In practical engineering,sometimes the probability density functions( PDFs) of stress and strength can not be exactly determined,or only limited experiment data are available. In these cases,the traditional stress-str...In practical engineering,sometimes the probability density functions( PDFs) of stress and strength can not be exactly determined,or only limited experiment data are available. In these cases,the traditional stress-strength interference( SSI) model based on classical probabilistic approach can not be used to evaluate reliabilities of components. To solve this issue, the traditional universal generating function( UGF) is introduced and then it is extended to represent the discrete interval-valued random variable.Based on the extended UGF,an improved discrete interval-valued SSI model is proposed, which has higher calculation precision compared with the existing methods. Finally,an illustrative case is given to demonstrate the validity of the proposed model.展开更多
Stress-strength model is a basic and important tool for reliability analysis.There are few methods to assess the confidence limit of interference reliability when the distribution parameters of stress and strength are...Stress-strength model is a basic and important tool for reliability analysis.There are few methods to assess the confidence limit of interference reliability when the distribution parameters of stress and strength are all unknown.A new assessment method of interference reliability is proposed and the estimates of the distribution parameters are accordingly given.The lower confidence limit of interference reliability with given confidence can be obtained with the method even though the parameters are all unknown.Simulation studies and an engineering application are conducted to validate the method,which suggest that the method provides precise estimates even for sample size of approximately.展开更多
A method for estimating the component reliability is proposed when the probability density functions of stress and strength can not be exactly determined. For two groups of finite experimental data about the stress an...A method for estimating the component reliability is proposed when the probability density functions of stress and strength can not be exactly determined. For two groups of finite experimental data about the stress and strength, an interval statistics method is introduced. The processed results are formulated as two interval-valued random variables and are graphically represented component reliability are proposed based on the by using two histograms. The lower and upper bounds of universal generating function method and are calculated by solving two discrete stress-strength interference models. The graphical calculations of the proposed reliability bounds are presented through a numerical example and the confidence of the proposed reliability bounds is discussed to demonstrate the validity of the proposed method. It is showed that the proposed reliability bounds can undoubtedly bracket the real reliability value. The proposed method extends the exciting universal generating function method and can give an interval estimation of component reliability in the case of lake of sufficient experimental data. An application example is given to illustrate the proposed method展开更多
A stress-strength structural reliability model was proposed with a stochastic strength aging deterioration process. In structural engineering,the deterioration of structure's strength should be the total of the de...A stress-strength structural reliability model was proposed with a stochastic strength aging deterioration process. In structural engineering,the deterioration of structure's strength should be the total of the deterioration owing to continual wear, fatigue,corrosion,etc.,and the abrupt deterioration as a result of randomly variable loads. The deterioration of structure's strength should be influenced by both the internal deterioration owing to direct wear and the external deterioration due to randomly variable loads.Meanwhile,the load process was given as Poisson square wave process. The reliability was derived using stress-strength interference theory. In particular,the reliability was also given when random variables followed the normal distribution.展开更多
Many mechanical systems have the characteristics of multiple failure modes and complex failure mech- anisms. On the basis of stress-strength interference (SSI) model, this paper takes the mechanical system with comm...Many mechanical systems have the characteristics of multiple failure modes and complex failure mech- anisms. On the basis of stress-strength interference (SSI) model, this paper takes the mechanical system with common cause failure (CCF) as the research object. The relationship between the stress distribution and the strength distribution is studied, and the failures of components are independent of each other under the determin- istic stress. Then, the concept of conditional reliability is introduced to build the system reliability models under the action of one-stress and multi-stress for both series and parallel systems. Finally, the corresponding properties of the DrODosed methods are discussed to show their advantages.展开更多
in reliability design of fatigue under random loading, the influence of loading se-quence must be considered. In order to avoid the uneertain hypothesis in the Miner's rule, ie. thatthe sum of damage equals one re...in reliability design of fatigue under random loading, the influence of loading se-quence must be considered. In order to avoid the uneertain hypothesis in the Miner's rule, ie. thatthe sum of damage equals one represents failure, this paper proposes the probabilistic relativeMine's rule. This paper also presents a new method for calculating reliability, ie. the syntheticmethod of Miner's rule and interference model. This model considers not only the influence ofstress concentration, dimension and surface, but also the influence of stress amplitude and se-quence.展开更多
基金National Natural Science Foundation of China(No.51265025)
文摘In practical engineering,sometimes the probability density functions( PDFs) of stress and strength can not be exactly determined,or only limited experiment data are available. In these cases,the traditional stress-strength interference( SSI) model based on classical probabilistic approach can not be used to evaluate reliabilities of components. To solve this issue, the traditional universal generating function( UGF) is introduced and then it is extended to represent the discrete interval-valued random variable.Based on the extended UGF,an improved discrete interval-valued SSI model is proposed, which has higher calculation precision compared with the existing methods. Finally,an illustrative case is given to demonstrate the validity of the proposed model.
文摘Stress-strength model is a basic and important tool for reliability analysis.There are few methods to assess the confidence limit of interference reliability when the distribution parameters of stress and strength are all unknown.A new assessment method of interference reliability is proposed and the estimates of the distribution parameters are accordingly given.The lower confidence limit of interference reliability with given confidence can be obtained with the method even though the parameters are all unknown.Simulation studies and an engineering application are conducted to validate the method,which suggest that the method provides precise estimates even for sample size of approximately.
基金supported by the Foundation of Hunan Provincial Natural Science of China(13JJ6095,2015JJ2015)the Key Project of Science and Technology Program of Changsha,China(ZD1601010)
文摘A method for estimating the component reliability is proposed when the probability density functions of stress and strength can not be exactly determined. For two groups of finite experimental data about the stress and strength, an interval statistics method is introduced. The processed results are formulated as two interval-valued random variables and are graphically represented component reliability are proposed based on the by using two histograms. The lower and upper bounds of universal generating function method and are calculated by solving two discrete stress-strength interference models. The graphical calculations of the proposed reliability bounds are presented through a numerical example and the confidence of the proposed reliability bounds is discussed to demonstrate the validity of the proposed method. It is showed that the proposed reliability bounds can undoubtedly bracket the real reliability value. The proposed method extends the exciting universal generating function method and can give an interval estimation of component reliability in the case of lake of sufficient experimental data. An application example is given to illustrate the proposed method
基金Natural Science Foundation Project of Fujian Province,China(No.2013J01004)
文摘A stress-strength structural reliability model was proposed with a stochastic strength aging deterioration process. In structural engineering,the deterioration of structure's strength should be the total of the deterioration owing to continual wear, fatigue,corrosion,etc.,and the abrupt deterioration as a result of randomly variable loads. The deterioration of structure's strength should be influenced by both the internal deterioration owing to direct wear and the external deterioration due to randomly variable loads.Meanwhile,the load process was given as Poisson square wave process. The reliability was derived using stress-strength interference theory. In particular,the reliability was also given when random variables followed the normal distribution.
基金the National Natural Science Foundation of China(Nos.71771186 and 71471147)the 111 Project(No.B13044)the Basic Research Foundation of Northwestern Polytechnical University(No.3102014JCS05013)
文摘Many mechanical systems have the characteristics of multiple failure modes and complex failure mech- anisms. On the basis of stress-strength interference (SSI) model, this paper takes the mechanical system with common cause failure (CCF) as the research object. The relationship between the stress distribution and the strength distribution is studied, and the failures of components are independent of each other under the determin- istic stress. Then, the concept of conditional reliability is introduced to build the system reliability models under the action of one-stress and multi-stress for both series and parallel systems. Finally, the corresponding properties of the DrODosed methods are discussed to show their advantages.
文摘in reliability design of fatigue under random loading, the influence of loading se-quence must be considered. In order to avoid the uneertain hypothesis in the Miner's rule, ie. thatthe sum of damage equals one represents failure, this paper proposes the probabilistic relativeMine's rule. This paper also presents a new method for calculating reliability, ie. the syntheticmethod of Miner's rule and interference model. This model considers not only the influence ofstress concentration, dimension and surface, but also the influence of stress amplitude and se-quence.