Post-silking high temperature is one of the abiotic factors that affects waxy maize(Zea mays L. sinensis Kulesh) growth in southern China. We conducted a pot trial in 2016–2017 to study the effects of post-silking da...Post-silking high temperature is one of the abiotic factors that affects waxy maize(Zea mays L. sinensis Kulesh) growth in southern China. We conducted a pot trial in 2016–2017 to study the effects of post-silking daytime heat stress(35°C) on the activities of enzymes involved in leaf carbon and nitrogen metabolisms and leaf reactive oxygen species(ROS) and water contents. This study could improve our understanding on dry matter accumulation and translocation and grain yield production. Results indicated that decreased grain number and weight under heat stress led to yield loss, which decreased by 20.8 and 20.0% in 2016 and 2017, respectively. High temperature reduced post-silking dry matter accumulation(16.1 and 29.5% in 2016 and 2017, respectively) and promoted translocation of pre-silking photoassimilates stored in vegetative organs, especially in leaf. The lower leaf water content and chlorophyll SPAD value, and higher ROS(H2O2 and O2^-·) content under heat stress conditions indicated accelerated senescent rate. The weak activities of phosphoenolpyruvate carboxylase(PEPCase), Ribulose-1,5-bisphosphate carboxylase(Ru BPCase), nitrate reductase(NR), and glutamine synthase(GS) indicated that leaf carbon and nitrogen metabolisms were suppressed when the plants suffered from a high temperature during grain filling. Correlation analysis results indicated that the reduced grain yield was mainly caused by the decreased leaf water content, weakened NR activity, and increased H2O2 content. The increased accumulation of grain weight and post-silking dry matter and the reduced translocation amount in leaf was mainly due to the increased chlorophyll SPAD value and NR activity. Reduced PEPCase and Ru BPCase activities did not affect dry matter accumulation and translocation and grain yield. In conclusion, post-silking heat stress down-regulated the leaf NR and GS activities, increased the leafwater loss rate, increased ROS generation, and induced pre-silking carbohydrate translocation. However, it reduced the post-silking direct photoassimilate deposition, ultimately, leading to grain yield loss.展开更多
Climate change is recognized to increase the frequency and severity of extreme temperature events. At flowering and grain filling stages, risk of high temperature stress (HTS) on rice might increase, and lead to dec...Climate change is recognized to increase the frequency and severity of extreme temperature events. At flowering and grain filling stages, risk of high temperature stress (HTS) on rice might increase, and lead to declining grain yields. A regulated cabinet experiment was carried out to investigate effects of high temperature stress on rice growth at flowering and grain- filling stages. Results showed that no obvious decrease pattern in net photosynthesis appeared along with the temperature rising, but the dry matter allocation in leaf, leaf sheath, culm, and panicle all changed. Dry weight of panicle decreased, and ratio of straw to total above ground crop dry weight increased 6-34% from CK, which might have great effects on carbon cycling and green house gas emission. Grain yield decreased significantly across all treatments on average from 15 to 73%. Occurrence of HTS at flowering stage showed more serious influence on grain yield than at grain filling stage. High temperature stress showed negative effects on harvest index. It might be helpful to provide valuable information for crop simulation models to capture the effects of high temperature stress on rice, and evaluate the high temperature risk.展开更多
The aim was to study the effects of organic management like the application of organic matters on crop production. This research is placed in the context of climate change impact mitigation. A field experiment was con...The aim was to study the effects of organic management like the application of organic matters on crop production. This research is placed in the context of climate change impact mitigation. A field experiment was conducted during the dry season. Rainfall inputs were simulated by irrigation to study the effects of water stress during the flowering period of a grain on the agronomic and the physiological behavior of the plant. The measurements were made on the volumetric soil moisture, stomatal conductance, and leaf area index (LAI), grain yield, straw and weight of 100 grains. The water use efficiency (WUE) and yield losses were evaluated. The results of the volumetric soil moisture showed that the use of localized input under water stress (STR-T1) recorded the lowest moisture in the surface horizons. Treatment with localized input under water stress with or without fertilization (STR-T1, STR-T1 + N) showed an ability of stomatal regulation compared to the control (STR- T0) and the input application by spreading (STR- T2). (STR-T1 + N) has initiated an early stomatal closure of the plant because of the effect of nitrogen. However, despite a more pronounced water stress with stomatal closure, the LAI and the grain yield were greater with (STR-T1) and (STR-T1 + N). The results showed that the inputs of localized organic fertilization with or without nitrogen grain yields were the highest regardless of the hydric regime applied. However the losses of grain yield were higher in treatments with organic inputs in spreading and localized under water stress. The WUE by the crop was reduced compared to the control with organic inputs under STR. In this study we show that the use of organic matter increases de farmers risk and this notion of risk is high and it is necessary to consider this risk in the proposals of technical innovations.展开更多
Objective To evaluate the antagonistic effects of N-acetylcysteine(NAC)on mitogen-activated protein kinases(MAPK)pathway activation,oxidative stress and inflammatory responses in rats with lung injury induced by fine ...Objective To evaluate the antagonistic effects of N-acetylcysteine(NAC)on mitogen-activated protein kinases(MAPK)pathway activation,oxidative stress and inflammatory responses in rats with lung injury induced by fine particulate matter(PM2.5).Methods Forty eight male Wistar rats were randomly divided into six groups:blank control group(C1),water drip control group(C2),PM2.5 exposed group(P),low-dose NAC treated and PM2.5 exposed group(L),middle-dose NAC treated and PM2.5 exposed group(M),and high-dose NAC treated and PM2.5 exposed group(H).PM2.5 suspension(7.5 mg/kg)was administered tracheally once a week for four times.NAC of 125 mg/kg,250 mg/kg and 500 mg/kg was delivered intragastrically to L,M and H group respectively by gavage(10 ml/kg)for six days before PM2.5 exposure.The histopathological changes and human mucin 5 subtype AC(MUC5AC)content in lung tissue of rats were evaluated.We investigated IL-6 in serum and bronchoalveolar lavage fluid(BALF)by Enzyme-linked immunosorbent assay(ELISA),MUC5AC in lung tissue homogenate by ELISA,glutathione peroxidase(GSH-PX)in serum and BALF by spectrophotometry,and the expression of p-ERK1/2,p-JNK1/2 and p-p38 proteins by Western blot.All the measurements were analyzed and compared statistically.Results Lung tissue of rats exposed to PM2.5 showed histological destruction and increased mucus secretion of bronchial epithelial cells.Rats receiving NAC treatment showed less histological destruction and mucus secretion.Of P,L,M and H group,MUC5AC in lung tissue,IL-6 in serum and BALF were higher than controls(C1 and C2)(all P<0.05),with the highest levels found in the P group and a decreasing trend with increase of NAC dose.The activity of GSH-PX in serum and BALF of PM2.5 exposed rats(P,L,M and H)was lower than that of controls(all P<0.05),with higher activities found in NAC treated rats(L,M,and H),and an increasing trend with increase of NAC dose.The expressions of p-ERK1/2,p-JNK1/2 and p-p38 proteins in PM2.5 exposed lung tissue(P,L,M and H)was higher than controls(all P<0.05),with decreased levels and dose dependent downregulation found in NAC treated rats.Conclusion NAC can antagonize major MAPK pathway activation,lung oxidative stress and inflammatory injury induced by PM2.5 in rats.展开更多
Static granular materials may avalanche suddenly under continuous quasi-static drives. This phenomenon, which is important in many engineering applications, can be explained by analyzing the stability of the elastic s...Static granular materials may avalanche suddenly under continuous quasi-static drives. This phenomenon, which is important in many engineering applications, can be explained by analyzing the stability of the elastic solutions. We show this for a granular layer driven by its inclination angle in gravity, where the elastic problem can be solved generally and analytically. It is found that a loss of stability may occur only at the free surface of the layer. This result is considered to be relevant for understanding surface avalanches and the flows observed experimentally.展开更多
基金supported by the National Key Research and Development Program of China (2016YFD0300109 and 2018YFD0200703)the National Natural Science Foundation of China (31771709 and 31471436)the Priority Academic Program Development of Jiangsu Higher Education Institutions, China
文摘Post-silking high temperature is one of the abiotic factors that affects waxy maize(Zea mays L. sinensis Kulesh) growth in southern China. We conducted a pot trial in 2016–2017 to study the effects of post-silking daytime heat stress(35°C) on the activities of enzymes involved in leaf carbon and nitrogen metabolisms and leaf reactive oxygen species(ROS) and water contents. This study could improve our understanding on dry matter accumulation and translocation and grain yield production. Results indicated that decreased grain number and weight under heat stress led to yield loss, which decreased by 20.8 and 20.0% in 2016 and 2017, respectively. High temperature reduced post-silking dry matter accumulation(16.1 and 29.5% in 2016 and 2017, respectively) and promoted translocation of pre-silking photoassimilates stored in vegetative organs, especially in leaf. The lower leaf water content and chlorophyll SPAD value, and higher ROS(H2O2 and O2^-·) content under heat stress conditions indicated accelerated senescent rate. The weak activities of phosphoenolpyruvate carboxylase(PEPCase), Ribulose-1,5-bisphosphate carboxylase(Ru BPCase), nitrate reductase(NR), and glutamine synthase(GS) indicated that leaf carbon and nitrogen metabolisms were suppressed when the plants suffered from a high temperature during grain filling. Correlation analysis results indicated that the reduced grain yield was mainly caused by the decreased leaf water content, weakened NR activity, and increased H2O2 content. The increased accumulation of grain weight and post-silking dry matter and the reduced translocation amount in leaf was mainly due to the increased chlorophyll SPAD value and NR activity. Reduced PEPCase and Ru BPCase activities did not affect dry matter accumulation and translocation and grain yield. In conclusion, post-silking heat stress down-regulated the leaf NR and GS activities, increased the leafwater loss rate, increased ROS generation, and induced pre-silking carbohydrate translocation. However, it reduced the post-silking direct photoassimilate deposition, ultimately, leading to grain yield loss.
基金supported by the National Basic Research Program of China (2010CB951302-2)the National Natural Science Foundation of China (51109214 and 31101074)
文摘Climate change is recognized to increase the frequency and severity of extreme temperature events. At flowering and grain filling stages, risk of high temperature stress (HTS) on rice might increase, and lead to declining grain yields. A regulated cabinet experiment was carried out to investigate effects of high temperature stress on rice growth at flowering and grain- filling stages. Results showed that no obvious decrease pattern in net photosynthesis appeared along with the temperature rising, but the dry matter allocation in leaf, leaf sheath, culm, and panicle all changed. Dry weight of panicle decreased, and ratio of straw to total above ground crop dry weight increased 6-34% from CK, which might have great effects on carbon cycling and green house gas emission. Grain yield decreased significantly across all treatments on average from 15 to 73%. Occurrence of HTS at flowering stage showed more serious influence on grain yield than at grain filling stage. High temperature stress showed negative effects on harvest index. It might be helpful to provide valuable information for crop simulation models to capture the effects of high temperature stress on rice, and evaluate the high temperature risk.
文摘The aim was to study the effects of organic management like the application of organic matters on crop production. This research is placed in the context of climate change impact mitigation. A field experiment was conducted during the dry season. Rainfall inputs were simulated by irrigation to study the effects of water stress during the flowering period of a grain on the agronomic and the physiological behavior of the plant. The measurements were made on the volumetric soil moisture, stomatal conductance, and leaf area index (LAI), grain yield, straw and weight of 100 grains. The water use efficiency (WUE) and yield losses were evaluated. The results of the volumetric soil moisture showed that the use of localized input under water stress (STR-T1) recorded the lowest moisture in the surface horizons. Treatment with localized input under water stress with or without fertilization (STR-T1, STR-T1 + N) showed an ability of stomatal regulation compared to the control (STR- T0) and the input application by spreading (STR- T2). (STR-T1 + N) has initiated an early stomatal closure of the plant because of the effect of nitrogen. However, despite a more pronounced water stress with stomatal closure, the LAI and the grain yield were greater with (STR-T1) and (STR-T1 + N). The results showed that the inputs of localized organic fertilization with or without nitrogen grain yields were the highest regardless of the hydric regime applied. However the losses of grain yield were higher in treatments with organic inputs in spreading and localized under water stress. The WUE by the crop was reduced compared to the control with organic inputs under STR. In this study we show that the use of organic matter increases de farmers risk and this notion of risk is high and it is necessary to consider this risk in the proposals of technical innovations.
文摘Objective To evaluate the antagonistic effects of N-acetylcysteine(NAC)on mitogen-activated protein kinases(MAPK)pathway activation,oxidative stress and inflammatory responses in rats with lung injury induced by fine particulate matter(PM2.5).Methods Forty eight male Wistar rats were randomly divided into six groups:blank control group(C1),water drip control group(C2),PM2.5 exposed group(P),low-dose NAC treated and PM2.5 exposed group(L),middle-dose NAC treated and PM2.5 exposed group(M),and high-dose NAC treated and PM2.5 exposed group(H).PM2.5 suspension(7.5 mg/kg)was administered tracheally once a week for four times.NAC of 125 mg/kg,250 mg/kg and 500 mg/kg was delivered intragastrically to L,M and H group respectively by gavage(10 ml/kg)for six days before PM2.5 exposure.The histopathological changes and human mucin 5 subtype AC(MUC5AC)content in lung tissue of rats were evaluated.We investigated IL-6 in serum and bronchoalveolar lavage fluid(BALF)by Enzyme-linked immunosorbent assay(ELISA),MUC5AC in lung tissue homogenate by ELISA,glutathione peroxidase(GSH-PX)in serum and BALF by spectrophotometry,and the expression of p-ERK1/2,p-JNK1/2 and p-p38 proteins by Western blot.All the measurements were analyzed and compared statistically.Results Lung tissue of rats exposed to PM2.5 showed histological destruction and increased mucus secretion of bronchial epithelial cells.Rats receiving NAC treatment showed less histological destruction and mucus secretion.Of P,L,M and H group,MUC5AC in lung tissue,IL-6 in serum and BALF were higher than controls(C1 and C2)(all P<0.05),with the highest levels found in the P group and a decreasing trend with increase of NAC dose.The activity of GSH-PX in serum and BALF of PM2.5 exposed rats(P,L,M and H)was lower than that of controls(all P<0.05),with higher activities found in NAC treated rats(L,M,and H),and an increasing trend with increase of NAC dose.The expressions of p-ERK1/2,p-JNK1/2 and p-p38 proteins in PM2.5 exposed lung tissue(P,L,M and H)was higher than controls(all P<0.05),with decreased levels and dose dependent downregulation found in NAC treated rats.Conclusion NAC can antagonize major MAPK pathway activation,lung oxidative stress and inflammatory injury induced by PM2.5 in rats.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10904175)
文摘Static granular materials may avalanche suddenly under continuous quasi-static drives. This phenomenon, which is important in many engineering applications, can be explained by analyzing the stability of the elastic solutions. We show this for a granular layer driven by its inclination angle in gravity, where the elastic problem can be solved generally and analytically. It is found that a loss of stability may occur only at the free surface of the layer. This result is considered to be relevant for understanding surface avalanches and the flows observed experimentally.