针对计算字符串相似度的RKR-GST算法,分析了与该算法相关的技术并给出算法的流程图,然后在Visual Studio 2008中对该算法进行了实现,详细描述了实现过程中涉及的类与数据结构图,最后对算法的复杂度及算法运行过程中一些参数的选取进行...针对计算字符串相似度的RKR-GST算法,分析了与该算法相关的技术并给出算法的流程图,然后在Visual Studio 2008中对该算法进行了实现,详细描述了实现过程中涉及的类与数据结构图,最后对算法的复杂度及算法运行过程中一些参数的选取进行了讨论。RKR-GST算法在剽窃检测、DNA序列匹配等领域具有广阔的应用前景,该算法在.NET中的实现具有良好的可移植性与可扩展性,可以在多个应用领域中推广使用。展开更多
We consider a generalization of the Radon-Schmid transform on coherent D-modules of sheaves of holomorphic complex bundles inside a moduli space, with the purpose of establishing the equivalences among geometric objec...We consider a generalization of the Radon-Schmid transform on coherent D-modules of sheaves of holomorphic complex bundles inside a moduli space, with the purpose of establishing the equivalences among geometric objects (vector bundles) and algebraic objects as they are the coherent D-modules, these last with the goal of obtaining conformal classes of connections of the holomorphic complex bundles. The class of these equivalences conforms a moduli space on coherent sheaves that define solutions in field theory. Also by this way, and using one generalization of the Penrose transform in the context of coherent D-modules we find conformal classes of the space-time that include the heterotic strings and branes geometry.展开更多
文摘针对计算字符串相似度的RKR-GST算法,分析了与该算法相关的技术并给出算法的流程图,然后在Visual Studio 2008中对该算法进行了实现,详细描述了实现过程中涉及的类与数据结构图,最后对算法的复杂度及算法运行过程中一些参数的选取进行了讨论。RKR-GST算法在剽窃检测、DNA序列匹配等领域具有广阔的应用前景,该算法在.NET中的实现具有良好的可移植性与可扩展性,可以在多个应用领域中推广使用。
文摘We consider a generalization of the Radon-Schmid transform on coherent D-modules of sheaves of holomorphic complex bundles inside a moduli space, with the purpose of establishing the equivalences among geometric objects (vector bundles) and algebraic objects as they are the coherent D-modules, these last with the goal of obtaining conformal classes of connections of the holomorphic complex bundles. The class of these equivalences conforms a moduli space on coherent sheaves that define solutions in field theory. Also by this way, and using one generalization of the Penrose transform in the context of coherent D-modules we find conformal classes of the space-time that include the heterotic strings and branes geometry.