Jields at the slowly steadyhe slowly steady propagatin tips of plane and anti-phane strain,Applying these general analytical expressions to the concrete cracks the attchvtical expressions of anisotropie plastic stress fields at the slowly steady propagating tips of Motle I and Motle III cracks are obtained. For the isolropic plastic material, the anisotropic plastic stress fields at a slowly propagating crack tip become the perfeeby plastic mress fields
文摘The crack-tip field under plane stress condition for an incompressible rubbermaterial ̄[1] is investigated by. the use of the fully nonlinear equilibrium theory. It isfound thai the crack-tip field is composed of two shrink sectors and one expansion se-ctor. At the crack-tip, stress and strain possess the singularity of R ̄(-1) and R ̄(-1n), respec-tively, (R is the distance to the crack-tip before deformation, n is the material const-ant). When the crack-tip is approached, the thickness of the sheet shrinks to zerowith the order of R ̄(1.4n). The results obtained in this paper are consistent with that ob-tained in [8] when s→∞ .
基金the National Natural Science Foundation of China (No.19704100)Science Foundation of Chinese Academy of Sciences (Project KJ951-1-20)CASK.C.Wong Post-doctoral Research Award Fund and the Post Doctoral Science Fund of China.
文摘A plane strain mode 1 crack tip field with strain gradient effects is investigated.A new strain gradient theory is used.An elastic-power law hardening strain gradient material is considered and two hardening laws,i.e.a separation law and an integration law are used respectively.As for the material with the separation law hardening,the angular distributions of stresses are consistent with the HRR field,which differs from the stress results;the angular distributions of couple stresses are the same as the couple stress results.For the material with the integration law hardening,the stress field and the couple stress field can not exist simultaneously,which is the same as the conclusion,but for the stress dominated field,the an- gular distributions of stresses are consistent with the HRR field;for the couple stress dominated field,the an- gular distributions of couple stresses are consistent with those in Ref.However,the increase in stresses is not observed in strain gradient plasticity because the present theory is based on the rotation gradient of the deformation only,while the crack tip field of mode 1 is dominated by the tension gradient,which will be shown in another paper.
文摘The strain gradient effect becomes significant when the size of frac- ture process zone around a crack tip is comparable to the intrinsic material length l, typically of the order of microns. Using the new strain gradient deformation theory given by Chen and Wang, the asymptotic fields near a crack tip in an elastic-plastic material with strain gradient effects are investigated. It is established that the dom- inant strain field is irrotational. For mode Ⅰ plane stress crack tip asymptotic field, the stress asymptotic field and the couple stress asymptotic field can not exist si- multaneously. In the stress dominated asymptotic field, the angular distributions of stresses are consistent with the classical plane stress HRR field; In the couple stress dominated asymptotic field, the angular distributions of couple stresses are consistent with that obtained by Huang et al. For mode Ⅱ plane stress and plane strain crack tip asymptotic fields, only the stress-dominated asymptotic fields exist. The couple stress asymptotic field is less singular than the stress asymptotic fields. The stress asymptotic fields are the same as mode Ⅱ plane stress and plane strain HRR fields, respectively. The increase in stresses is not observed in strain gradient plasticity for mode Ⅰ and mode Ⅱ, because the present theory is based only on the rotational gradi- ent of deformation and the crack tip asymptotic fields are irrotational and dominated by the stretching gradient.
基金funded by the National Natural Science Foundation of China(Grant Nos.51978670 and 52308419)the Science and Technology Research and Development Program of China railway group limited(Grant Nos.2021-Major-01 and 2022-Key-22)+3 种基金the Fundamental Research Funds for the Central Universities of Central South University(Grant No.2023ZZTS0369)the Guangdong Basic and Applied Basic Research Foundation Project(Grant No.2021B1515130006)the Innovation and Technology Commission of Hong Kong,China(Grant No.K-BBY1)the Hong Kong Polytechnic University’s Postdoc Matching Fund Scheme(Grant No.1-W21Q).
文摘High-speed railway tunnels in various countries have continuously reported accidents of vault falling concrete blocks.Once the concrete block falling occurs,serious consequences follow,and traffic safety may be endangered.The aerodynamic shockwave evolves from the initial compression wave may be an important inducement causing the tunnel lining cracks to grow and form falling concrete blocks.A joint calculation framework is established based on ANSYS Fluent,ABAQUS,and FRANC3D for calculating the crack tip field under the aerodynamic shockwave.The intensification effect of aerodynamic shockwaves in the crack is revealed,and the evolution characteristics of the crack tip field and the influence factors of stress intensity factor(SIF)are analyzed.Results show that(1)the aerodynamic shockwave intensifies after entering the crack,resulting in more significant pressure in the crack than the input pressure.The maximum pressure of the inclined and longitudinal cracks is higher than the corresponding values of the circumferential crack,respectively.(2)The maximum SIF of the circumferential,inclined,and longitudinal crack appears at 0.5,0.68,and 0.78 times the crack front length.The maximum SIF of the circumferential crack is higher than that of the inclined and longitudinal crack.The possibility of crack growth of the circumferential crack is the highest under aerodynamic shockwaves.(3)The influence of train speed on the SIF of the circumferential crack is more than 40%.When the train speed,crack depth,and crack length change,the change of pressure in the crack is the direct cause of the change of SIF.
文摘An interface crack analysis is presented for further understanding the characteristics of the crack-tip field. The conditions under which the energy release rate components would exist are emphasized and the relations between energy release rate components and the stress intensity factors are given. Combining with the results of chasical plate theory analysis. a closed-form solution for stress intensity factors in terms of external loading as well as some geometric and material parameters for fairly general composite laminates is derived Then. an analytical solution for energy release rate components is deduced. In order to get energy release rate components under general loading condition. a mode mix parameter, Ω, must be determined separately. A methodology for determining Ω is discussed. Finally. several different kinds of laminates are examined and the results obtained could be used in engineering applications.