In this paper,the nonlinear dynamic behavior of a string-beam coupled system subjected to external,parametric and tuned excitations is presented.The governing equations of motion are obtained for the nonlinear transve...In this paper,the nonlinear dynamic behavior of a string-beam coupled system subjected to external,parametric and tuned excitations is presented.The governing equations of motion are obtained for the nonlinear transverse vibrations of the string-beam coupled system which are described by a set of ordinary differential equations with two degrees of freedom.The case of 1:1 internal resonance between the modes of the beam and string,and the primary and combined resonance for the beam is considered.The method of multiple scales is utilized to analyze the nonlinear responses of the string-beam coupled system and obtain approximate solutions up to and including the second-order approximations.All resonance cases are extracted and investigated.Stability of the system is studied using frequency response equations and the phase-plane method.Numerical solutions are carried out and the results are presented graphically and discussed.The effects of the different parameters on both response and stability of the system are investigated.The reported results are compared to the available published work.展开更多
We find an azimuthal-angle dependent approximate wave like solution to second order on a warped five-dimensional manifold with a self-gravitating U(1) scalar gauge field (cosmic string) on the brane using the multiple...We find an azimuthal-angle dependent approximate wave like solution to second order on a warped five-dimensional manifold with a self-gravitating U(1) scalar gauge field (cosmic string) on the brane using the multiple-scale method. The spectrum of the several orders of approximation show maxima of the energy distribution dependent on the azimuthal-angle and the winding numbers n of the subsequent orders of scalar field. This breakup of the quantized flux quanta does not lead to instability of the asymptotic wavelike solution, due to the suppression of the n-dependency in the energy mo-mentum tensor components by the warp factor. This effect is triggered by the contribution of the five dimensional Weyl tensor on the brane. This con-tribution can be understood as dark energy and can trigger the self-acceleration of the universe without the need of a cosmological constant. There is a striking relation between the symmetry breaking of the Higgs field described by the winding number and the SO(2) breaking of the axially symmetric configuration into a discrete subgroup of rotations about 180°. The discrete sequence of non-axially symmetric deviations, cancelled by the emission of gravitational waves in order to restore the SO(2) symmetry, triggers the pressure Tzz for discrete values of the azimuthal-angle. There can be a possible relation between the recently discovered angle-preferences of polarization axes of quasars on large scales and our theoretical predicted angle-dependency and can be an evidence for the existence of cosmic strings. The discovery of the increase of polarization rate in smaller subgroups of the several large-quasar groups (LQGs), the red shift dependency and the relative orientation of the spin axes with respect to the major axes of their host LQGs, point at a fractional azimuthal structure, were also found in our cosmic string model. This peculiar discontinuous large scale structure, i.e., polarizations directions of multiples of, for example, π/2 orπ/4, can be explained by the spectrum of azimuthal-angle dependent wavelike modes without the need of conventional density perturbations in standard 4D cosmological models. Carefully com-parison of the spectrum of extremal values of the first and second order φ-dependency and the distribution of the alignment of the quasar polarizations is necessary. This can be accomplished when more observational data become available.展开更多
The recently discovered alignment of quasar polarizations on very large scales could possibly be explained by considering cosmic strings on a warped five dimensional spacetime. Compact objects, such as cosmic strings,...The recently discovered alignment of quasar polarizations on very large scales could possibly be explained by considering cosmic strings on a warped five dimensional spacetime. Compact objects, such as cosmic strings, could have tremendous mass in the bulk, while their warped manifestations in the brane can be consistent with general relativity in 4D. The self-gravitating cosmic string induces gravitational wavelike disturbances which could have effects felt on the brane, i.e., the massive effective 4D modes (Kaluza-Klein modes) of the perturbative 5D graviton. This effect is amplified by the time dependent part of the warp factor. Due to this warp factor, disturbances don’t fade away during the expansion of the universe. From a nonlinear perturbation analysis it is found that the effective Einstein 4D equations on an axially symmetric spacetime, contain a “back-reaction” term on the righthand side caused by the projected 5D Weyl tensor and can act as a dark energy term. The propagation equations to first order for the metric components and scalar-gauge fields contain -dependent terms, so the approximate wave solutions are no longer axially symmetric. The disturbances, amplified by the warp factor, can possess extremal values for fixed polar angles. This could explain the two preferred polarization vectors mod .展开更多
文摘In this paper,the nonlinear dynamic behavior of a string-beam coupled system subjected to external,parametric and tuned excitations is presented.The governing equations of motion are obtained for the nonlinear transverse vibrations of the string-beam coupled system which are described by a set of ordinary differential equations with two degrees of freedom.The case of 1:1 internal resonance between the modes of the beam and string,and the primary and combined resonance for the beam is considered.The method of multiple scales is utilized to analyze the nonlinear responses of the string-beam coupled system and obtain approximate solutions up to and including the second-order approximations.All resonance cases are extracted and investigated.Stability of the system is studied using frequency response equations and the phase-plane method.Numerical solutions are carried out and the results are presented graphically and discussed.The effects of the different parameters on both response and stability of the system are investigated.The reported results are compared to the available published work.
文摘We find an azimuthal-angle dependent approximate wave like solution to second order on a warped five-dimensional manifold with a self-gravitating U(1) scalar gauge field (cosmic string) on the brane using the multiple-scale method. The spectrum of the several orders of approximation show maxima of the energy distribution dependent on the azimuthal-angle and the winding numbers n of the subsequent orders of scalar field. This breakup of the quantized flux quanta does not lead to instability of the asymptotic wavelike solution, due to the suppression of the n-dependency in the energy mo-mentum tensor components by the warp factor. This effect is triggered by the contribution of the five dimensional Weyl tensor on the brane. This con-tribution can be understood as dark energy and can trigger the self-acceleration of the universe without the need of a cosmological constant. There is a striking relation between the symmetry breaking of the Higgs field described by the winding number and the SO(2) breaking of the axially symmetric configuration into a discrete subgroup of rotations about 180°. The discrete sequence of non-axially symmetric deviations, cancelled by the emission of gravitational waves in order to restore the SO(2) symmetry, triggers the pressure Tzz for discrete values of the azimuthal-angle. There can be a possible relation between the recently discovered angle-preferences of polarization axes of quasars on large scales and our theoretical predicted angle-dependency and can be an evidence for the existence of cosmic strings. The discovery of the increase of polarization rate in smaller subgroups of the several large-quasar groups (LQGs), the red shift dependency and the relative orientation of the spin axes with respect to the major axes of their host LQGs, point at a fractional azimuthal structure, were also found in our cosmic string model. This peculiar discontinuous large scale structure, i.e., polarizations directions of multiples of, for example, π/2 orπ/4, can be explained by the spectrum of azimuthal-angle dependent wavelike modes without the need of conventional density perturbations in standard 4D cosmological models. Carefully com-parison of the spectrum of extremal values of the first and second order φ-dependency and the distribution of the alignment of the quasar polarizations is necessary. This can be accomplished when more observational data become available.
文摘The recently discovered alignment of quasar polarizations on very large scales could possibly be explained by considering cosmic strings on a warped five dimensional spacetime. Compact objects, such as cosmic strings, could have tremendous mass in the bulk, while their warped manifestations in the brane can be consistent with general relativity in 4D. The self-gravitating cosmic string induces gravitational wavelike disturbances which could have effects felt on the brane, i.e., the massive effective 4D modes (Kaluza-Klein modes) of the perturbative 5D graviton. This effect is amplified by the time dependent part of the warp factor. Due to this warp factor, disturbances don’t fade away during the expansion of the universe. From a nonlinear perturbation analysis it is found that the effective Einstein 4D equations on an axially symmetric spacetime, contain a “back-reaction” term on the righthand side caused by the projected 5D Weyl tensor and can act as a dark energy term. The propagation equations to first order for the metric components and scalar-gauge fields contain -dependent terms, so the approximate wave solutions are no longer axially symmetric. The disturbances, amplified by the warp factor, can possess extremal values for fixed polar angles. This could explain the two preferred polarization vectors mod .