Moving-target-defense(MTD)fundamentally avoids an illegal initial compromise by asymmetrically increasing the uncertainty as the attack surface of the observable defender changes depending on spatial-temporal mutation...Moving-target-defense(MTD)fundamentally avoids an illegal initial compromise by asymmetrically increasing the uncertainty as the attack surface of the observable defender changes depending on spatial-temporal mutations.However,the existing naive MTD studies were conducted focusing only on wired network mutations.And these cases have also been no formal research on wireless aircraft domains with attributes that are extremely unfavorable to embedded system operations,such as hostility,mobility,and dependency.Therefore,to solve these conceptual limitations,this study proposes normalized drone-type MTD that maximizes defender superiority by mutating the unique fingerprints of wireless drones and that optimizes the period-based mutation principle to adaptively secure the sustainability of drone operations.In addition,this study also specifies MF2-DMTD(model-checkingbased formal framework for drone-type MTD),a formal framework that adopts model-checking and zero-sum game,for attack-defense simulation and performance evaluation of drone-type MTD.Subsequently,by applying the proposed models,the optimization of deceptive defense performance of drone-type MTD for each mutation period also additionally achieves through mixed-integer quadratic constrained programming(MIQCP)and multiobjective optimization-based Pareto frontier.As a result,the optimal mutation cycles in drone-type MTD were derived as(65,120,85)for each control-mobility,telecommunication,and payload component configured inside the drone.And the optimal MTD cycles for each swarming cluster,ground control station(GCS),and zone service provider(ZSP)deployed outside the drone were also additionally calculated as(70,60,85),respectively.To the best of these authors’knowledge,this study is the first to calculate the deceptive efficiency and functional continuity of the MTD against drones and to normalize the trade-off according to a sensitivity analysis with the optimum.展开更多
This work is about the progress of previous related work based on an experiment to improve the intelligence of robotic systems,with the aim of achieving more linguistic communication capabilities between humans and ro...This work is about the progress of previous related work based on an experiment to improve the intelligence of robotic systems,with the aim of achieving more linguistic communication capabilities between humans and robots.In this paper,the authors attempt an algorithmic approach to natural language generation through hole semantics and by applying the OMAS-III computational model as a grammatical formalism.In the original work,a technical language is used,while in the later works,this has been replaced by a limited Greek natural language dictionary.This particular effort was made to give the evolving system the ability to ask questions,as well as the authors developed an initial dialogue system using these techniques.The results show that the use of these techniques the authors apply can give us a more sophisticated dialogue system in the future.展开更多
为了使“区间”形式加以表述的不确定信息的提取具有侧重性,需提取出对象(属性)集对应的属性(对象)区间集。本文在模糊形式背景中,通过引入2个阈值,将单边区间集与经典半概念结合,提取出属性(对象)集对应的对象(属性)区间集,从而提出区...为了使“区间”形式加以表述的不确定信息的提取具有侧重性,需提取出对象(属性)集对应的属性(对象)区间集。本文在模糊形式背景中,通过引入2个阈值,将单边区间集与经典半概念结合,提取出属性(对象)集对应的对象(属性)区间集,从而提出区间集外延–集合内涵(集合外延–区间集内涵)(interval set extent-set intent(set extent-interval set intent),ISE-SI(SE-ISI))型单边区间集模糊半概念。全体ISE-SI(SE-ISI)型单边区间集模糊半概念构成格,并给出基于格搜寻全体ISE-SI(SE-ISI)型单边区间集模糊半概念的算法。通过与已有成果对比,显示出这2种知识表示形式的多方优势。本文所得结果在知识表示及提取方法上具有适用范围广、实际应用强等优点。展开更多
基金funding by the Challengeable Future Defense Technology Research and Development Program through the Agency For Defense Development(ADD)funded by the Defense Acquisition Program Administration(DAPA)in 2023(No.915024201).
文摘Moving-target-defense(MTD)fundamentally avoids an illegal initial compromise by asymmetrically increasing the uncertainty as the attack surface of the observable defender changes depending on spatial-temporal mutations.However,the existing naive MTD studies were conducted focusing only on wired network mutations.And these cases have also been no formal research on wireless aircraft domains with attributes that are extremely unfavorable to embedded system operations,such as hostility,mobility,and dependency.Therefore,to solve these conceptual limitations,this study proposes normalized drone-type MTD that maximizes defender superiority by mutating the unique fingerprints of wireless drones and that optimizes the period-based mutation principle to adaptively secure the sustainability of drone operations.In addition,this study also specifies MF2-DMTD(model-checkingbased formal framework for drone-type MTD),a formal framework that adopts model-checking and zero-sum game,for attack-defense simulation and performance evaluation of drone-type MTD.Subsequently,by applying the proposed models,the optimization of deceptive defense performance of drone-type MTD for each mutation period also additionally achieves through mixed-integer quadratic constrained programming(MIQCP)and multiobjective optimization-based Pareto frontier.As a result,the optimal mutation cycles in drone-type MTD were derived as(65,120,85)for each control-mobility,telecommunication,and payload component configured inside the drone.And the optimal MTD cycles for each swarming cluster,ground control station(GCS),and zone service provider(ZSP)deployed outside the drone were also additionally calculated as(70,60,85),respectively.To the best of these authors’knowledge,this study is the first to calculate the deceptive efficiency and functional continuity of the MTD against drones and to normalize the trade-off according to a sensitivity analysis with the optimum.
文摘This work is about the progress of previous related work based on an experiment to improve the intelligence of robotic systems,with the aim of achieving more linguistic communication capabilities between humans and robots.In this paper,the authors attempt an algorithmic approach to natural language generation through hole semantics and by applying the OMAS-III computational model as a grammatical formalism.In the original work,a technical language is used,while in the later works,this has been replaced by a limited Greek natural language dictionary.This particular effort was made to give the evolving system the ability to ask questions,as well as the authors developed an initial dialogue system using these techniques.The results show that the use of these techniques the authors apply can give us a more sophisticated dialogue system in the future.
文摘为了使“区间”形式加以表述的不确定信息的提取具有侧重性,需提取出对象(属性)集对应的属性(对象)区间集。本文在模糊形式背景中,通过引入2个阈值,将单边区间集与经典半概念结合,提取出属性(对象)集对应的对象(属性)区间集,从而提出区间集外延–集合内涵(集合外延–区间集内涵)(interval set extent-set intent(set extent-interval set intent),ISE-SI(SE-ISI))型单边区间集模糊半概念。全体ISE-SI(SE-ISI)型单边区间集模糊半概念构成格,并给出基于格搜寻全体ISE-SI(SE-ISI)型单边区间集模糊半概念的算法。通过与已有成果对比,显示出这2种知识表示形式的多方优势。本文所得结果在知识表示及提取方法上具有适用范围广、实际应用强等优点。