期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Enhanced superelasticity and reversible elastocaloric effect in nano-grained NiTi alloys with low stress hysteresis
1
作者 周敏 王维 +2 位作者 苏浩健 胡忠军 李来风 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期557-562,共6页
Solid-state cooling technologies have been considered as potential alternatives for vapor compression cooling systems.The search for refrigeration materials displaying a unique combination of pronounced caloric effect... Solid-state cooling technologies have been considered as potential alternatives for vapor compression cooling systems.The search for refrigeration materials displaying a unique combination of pronounced caloric effect,low hysteresis,and high reversibility on phase transformation was very active in recent years.Here,we achieved increase in the elastocaloric reversibility and decrease in the friction dissipation of martensite transformations in the superelastic nano-grained NiTi alloys obtained by cold rolling and annealing treatment,with very low stress hysteresis(6.3 MPa)under a large applied strain(5%).Large adiabatic temperature changes(△T_(max)=16.3 K atε=5%)and moderate COP_(mater)values(maximum COP_(mater)=11.8 atε=2%)were achieved.The present nano-grained NiTi alloys exhibited great potential for applications as a highly efficient elastocaloric material. 展开更多
关键词 elastocaloric effect stress hysteresis SUPERELASTICITY NiTi alloy
下载PDF
Recovery Stress in a Ni-Ti-Nb Shape Memory Alloy with Wide Transformation Hysteresis 被引量:4
2
作者 Wei CAI Chunsheng ZHANG and Liancheng ZHAO(Harbin Institute of Technology, Harbin, 150006, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1994年第1期27-30,共4页
The effect of deformation on recovery stress of Ni144.7Ti46.3Nb9 alloy has been studjed using tensile test at various temperatures and TEM observation. It ls shown that the recovery stress increases with jncreasing to... The effect of deformation on recovery stress of Ni144.7Ti46.3Nb9 alloy has been studjed using tensile test at various temperatures and TEM observation. It ls shown that the recovery stress increases with jncreasing total strain ET and reaches a maximum value (max) as ET= 9% but the maximum recov erV strain of the alloy is only about 4.6%. This is different from that of Ti-Ni binary alloy in which is obtained usually at maximum recovery strain and the reason of the difference is dis Cussed. Deformation temperature Td has a little effect on recovery stress when Td is less than Ms However, recovery stress decreases sharply when Td is higher than M, and lowers approximately down to zero near Msσ 展开更多
关键词 TI WIDE Recovery stress in a Ni-Ti-Nb Shape Memory Alloy with Wide Transformation hysteresis HL Ni
下载PDF
Correlation between the Cyclic Stress Behavior and Microstructure in 316LN based on the Analysis of Hysteresis Loops
3
作者 常波 张峥 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第4期780-785,共6页
Total strain controlled cyclic test was performed on 316 LN under uniaxial loadings. Through the partitioning of hysteresis loops, the evolution of two components of cyclic flow stress, the internal and effective stre... Total strain controlled cyclic test was performed on 316 LN under uniaxial loadings. Through the partitioning of hysteresis loops, the evolution of two components of cyclic flow stress, the internal and effective stresses, was reported. The former one determines the cyclic stress response. Based on the transmission electron microscopic(TEM) observation on specimens loaded with scheduled cycles, it is found that planar dislocation structures prevail during the entire cyclic process at low strain amplitude, while a remarkable dislocation rearrangement from planar structures to heterogeneous spatial distributions is companied by a cyclic softening behavior at high strain amplitude. The competition between the evolution of the intergranular and the intragranular components of the internal stress caused by the transition of slip mode induces the cyclic hardening and softening at high strain levels. The intergranular internal stress represents the most part of the internal stress at low strain level. 展开更多
关键词 cyclic stress behavior partitioning of hysteresis loops microstructure dislocation rearrangement internal stress
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部