Advanced mesenchymal stromal cell-based therapies for neurodegenerative diseases are widely investigated in preclinical models.Mesenchymal stromal cells are well positioned as therapeutics because they address the und...Advanced mesenchymal stromal cell-based therapies for neurodegenerative diseases are widely investigated in preclinical models.Mesenchymal stromal cells are well positioned as therapeutics because they address the underlying mechanisms of neurodegeneration,namely trophic factor deprivation and neuroinflammation.Most studies have focused on the beneficial effects of mesenchymal stromal cell transplantation on neuronal survival or functional improvement.However,little attention has been paid to the interaction between mesenchymal stromal cells and the host immune system due to the immunomodulatory properties of mesenchymal stromal cells and the long-held belief of the immunoprivileged status of the central nervous system.Here,we review the crosstalk between mesenchymal stromal cells and the immune system in general and in the context of the central nervous system,focusing on recent work in the retina and the importance of the type of transplantation.展开更多
BACKGROUND Pelvic organ prolapse(POP)involves pelvic organ herniation into the vagina due to pelvic floor tissue laxity,and vaginal structure is an essential factor.In POP,the vaginal walls exhibit abnormal collagen d...BACKGROUND Pelvic organ prolapse(POP)involves pelvic organ herniation into the vagina due to pelvic floor tissue laxity,and vaginal structure is an essential factor.In POP,the vaginal walls exhibit abnormal collagen distribution and decreased fibroblast levels and functions.The intricate etiology of POP and the prohibition of trans-vaginal meshes in pelvic reconstruction surgery present challenges in targeted therapy development.Human umbilical cord mesenchymal stromal cells(hucMSCs)present limitations,but their exosomes(hucMSC-Exo)are promising therapeutic tools for promoting fibroblast proliferation and extracellular matrix remodeling.suppressed inflammation in POP group fibroblasts,stimulated primary fibroblast growth,and elevated collagen I(Col1)production in vitro.High-throughput RNA-seq of fibroblasts treated with hucMSC-Exo and miRNA sequencing of hucMSC-Exo revealed that abundant exosomal miRNAs downregulated matrix metalloproteinase 11(MMP11)expression.CONCLUSION HucMSC-Exo normalized the growth and function of primary fibroblasts from patients with POP by promoting cell growth and Col1 expression in vitro.Abundant miRNAs in hucMSC-Exo targeted and downregulated MMP11 expression.HucMSC-Exo-based therapy may be ideal for safely and effectively treating POP.展开更多
Introduction:Transplantation of mesenchymal stromal cells(MSCs)is a promising therapy for type 1 diabetes(T1D).However,whether the infused MSCs affect the endoplasmic reticulum stress or subsequent unfolded protein re...Introduction:Transplantation of mesenchymal stromal cells(MSCs)is a promising therapy for type 1 diabetes(T1D).However,whether the infused MSCs affect the endoplasmic reticulum stress or subsequent unfolded protein response inβcells remains unclear.Methods:To investigate this,we induced early-onset T1D in non-obese diabetic mice using streptozotocin.Subsequently,T1D mice were randomly assigned to receive either MSCs or phosphate-buffered saline.We observed the in vivo homing of MSCs and assessed their effectiveness by analyzing blood glucose levels,body weight,histopathology,pancreatic protein expression,and serum levels of cytokines,proinsulin,and C-peptide.Results:Infused MSCs were found in the lungs,liver,spleen,and pancreas of T1D mice.They exhibited various effects,including reducing blood glucose levels,regulating immunity,inhibiting inflammation,increasingβ-cell areas,and reducing the expression of key proteins in the unfolded protein response pathway.Fasting serum proinsulin and C-peptide levels were significantly higher in the MSCs treatment group than in the T1D model group.However,there was no significant difference in the biomarker ofβ-cell endoplasmic reticulum stress,the ratio of fasting serum proinsulin to C-peptide,between the two groups.Conclusion:Ourfindings reveal that MSCs infusion does not alleviate endoplasmic reticulum stress inβcells directly but modulates the unfolded protein response pathway to preserveβ-cell mass and function in T1D mice.展开更多
Cumulative evidence suggests that O-linkedβ-N-acetylglucosaminylation(OGlcNAcylation)plays an important regulatory role in pathophysiological processes.Although the regulatory mechanisms of O-GlcNAcylation in tumors ...Cumulative evidence suggests that O-linkedβ-N-acetylglucosaminylation(OGlcNAcylation)plays an important regulatory role in pathophysiological processes.Although the regulatory mechanisms of O-GlcNAcylation in tumors have been gradually elucidated,the potential mechanisms of O-GlcNAcylation in bone metabolism,particularly,in the osteogenic differentiation of bone marrow mesenchymal stromal cells(BMSCs)remains unexplored.In this study,the literature related to O-GlcNAcylation and BMSC osteogenic differentiation was reviewed,assuming that it could trigger more scholars to focus on research related to OGlcNAcylation and bone metabolism and provide insights into the development of novel therapeutic targets for bone metabolism disorders such as osteoporosis.展开更多
Dental pulp stem/stromal cells(DPSCs)are fibroblast-like,neural crest-derived,and multipotent cells that can differentiate into several lineages.They are relatively easy to isolate from healthy and inflamed pulps,with...Dental pulp stem/stromal cells(DPSCs)are fibroblast-like,neural crest-derived,and multipotent cells that can differentiate into several lineages.They are relatively easy to isolate from healthy and inflamed pulps,with little ethical concerns and can be successfully cryopreserved and thawed.The therapeutic effects of DPSCs derived from animal or human sources have been extensively studied through in-vitro and in-vivo animal experiments and the findings indicated that DPSCs are effective not only for dental diseases but also for systemic diseases.Understanding that translational research is a critical step through which the fundamental scientific discoveries could be translated into applicable diagnostics and therapeutics that directly benefit humans,several clinical studies were carried out to generate evidence for the efficacy and safety of autogenous or allogeneic human DPSCs(hDPSCs)as a treatment modality for use in cell-based therapy,regenerative medicine/dentistry and tissue engineering.In clinical medicine,hDPSCs were effective for treating acute ischemic stroke and human exfoliated deciduous teeth-conditioned medium(SHED-CM)repaired vascular damage of the corpus cavernous,which is the main cause of erectile dysfunction.Whereas in clinical dentistry,autologous SHED was able to rege-nerate necrotic dental pulp after implantation into injured teeth,and micrografts enriched with autologous hDPSCs and collagen sponge were considered a treatment option for human intrabony defects.In contrast,hDPSCs did not add a significant regenerative effect when they were used for the treatment of post-extraction sockets.Large-scale clinical studies across diverse populations are still lacking to provide robust evidence on the safety and efficacy of hDPSCs as a new treatment option for various human diseases including dental-related problems.展开更多
BACKGROUND Stromal cell derived factor-1(SDF-1)plays a pivotal role in the recruitment of stem cells to injured livers.However,the changes of SDF-l in patients with hepatitis B virus(HBV)-related acute-on-chronic live...BACKGROUND Stromal cell derived factor-1(SDF-1)plays a pivotal role in the recruitment of stem cells to injured livers.However,the changes of SDF-l in patients with hepatitis B virus(HBV)-related acute-on-chronic liver failure(ACLF)have yet to be elucidated.AIM To study the SDF-1 changes in patients with HBV-related ACLF.METHODS 30 patients with HBV-related ACLF,27 patients with chronic hepatitis B and 20 healthy individuals are involved in our study.The SDF-l mRNA expression in liver tissue was detected by quantitative real-time polymerase chain reaction.Immunohistochemical staining was performed to illustrate the expression of SDFl,CXC receptor 4(CXCR4)and Ki67.The serum SDF-l concentrations were also detected by enzyme-linked immunosorbent assays.RESULTS The expression of SDF-1 mRNA from ACLF patients was remarkably higher than that from other patients(both P<0.05).The expression of SDF-l,CXCR4 and Ki67 from ACLF were the highest among the three groups(all P<0.01).The serum SDF-l levels in ACLF patients were significantly lower than that in other patients(both P<0.01).Moreover,in ACLF patients,the serum SDF-1 Levels were positively correlated with serum total bilirubin and international normalized ratio.In addition,the serum SDF-l levels in survival were significantly lower compared with the non-survivals(P<0.05).The area under the curve for the serum SDF-1 level in predicting 28-d mortality was 0.722(P<0.05).CONCLUSION This study provides the SDF-1 changes in patients with HBV-related ACLF.The SDF-1 Level at admission may serve as a promising prognostic marker for predicting short-term prognosis.展开更多
Mesenchymal stromal cells (MSCs) are a top candidate for new clinical treatments in the repair of bone and cartilage. In several clinical trials, they have shown reliable, effective, and safe management of inflammatio...Mesenchymal stromal cells (MSCs) are a top candidate for new clinical treatments in the repair of bone and cartilage. In several clinical trials, they have shown reliable, effective, and safe management of inflammation, pain, and the regenerative capabilities of resident tissues. MSCs are likely derived from pericytes. They modulate the environment they are placed in by secreting immunomodulatory and signaling molecules to reduce inflammation and direct resident cells to create new tissues. They are easily isolated from several different adult tissues, and inexpensive to grow in a lab. However, a mistake made in the initial classification of MSCs as stem cells has created deeply engrained misconceptions that are still evident today. MSCs are not stem cells, despite a large fraction of research and therapies using the name “mesenchymal stem cells”. This mistake creates false narratives attributing the observed positive outcomes of MSC treatments to stem cell characteristics, which has led to distrust in MSC research. Despite inconsistencies in their classification, MSCs demonstrate consistent positive effects in numerous animal studies and human clinical trials for non-unions and osteoarthritis. With an aging population, regenerative techniques are very promising for novel therapies. To produce trusted and safe new treatments using MSCs, it is essential for the International Society for Cellular Therapies to re-establish common ground in the identity, mechanism of action, and isolation techniques of these cells.展开更多
BACKGROUND Osteoarthritis(OA)is the most common joint disorder,is associated with an increasing socioeconomic impact owing to the ageing population.AIM To analyze and compare the efficacy and safety of bone-marrow-der...BACKGROUND Osteoarthritis(OA)is the most common joint disorder,is associated with an increasing socioeconomic impact owing to the ageing population.AIM To analyze and compare the efficacy and safety of bone-marrow-derived mesenchymal stromal cells(BM-MSCs)and adipose tissue-derived MSCs(AD-MSCs)in knee OA management from published randomized controlled trials(RCTs).METHODS Independent and duplicate electronic database searches were performed,including PubMed,EMBASE,Web of Science,and Cochrane Library,until August 2021 for RCTs that analyzed the efficacy and safety of AD-MSCs and BM-MSCs in the management of knee OA.The visual analog scale(VAS)score for pain,Western Ontario McMaster Universities Osteoarthritis Index(WOMAC),Lysholm score,Tegner score,magnetic resonance observation of cartilage repair tissue score,knee osteoarthritis outcome score(KOOS),and adverse events were analyzed.Analysis was performed on the R-platform using OpenMeta(Analyst)software.Twenty-one studies,involving 936 patients,were included.Only one study compared the two MSC sources without patient randomization;hence,the results of all included studies from both sources were pooled,and a comparative critical analysis was performed.RESULTS At six months,both AD-MSCs and BM-MSCs showed significant VAS improvement(P=0.015,P=0.012);this was inconsistent at 1 year for BM-MSCs(P<0.001,P=0.539),and AD-MSCs outperformed BM-MSCs compared to controls in measures such as WOMAC(P<0.001,P=0.541),Lysholm scores(P=0.006;P=0.933),and KOOS(P=0.002;P=0.012).BM-MSC-related procedures caused significant adverse events(P=0.003)compared to AD-MSCs(P=0.673).CONCLUSION Adipose tissue is superior to bone marrow because of its safety and consistent efficacy in improving pain and functional outcomes.Future trials are urgently warranted to validate our findings and reach a consensus on the ideal source of MSCs for managing knee OA.展开更多
BACKGROUND Mesenchymal stromal cells(MSCs)are multipotent cell populations obtained from fetal and adult tissues.They share some characteristics with limb bud mesodermal cells such as differentiation potential into os...BACKGROUND Mesenchymal stromal cells(MSCs)are multipotent cell populations obtained from fetal and adult tissues.They share some characteristics with limb bud mesodermal cells such as differentiation potential into osteogenic,chondrogenic,and tenogenic lineages and an embryonic mesodermal origin.Although MSCs differentiate into skeletal-related lineages in vitro,they have not been shown to selforganize into complex skeletal structures or connective tissues,as in the limb.In this work,we demonstrate that the expression of molecular markers to commit MSCs to skeletal lineages is not sufficient to generate skeletal elements in vivo.AIM To evaluate the potential of MSCs to differentiate into skeletal lineages and generate complex skeletal structures using the recombinant limb(RL)system.METHODS We used the experimental system of RLs from dissociated-reaggregated human placenta(PL)and umbilical cord blood(UCB)MSCs.After being harvested and reaggregated in a pellet,cultured cells were introduced into an ectodermal cover obtained from an early chicken limb bud.Next,this filled ectoderm was grafted into the back of a donor chick embryo.Under these conditions,the cells received and responded to the ectoderm’s embryonic signals in a spatiotemporal manner to differentiate and pattern into skeletal elements.Their response to differentiation and morphogenetic signals was evaluated by quantitative poly-merase chain reaction,histology,immunofluorescence,scanning electron microscopy,and in situ hybridization.RESULTS We found that human PL-MSCs and UCB-MSCs constituting the RLs expressed chondrogenic,osteogenic,and tenogenic molecular markers while differentially committing into limb lineages but could not generate complex structures in vivo.MSCs-RL from PL or UCB were committed early to chondrogenic lineage.Nevertheless,the UCB-RL osteogenic commitment was favored,although preferentially to a tenogenic cell fate.These findings suggest that the commitment of MSCs to differentiate into skeletal lineages differs according to the source and is independent of their capacity to generate skeletal elements or connective tissue in vivo.Our results suggest that the failure to form skeletal structures may be due to the intrinsic characteristics of MSCs.Thus,it is necessary to thoroughly evaluate the biological aspects of MSCs and how they respond to morphogenetic signals in an in vivo context.CONCLUSION PL-MSCs and UCB-MSCs express molecular markers of differentiation into skeletal lineages,but they are not sufficient to generate complex skeletal structures in vivo.展开更多
Objective To construct recombinant lentiviral vectors for gene delivery of the glial cell line-derived neurotropnic factor (GDNF), and evaluate the neuroprotective effect of GDNF on lactacystin-damaged PC12 cells by...Objective To construct recombinant lentiviral vectors for gene delivery of the glial cell line-derived neurotropnic factor (GDNF), and evaluate the neuroprotective effect of GDNF on lactacystin-damaged PC12 cells by transfecting it into bone marrow stromal cells (BMSCs). Methods pLenti6/V5-GDNF plasmid was set up by double restriction enzyme digestion and ligation, and then the plasmid was transformed into Top10 cells. Purified pLenti6/V5-GDNF plasmids from the positive clones and the packaging mixture were cotransfected to the 293FT packaging cell line by Lipofectamine2000 to produce lentivirus, then the concentrated virus was transduced to BMSCs. Overexpression of GDNF in BMSCs was tested by RT-PCR, ELISA and immunocytochemistry, and its neuroprotection for lactacystin-damaged PC12 cells was evaluated by MTT assay. Results Virus stock of GDNF was harvested with the titer of 5.6×10^5 TU/mL. After tmnsduction, GDNF-BMSCs successfully secreted GDNF to supematant with nigher concentration (800 pg/mL) than BMSCs did (less than 100 pg/mL). The supematant of GDNF-BMSCs could significantly alleviate the damage of PC12 cells induced by lactacystin (10 μmol/L). Conclusion Overexpression of lentivirus-mediated GDNF in the BMSCs cells can effectively protect PC12 cells from the injury by the proteasome inhibitor.展开更多
AIM To investigate whether mesenchymal stem cells(MSCs) from adipose-derived stromal cells(ADSCs) and bone marrow stromal cells(BMSCs) have similar hepatic differentiation potential.METHODS Mouse ADSCs and BMSCs were ...AIM To investigate whether mesenchymal stem cells(MSCs) from adipose-derived stromal cells(ADSCs) and bone marrow stromal cells(BMSCs) have similar hepatic differentiation potential.METHODS Mouse ADSCs and BMSCs were isolated and cultured. Their morphological and phenotypic characteristics, as well as their multiple differentiation capacity were compared. A new culture system was established to induce ADSCs and BMSCs into functional hepatocytes. Reverse transcription polymerase chain reaction, Western blot, and immunofluorescence analyses were performed to identify the induced hepatocytelike cells. CM-Dil-labeled ADSCs and BMSCs were then transplanted into a mouse model of CCl4-induced acute liver failure. fluorescence microscopy was used to track the transplanted MSCs. Liver function was tested by an automatic biochemistry analyzer, and liver tissue histology was observed by hematoxylin and eosin(HE) staining.RESULTS ADSCs and BMSCs shared a similar morphology and multiple differentiation capacity, as well as a similar phenotype(with expression of CD29 and CD90 and no expression of CD11 b or CD45). Morphologically, ADSCs and BMSCs became round and epithelioid following hepatic induction. These two cell types differentiated into hepatocyte-like cells with similar expression of albumin, cytokeratin 18, cytokeratin 19, alpha fetoprotein, and cytochrome P450. fluorescence microscopy revealed that both ADSCs and BMSCs were observed in the mouse liver at different time points. Compared to the control group, both the function of the injured livers and HE staining showed significant improvement in the ADSC-and BMSC-transplanted mice. There was no significant difference between the two MSC groups.CONCLUSION ADSCs share a similar hepatic differentiation capacity and therapeutic effect with BMSCs in an acute liver failure model. ADSCs may represent an ideal seed cell type for cell transplantation or a bio-artificial liver support system.展开更多
Mesenchymal stem/stromal cells(MSCs)are extensively studied as cell-therapy agents for neurological diseases.Recent studies consider exosomes secreted by MSCs as important mediators for MSCs’neuroprotective functions...Mesenchymal stem/stromal cells(MSCs)are extensively studied as cell-therapy agents for neurological diseases.Recent studies consider exosomes secreted by MSCs as important mediators for MSCs’neuroprotective functions.Exosomes transfer functional molecules including proteins,lipids,metabolites,DNAs,and coding and non-coding RNAs from MSCs to their target cells.Emerging evidence shows that exosomal microRNAs(miRNAs)play a key role in the neuroprotective properties of these exosomes by targeting several genes and regulating various biological processes.Multiple exosomal miRNAs have been identified to have neuroprotective effects by promoting neurogenesis,neurite remodeling and survival,and neuroplasticity.Thus,exosomal miRNAs have significant therapeutic potential for neurological disorders such as stroke,traumatic brain injury,and neuroinflammatory or neurodegenerative diseases and disorders.This review discusses the neuroprotective effects of selected miRNAs(miR-21,miR-17-92,miR-133,miR-138,miR-124,miR-30,miR146a,and miR-29b)and explores their mechanisms of action and applications for the treatment of various neurological disease and disorders.It also provides an overview of state-of-the-art bioengineering approaches for isolating exosomes,optimizing their yield and manipulating the miRNA content of their cargo to improve their therapeutic potential.展开更多
BACKGROUND Multipotent bone marrow stromal cells(BMSCs)are adult stem cells that form functional osteoblasts and play a critical role in bone remodeling.During aging,an increase in bone loss and reduction in structura...BACKGROUND Multipotent bone marrow stromal cells(BMSCs)are adult stem cells that form functional osteoblasts and play a critical role in bone remodeling.During aging,an increase in bone loss and reduction in structural integrity lead to osteoporosis and result in an increased risk of fracture.We examined age-dependent histological changes in murine vertebrae and uncovered that bone loss begins as early as the age of 1 mo.AIM To identify the functional alterations and transcriptomic dynamics of BMSCs during early bone loss.METHODS We collected BMSCs from mice at early to middle ages and compared their selfrenewal and differentiation potential.Subsequently,we obtained the transcriptomic profiles of BMSCs at 1 mo,3 mo,and 7 mo.RESULTS The colony-forming and osteogenic commitment capacity showed a comparable finding that decreased at the age of 1 mo.The transcriptomic analysis showed the enrichment of osteoblastic regulation genes at 1 mo and loss of osteogenic features at 3 mo.The BMSCs at 7 mo showed enrichment of adipogenic and DNA repair features.Moreover,we demonstrated that the WNT and MAPK signaling pathways were upregulated at 1 mo,followed by increased pro-inflammatory and apoptotic features.CONCLUSION Our study uncovered the cellular and molecular dynamics of bone aging in mice and demonstrated the contribution of BMSCs to the early stage of age-related bone loss.展开更多
OBJECTIVE: To explore the possibility of expression of exogenous gene in transduced bone marrow derived stromal cells (BMSCs). METHODS: The marker gene, pbLacZ, was transferred into cultured BMSCs and the expression o...OBJECTIVE: To explore the possibility of expression of exogenous gene in transduced bone marrow derived stromal cells (BMSCs). METHODS: The marker gene, pbLacZ, was transferred into cultured BMSCs and the expression of transduced gene by X-gal staining was examined. Then plasmid pcDNA3-rhBMP7 was delivered to cultured BMSCs. Through immunohistochemical staining and RT-PCR assay, the expression of rhBMP7 gene was detected. RESULTS: The exogenous gene could be expressed efficiently in transduced BMSCs. CONCLUSION: The present study provided a theoretical basis to gene therapy on the problems of bone and cartilage tissue.展开更多
Objective To investigate the differentiation of bone marrow stromal cells (BMSC) into neuron-like cells and to explore their potential use for neural transplantation. Methods BMSC from rats and adult humans were cul...Objective To investigate the differentiation of bone marrow stromal cells (BMSC) into neuron-like cells and to explore their potential use for neural transplantation. Methods BMSC from rats and adult humans were cultured in serum-containing media. Salvia miltiorrhiza was used to induce human BMSC (hBMSC) to differentiate. BMSC were identified with immunocytochemistry. Semi-quantitative RT-PCR was used to examine mRNA expression of neurofilamentl (NF1), nestin and neuron-specific enolase (NSE) in rat BMSC (rBMSC). Rat BMSC labelled by Hoschst33258 were transplanted into striatum of rats to trace migration and distribution. Results rBMSC expressed NSE, NFI and nestin mRNA, and NF1 mRNA and expression was increased with induction of Salvia miltiorrhiza. A small number of hBMSC were stained by anti-nestin, anti-GFAP and anti-S 100. Salvia miltiorrhiza could induce hBMSC to differentiate into neuron-like cells. Some differentiated neuron-like cells, that expressed NSE, beta-tubulin and NF-200, showed typical neuron morphology, but some neuron-like cells also expressed alpha smooth muscle protein, making their neuron identification complicated, rBMSC could migrate and adapted in the host brains after being transplanted. Conclusion Bone marrow stromal cells could express phenotypes of neurons, and Salvia milliorrhiza could induce hBMSC to differentiate into neuron-like cells, If BMSC could be converted into neurons instead of mesenchymal derivatives, they would be an abundant and accessible cellular source to treat a variety of neurological diseases.展开更多
β-mercaptoethanol can induce adipose-derived stromal cells to rapidly and efficiently differentiate into neurons in vitro.However,because of the short survival time of the differentiated cells,clinical applications f...β-mercaptoethanol can induce adipose-derived stromal cells to rapidly and efficiently differentiate into neurons in vitro.However,because of the short survival time of the differentiated cells,clinical applications for this technique are limited.As such,we examined apoptosis of neurons differentiated from adipose-derived stromal cells induced with β-mercaptoethanol in vitro using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and transmission electron microscopy.The results revealed that the number of surviving cells decreased and apoptosis rate increased as induction time extended.Taken together,these results suggest that apoptosis occurring in the process of adipose-derived stromal cells differentiating into neurons is the main cause of cell death.However,the mechanism underlying cellular apoptosis should be researched further to develop methods of controlling apoptosis for clinical applications.展开更多
β-mercaptoethanol induces in vitro adult adipose-derived stromal cells (ADSCs) to differentiate into neurons. However, the ultrastructural features of the differentiated neuronal-like cells remain unknown. In the p...β-mercaptoethanol induces in vitro adult adipose-derived stromal cells (ADSCs) to differentiate into neurons. However, the ultrastructural features of the differentiated neuronal-like cells remain unknown. In the present study, inverted phase contrast microscopy was utilized to observe β-mercaptoethanol-induced differentiation of neuronal-like cells from human ADSCs, and immunocytochemistry and real-time polymerase chain reaction were employed to detect expression of a neural stem cells marker (nestin), a neuronal marker (neuron-specific enolase), and a glial marker (glial fibrillary acidic protein). In addition, ultrastructure of neuronal-like cells was observed by transmission election microscopy. Results revealed highest expression rate of nestin and neuron-specific enolase at 3 and 5 hours following induced differentiation; cells in the 5-hour induction group exhibited a neuronal-specific structure, i.e., Nissl bodies. However, when induction solution was replaced by complete culture medium after 8-hour induction, the differentiated cells reverted to the fibroblast-like morphology from day 1. These results demonstrate that β-mercaptoethanol-induced ADSCs induced differentiation into neural stem cells, followed by morphology of neuronal-like cells. However, this differentiation state was not stable.展开更多
This study explored whether the transplantation of modified marrow stromal cells (MSCs) has angiogenic effects in a left middle cerebral artery occlusion infarction/reperfusion (MCAO I/R) rat model and preliminarily e...This study explored whether the transplantation of modified marrow stromal cells (MSCs) has angiogenic effects in a left middle cerebral artery occlusion infarction/reperfusion (MCAO I/R) rat model and preliminarily examined the mechanism of angiogenesis following cerebral infarction.MSCs were isolated by using a direct adherent method and cultured.Vascular endothelial growth factor (VEGF) was transfected into MSCs by employing the liposome transfection.The transfection efficiency was measured by the optical density method.The protein expression of VEGF gene before and after transfection was measured by Western blotting.SD rat model of transient occlusion of the left middle cerebral artery was established by using an approach of intra-luminal occlusion.Tetrazolium (TTC) and HE staining were performed to observe the cerebral infarction.ELISAs were used to measure the levels of VEGF in the rat cerebral tissues.The expression patterns of angiopoietin-2 (Ang-2) and CD34 in cells surrounding the area of infarction were immunohistochemistrically oserved.Ang-2 protein expression in the tissue surrounding the area of infarction was measured by Western blotting.VEGF expression in the MSCs increased after transfection at a rate of approximately 28%±3.4%.ELISA showed that the expression of VEGF in the cerebral tissue was significantly increased after induction of infarction,peaking on the 4th day and decreasing to the levels of the sham surgery group (normal) within 7 to 10 days.The VEGF level was significantly higher at each time point in the VEGF-MSC and MSC groups compared to the model group.Moreover,the VEGF level was higher in the VEGF-MSC group than in the MSC group and stayed relatively high until the 10th day.The immunohistochemical results showed that 10 days after the infarction,the number of Ang-2 and CD34-expressing cells in the area surrounding the infarction was significantly higher in the VEGF-MSC group and the MSC group compared to the model group.Moreover,the VEGF level was higher in the VEGF-MSC group than the MSC group.A similar trend in Ang-2 protein expression was revealed by Western blotting.In the MCAO rat model transfected with modified MSCs over-expressing VEGF,compared to the MSC transplantation group,the concentration of VEGF was significantly increased in the brain tissue after cerebral infarction.In addition,the level of Ang-2 was up-regulated,with angiogenesis promoted,the blood supply to the areas surrounding the cerebral infarction increased,and neurological function improved.We are led to speculate that the synergistic effects of VEGF and Ang-2 may be responsible for the angiogenesis following cerebral infarction.展开更多
It is known that human benign prostatic hyperplasia might arise from an estrogen/androgen (E/T) imbalance. We studied the response of castrated rat prostate to different ratios of circulating E/T. The castrated male...It is known that human benign prostatic hyperplasia might arise from an estrogen/androgen (E/T) imbalance. We studied the response of castrated rat prostate to different ratios of circulating E/T. The castrated male Wistar rats were randomly injected with E/T at different ratios for 4 weeks. The prostates of E/T (1:100) group showed a distinct prostatic hyperplasia response by prostatic index, hematoxylin and eosin staining, and quantitative immunohistochemical analysis of a-smooth muscle actin (SMA). In this group, cells positive for Vimentin, non-muscle myosin heavy chain (NMMHC) and proliferating cell nuclear antigen (PCNA) increased in the stroma and epithelium. Furthermore, the mRNA levels of smooth muscle myosin heavy chain (SMMHC) and NMMHC increased. So E/T at a ratio of 1:100 can induce a stromal hyperplastic response in the prostate of castrated rats. The main change observed was an increase of smooth muscle cells, whereas some epithelial changes were also seen in the rat prostates.展开更多
The quantity and survival time of astrocytes,which were differentiated from adult adipose-derived stromal cells after exposure to an inducer containing 3-isobutyl-1-methylxanthine,have thus far been unsatisfactory.The...The quantity and survival time of astrocytes,which were differentiated from adult adipose-derived stromal cells after exposure to an inducer containing 3-isobutyl-1-methylxanthine,have thus far been unsatisfactory.The present study investigated the growth and differentiation characteristics of induced astrocytes by observing their growth curves.After induction for 48 hours with an inducer containing 0.5% ethanol,some adult adult adipose-derived stromal cells displayed typical astrocytic morphology.The cell quantity gradually decreased with prolonged induction time.Nestin,glial fibrillary acidic protein,and S-100 expression reached peak levels at 14 days,but neuron-specific enolase was not expressed.These results suggest that the induced astrocytes reached their peak at 14 days.Further optimization of the culture environment may yield mature astrocytes with normal functions,in greater quantity,and prolonged survival time.展开更多
基金funded by the Spanish Ministry of Economy and Competitiveness,No.PID(2019)-106498GB-100 (to MVS)by the Instituto de Salud CarlosⅢ,Fondo Europeo de Desarrollo Regional"Una manera de hacer Europa",No.PI19/00071 (to MAB)+2 种基金the RETICS subprograms of Spanish Networks OftoRed,Nos.RD16/0008/0026 (to DGB) and RD16/0008/0016 (to DGB)RICORS Terav,No.RD16/0011/0001 (to DGB)from Instituto de Salud CarlosⅢby the Fundacion Seneca,Agencia de Cienciay Tecnologia Región de Murcia,No.19881/GERM/15 (all to MVS)
文摘Advanced mesenchymal stromal cell-based therapies for neurodegenerative diseases are widely investigated in preclinical models.Mesenchymal stromal cells are well positioned as therapeutics because they address the underlying mechanisms of neurodegeneration,namely trophic factor deprivation and neuroinflammation.Most studies have focused on the beneficial effects of mesenchymal stromal cell transplantation on neuronal survival or functional improvement.However,little attention has been paid to the interaction between mesenchymal stromal cells and the host immune system due to the immunomodulatory properties of mesenchymal stromal cells and the long-held belief of the immunoprivileged status of the central nervous system.Here,we review the crosstalk between mesenchymal stromal cells and the immune system in general and in the context of the central nervous system,focusing on recent work in the retina and the importance of the type of transplantation.
基金Supported by the National Natural Science Foundation of China,No.81671439the Science and Technology Commission of Shanghai Municipality,No.21Y11906700 and No.20Y11907300the Medical Innovation Research Project of the Science and Technology Commission of Shanghai Municipality,No.22Y11906500。
文摘BACKGROUND Pelvic organ prolapse(POP)involves pelvic organ herniation into the vagina due to pelvic floor tissue laxity,and vaginal structure is an essential factor.In POP,the vaginal walls exhibit abnormal collagen distribution and decreased fibroblast levels and functions.The intricate etiology of POP and the prohibition of trans-vaginal meshes in pelvic reconstruction surgery present challenges in targeted therapy development.Human umbilical cord mesenchymal stromal cells(hucMSCs)present limitations,but their exosomes(hucMSC-Exo)are promising therapeutic tools for promoting fibroblast proliferation and extracellular matrix remodeling.suppressed inflammation in POP group fibroblasts,stimulated primary fibroblast growth,and elevated collagen I(Col1)production in vitro.High-throughput RNA-seq of fibroblasts treated with hucMSC-Exo and miRNA sequencing of hucMSC-Exo revealed that abundant exosomal miRNAs downregulated matrix metalloproteinase 11(MMP11)expression.CONCLUSION HucMSC-Exo normalized the growth and function of primary fibroblasts from patients with POP by promoting cell growth and Col1 expression in vitro.Abundant miRNAs in hucMSC-Exo targeted and downregulated MMP11 expression.HucMSC-Exo-based therapy may be ideal for safely and effectively treating POP.
文摘Introduction:Transplantation of mesenchymal stromal cells(MSCs)is a promising therapy for type 1 diabetes(T1D).However,whether the infused MSCs affect the endoplasmic reticulum stress or subsequent unfolded protein response inβcells remains unclear.Methods:To investigate this,we induced early-onset T1D in non-obese diabetic mice using streptozotocin.Subsequently,T1D mice were randomly assigned to receive either MSCs or phosphate-buffered saline.We observed the in vivo homing of MSCs and assessed their effectiveness by analyzing blood glucose levels,body weight,histopathology,pancreatic protein expression,and serum levels of cytokines,proinsulin,and C-peptide.Results:Infused MSCs were found in the lungs,liver,spleen,and pancreas of T1D mice.They exhibited various effects,including reducing blood glucose levels,regulating immunity,inhibiting inflammation,increasingβ-cell areas,and reducing the expression of key proteins in the unfolded protein response pathway.Fasting serum proinsulin and C-peptide levels were significantly higher in the MSCs treatment group than in the T1D model group.However,there was no significant difference in the biomarker ofβ-cell endoplasmic reticulum stress,the ratio of fasting serum proinsulin to C-peptide,between the two groups.Conclusion:Ourfindings reveal that MSCs infusion does not alleviate endoplasmic reticulum stress inβcells directly but modulates the unfolded protein response pathway to preserveβ-cell mass and function in T1D mice.
文摘Cumulative evidence suggests that O-linkedβ-N-acetylglucosaminylation(OGlcNAcylation)plays an important regulatory role in pathophysiological processes.Although the regulatory mechanisms of O-GlcNAcylation in tumors have been gradually elucidated,the potential mechanisms of O-GlcNAcylation in bone metabolism,particularly,in the osteogenic differentiation of bone marrow mesenchymal stromal cells(BMSCs)remains unexplored.In this study,the literature related to O-GlcNAcylation and BMSC osteogenic differentiation was reviewed,assuming that it could trigger more scholars to focus on research related to OGlcNAcylation and bone metabolism and provide insights into the development of novel therapeutic targets for bone metabolism disorders such as osteoporosis.
文摘Dental pulp stem/stromal cells(DPSCs)are fibroblast-like,neural crest-derived,and multipotent cells that can differentiate into several lineages.They are relatively easy to isolate from healthy and inflamed pulps,with little ethical concerns and can be successfully cryopreserved and thawed.The therapeutic effects of DPSCs derived from animal or human sources have been extensively studied through in-vitro and in-vivo animal experiments and the findings indicated that DPSCs are effective not only for dental diseases but also for systemic diseases.Understanding that translational research is a critical step through which the fundamental scientific discoveries could be translated into applicable diagnostics and therapeutics that directly benefit humans,several clinical studies were carried out to generate evidence for the efficacy and safety of autogenous or allogeneic human DPSCs(hDPSCs)as a treatment modality for use in cell-based therapy,regenerative medicine/dentistry and tissue engineering.In clinical medicine,hDPSCs were effective for treating acute ischemic stroke and human exfoliated deciduous teeth-conditioned medium(SHED-CM)repaired vascular damage of the corpus cavernous,which is the main cause of erectile dysfunction.Whereas in clinical dentistry,autologous SHED was able to rege-nerate necrotic dental pulp after implantation into injured teeth,and micrografts enriched with autologous hDPSCs and collagen sponge were considered a treatment option for human intrabony defects.In contrast,hDPSCs did not add a significant regenerative effect when they were used for the treatment of post-extraction sockets.Large-scale clinical studies across diverse populations are still lacking to provide robust evidence on the safety and efficacy of hDPSCs as a new treatment option for various human diseases including dental-related problems.
基金Science and Technology Project of Hengshui,No.2019014061Z.
文摘BACKGROUND Stromal cell derived factor-1(SDF-1)plays a pivotal role in the recruitment of stem cells to injured livers.However,the changes of SDF-l in patients with hepatitis B virus(HBV)-related acute-on-chronic liver failure(ACLF)have yet to be elucidated.AIM To study the SDF-1 changes in patients with HBV-related ACLF.METHODS 30 patients with HBV-related ACLF,27 patients with chronic hepatitis B and 20 healthy individuals are involved in our study.The SDF-l mRNA expression in liver tissue was detected by quantitative real-time polymerase chain reaction.Immunohistochemical staining was performed to illustrate the expression of SDFl,CXC receptor 4(CXCR4)and Ki67.The serum SDF-l concentrations were also detected by enzyme-linked immunosorbent assays.RESULTS The expression of SDF-1 mRNA from ACLF patients was remarkably higher than that from other patients(both P<0.05).The expression of SDF-l,CXCR4 and Ki67 from ACLF were the highest among the three groups(all P<0.01).The serum SDF-l levels in ACLF patients were significantly lower than that in other patients(both P<0.01).Moreover,in ACLF patients,the serum SDF-1 Levels were positively correlated with serum total bilirubin and international normalized ratio.In addition,the serum SDF-l levels in survival were significantly lower compared with the non-survivals(P<0.05).The area under the curve for the serum SDF-1 level in predicting 28-d mortality was 0.722(P<0.05).CONCLUSION This study provides the SDF-1 changes in patients with HBV-related ACLF.The SDF-1 Level at admission may serve as a promising prognostic marker for predicting short-term prognosis.
文摘Mesenchymal stromal cells (MSCs) are a top candidate for new clinical treatments in the repair of bone and cartilage. In several clinical trials, they have shown reliable, effective, and safe management of inflammation, pain, and the regenerative capabilities of resident tissues. MSCs are likely derived from pericytes. They modulate the environment they are placed in by secreting immunomodulatory and signaling molecules to reduce inflammation and direct resident cells to create new tissues. They are easily isolated from several different adult tissues, and inexpensive to grow in a lab. However, a mistake made in the initial classification of MSCs as stem cells has created deeply engrained misconceptions that are still evident today. MSCs are not stem cells, despite a large fraction of research and therapies using the name “mesenchymal stem cells”. This mistake creates false narratives attributing the observed positive outcomes of MSC treatments to stem cell characteristics, which has led to distrust in MSC research. Despite inconsistencies in their classification, MSCs demonstrate consistent positive effects in numerous animal studies and human clinical trials for non-unions and osteoarthritis. With an aging population, regenerative techniques are very promising for novel therapies. To produce trusted and safe new treatments using MSCs, it is essential for the International Society for Cellular Therapies to re-establish common ground in the identity, mechanism of action, and isolation techniques of these cells.
基金Supported by the Basic Science Research Program through the National Research Foundation of Korea,NRF-2021R1I1A1A01040732 and NRF-2022R1I1A1A01068652the National Research Foundation of Korea grant funded by the Korean Government,Ministry of Science and ICT,2020R1A2C2009496.
文摘BACKGROUND Osteoarthritis(OA)is the most common joint disorder,is associated with an increasing socioeconomic impact owing to the ageing population.AIM To analyze and compare the efficacy and safety of bone-marrow-derived mesenchymal stromal cells(BM-MSCs)and adipose tissue-derived MSCs(AD-MSCs)in knee OA management from published randomized controlled trials(RCTs).METHODS Independent and duplicate electronic database searches were performed,including PubMed,EMBASE,Web of Science,and Cochrane Library,until August 2021 for RCTs that analyzed the efficacy and safety of AD-MSCs and BM-MSCs in the management of knee OA.The visual analog scale(VAS)score for pain,Western Ontario McMaster Universities Osteoarthritis Index(WOMAC),Lysholm score,Tegner score,magnetic resonance observation of cartilage repair tissue score,knee osteoarthritis outcome score(KOOS),and adverse events were analyzed.Analysis was performed on the R-platform using OpenMeta(Analyst)software.Twenty-one studies,involving 936 patients,were included.Only one study compared the two MSC sources without patient randomization;hence,the results of all included studies from both sources were pooled,and a comparative critical analysis was performed.RESULTS At six months,both AD-MSCs and BM-MSCs showed significant VAS improvement(P=0.015,P=0.012);this was inconsistent at 1 year for BM-MSCs(P<0.001,P=0.539),and AD-MSCs outperformed BM-MSCs compared to controls in measures such as WOMAC(P<0.001,P=0.541),Lysholm scores(P=0.006;P=0.933),and KOOS(P=0.002;P=0.012).BM-MSC-related procedures caused significant adverse events(P=0.003)compared to AD-MSCs(P=0.673).CONCLUSION Adipose tissue is superior to bone marrow because of its safety and consistent efficacy in improving pain and functional outcomes.Future trials are urgently warranted to validate our findings and reach a consensus on the ideal source of MSCs for managing knee OA.
基金Supported by the Dirección General de Asuntos del Personal Académico(DGAPA)-Universidad Nacional Autónoma de México,No.IN211117Consejo Nacional de Ciencia y Tecnología(CONACyT),No.1887 CONACyT-Fronteras de la Ciencia awarded to Chimal-Monroy J+1 种基金García-García RD and Garay-Pacheco E received an undergraduate scholarshipMarin-Llera JC a postdoctoral fellowship from the Consejo Nacional de Ciencia y Tecnología,No.CONACyT-Fronteras de la Ciencia-1887.
文摘BACKGROUND Mesenchymal stromal cells(MSCs)are multipotent cell populations obtained from fetal and adult tissues.They share some characteristics with limb bud mesodermal cells such as differentiation potential into osteogenic,chondrogenic,and tenogenic lineages and an embryonic mesodermal origin.Although MSCs differentiate into skeletal-related lineages in vitro,they have not been shown to selforganize into complex skeletal structures or connective tissues,as in the limb.In this work,we demonstrate that the expression of molecular markers to commit MSCs to skeletal lineages is not sufficient to generate skeletal elements in vivo.AIM To evaluate the potential of MSCs to differentiate into skeletal lineages and generate complex skeletal structures using the recombinant limb(RL)system.METHODS We used the experimental system of RLs from dissociated-reaggregated human placenta(PL)and umbilical cord blood(UCB)MSCs.After being harvested and reaggregated in a pellet,cultured cells were introduced into an ectodermal cover obtained from an early chicken limb bud.Next,this filled ectoderm was grafted into the back of a donor chick embryo.Under these conditions,the cells received and responded to the ectoderm’s embryonic signals in a spatiotemporal manner to differentiate and pattern into skeletal elements.Their response to differentiation and morphogenetic signals was evaluated by quantitative poly-merase chain reaction,histology,immunofluorescence,scanning electron microscopy,and in situ hybridization.RESULTS We found that human PL-MSCs and UCB-MSCs constituting the RLs expressed chondrogenic,osteogenic,and tenogenic molecular markers while differentially committing into limb lineages but could not generate complex structures in vivo.MSCs-RL from PL or UCB were committed early to chondrogenic lineage.Nevertheless,the UCB-RL osteogenic commitment was favored,although preferentially to a tenogenic cell fate.These findings suggest that the commitment of MSCs to differentiate into skeletal lineages differs according to the source and is independent of their capacity to generate skeletal elements or connective tissue in vivo.Our results suggest that the failure to form skeletal structures may be due to the intrinsic characteristics of MSCs.Thus,it is necessary to thoroughly evaluate the biological aspects of MSCs and how they respond to morphogenetic signals in an in vivo context.CONCLUSION PL-MSCs and UCB-MSCs express molecular markers of differentiation into skeletal lineages,but they are not sufficient to generate complex skeletal structures in vivo.
基金This work was supported by the Natural Science Foundation of Shanghai Municipality(No.03ZR14016).
文摘Objective To construct recombinant lentiviral vectors for gene delivery of the glial cell line-derived neurotropnic factor (GDNF), and evaluate the neuroprotective effect of GDNF on lactacystin-damaged PC12 cells by transfecting it into bone marrow stromal cells (BMSCs). Methods pLenti6/V5-GDNF plasmid was set up by double restriction enzyme digestion and ligation, and then the plasmid was transformed into Top10 cells. Purified pLenti6/V5-GDNF plasmids from the positive clones and the packaging mixture were cotransfected to the 293FT packaging cell line by Lipofectamine2000 to produce lentivirus, then the concentrated virus was transduced to BMSCs. Overexpression of GDNF in BMSCs was tested by RT-PCR, ELISA and immunocytochemistry, and its neuroprotection for lactacystin-damaged PC12 cells was evaluated by MTT assay. Results Virus stock of GDNF was harvested with the titer of 5.6×10^5 TU/mL. After tmnsduction, GDNF-BMSCs successfully secreted GDNF to supematant with nigher concentration (800 pg/mL) than BMSCs did (less than 100 pg/mL). The supematant of GDNF-BMSCs could significantly alleviate the damage of PC12 cells induced by lactacystin (10 μmol/L). Conclusion Overexpression of lentivirus-mediated GDNF in the BMSCs cells can effectively protect PC12 cells from the injury by the proteasome inhibitor.
基金Supported by the National Natural Science foundation of China,No.30900669 and No.81473271Technology Nova Plan of Beijing City,No.2011117China Postdoctoral Science foundation,No.2016T90994
文摘AIM To investigate whether mesenchymal stem cells(MSCs) from adipose-derived stromal cells(ADSCs) and bone marrow stromal cells(BMSCs) have similar hepatic differentiation potential.METHODS Mouse ADSCs and BMSCs were isolated and cultured. Their morphological and phenotypic characteristics, as well as their multiple differentiation capacity were compared. A new culture system was established to induce ADSCs and BMSCs into functional hepatocytes. Reverse transcription polymerase chain reaction, Western blot, and immunofluorescence analyses were performed to identify the induced hepatocytelike cells. CM-Dil-labeled ADSCs and BMSCs were then transplanted into a mouse model of CCl4-induced acute liver failure. fluorescence microscopy was used to track the transplanted MSCs. Liver function was tested by an automatic biochemistry analyzer, and liver tissue histology was observed by hematoxylin and eosin(HE) staining.RESULTS ADSCs and BMSCs shared a similar morphology and multiple differentiation capacity, as well as a similar phenotype(with expression of CD29 and CD90 and no expression of CD11 b or CD45). Morphologically, ADSCs and BMSCs became round and epithelioid following hepatic induction. These two cell types differentiated into hepatocyte-like cells with similar expression of albumin, cytokeratin 18, cytokeratin 19, alpha fetoprotein, and cytochrome P450. fluorescence microscopy revealed that both ADSCs and BMSCs were observed in the mouse liver at different time points. Compared to the control group, both the function of the injured livers and HE staining showed significant improvement in the ADSC-and BMSC-transplanted mice. There was no significant difference between the two MSC groups.CONCLUSION ADSCs share a similar hepatic differentiation capacity and therapeutic effect with BMSCs in an acute liver failure model. ADSCs may represent an ideal seed cell type for cell transplantation or a bio-artificial liver support system.
基金Supported by the National Institute on Aging of the National Institutes of Health under Award No.P30AG010129the UC Davis Alzheimer's Disease Center Pilot Program,No.5R01NS100761-02 and No.1R01NS115860-01A1+1 种基金the Shriners Hospitals for Children Research Grants,No.85108-NCA-19 and No.85135-NCA-21the Shriners Hospitals for Children Postdoctoral Fellowship,No.84705-NCA-19.
文摘Mesenchymal stem/stromal cells(MSCs)are extensively studied as cell-therapy agents for neurological diseases.Recent studies consider exosomes secreted by MSCs as important mediators for MSCs’neuroprotective functions.Exosomes transfer functional molecules including proteins,lipids,metabolites,DNAs,and coding and non-coding RNAs from MSCs to their target cells.Emerging evidence shows that exosomal microRNAs(miRNAs)play a key role in the neuroprotective properties of these exosomes by targeting several genes and regulating various biological processes.Multiple exosomal miRNAs have been identified to have neuroprotective effects by promoting neurogenesis,neurite remodeling and survival,and neuroplasticity.Thus,exosomal miRNAs have significant therapeutic potential for neurological disorders such as stroke,traumatic brain injury,and neuroinflammatory or neurodegenerative diseases and disorders.This review discusses the neuroprotective effects of selected miRNAs(miR-21,miR-17-92,miR-133,miR-138,miR-124,miR-30,miR146a,and miR-29b)and explores their mechanisms of action and applications for the treatment of various neurological disease and disorders.It also provides an overview of state-of-the-art bioengineering approaches for isolating exosomes,optimizing their yield and manipulating the miRNA content of their cargo to improve their therapeutic potential.
基金Supported by the National Natural Science Foundation of China,No.81573992.
文摘BACKGROUND Multipotent bone marrow stromal cells(BMSCs)are adult stem cells that form functional osteoblasts and play a critical role in bone remodeling.During aging,an increase in bone loss and reduction in structural integrity lead to osteoporosis and result in an increased risk of fracture.We examined age-dependent histological changes in murine vertebrae and uncovered that bone loss begins as early as the age of 1 mo.AIM To identify the functional alterations and transcriptomic dynamics of BMSCs during early bone loss.METHODS We collected BMSCs from mice at early to middle ages and compared their selfrenewal and differentiation potential.Subsequently,we obtained the transcriptomic profiles of BMSCs at 1 mo,3 mo,and 7 mo.RESULTS The colony-forming and osteogenic commitment capacity showed a comparable finding that decreased at the age of 1 mo.The transcriptomic analysis showed the enrichment of osteoblastic regulation genes at 1 mo and loss of osteogenic features at 3 mo.The BMSCs at 7 mo showed enrichment of adipogenic and DNA repair features.Moreover,we demonstrated that the WNT and MAPK signaling pathways were upregulated at 1 mo,followed by increased pro-inflammatory and apoptotic features.CONCLUSION Our study uncovered the cellular and molecular dynamics of bone aging in mice and demonstrated the contribution of BMSCs to the early stage of age-related bone loss.
文摘OBJECTIVE: To explore the possibility of expression of exogenous gene in transduced bone marrow derived stromal cells (BMSCs). METHODS: The marker gene, pbLacZ, was transferred into cultured BMSCs and the expression of transduced gene by X-gal staining was examined. Then plasmid pcDNA3-rhBMP7 was delivered to cultured BMSCs. Through immunohistochemical staining and RT-PCR assay, the expression of rhBMP7 gene was detected. RESULTS: The exogenous gene could be expressed efficiently in transduced BMSCs. CONCLUSION: The present study provided a theoretical basis to gene therapy on the problems of bone and cartilage tissue.
基金This work was supported by Natural Science Foundation of Guangdong Province (No. 012452, No. 020001).
文摘Objective To investigate the differentiation of bone marrow stromal cells (BMSC) into neuron-like cells and to explore their potential use for neural transplantation. Methods BMSC from rats and adult humans were cultured in serum-containing media. Salvia miltiorrhiza was used to induce human BMSC (hBMSC) to differentiate. BMSC were identified with immunocytochemistry. Semi-quantitative RT-PCR was used to examine mRNA expression of neurofilamentl (NF1), nestin and neuron-specific enolase (NSE) in rat BMSC (rBMSC). Rat BMSC labelled by Hoschst33258 were transplanted into striatum of rats to trace migration and distribution. Results rBMSC expressed NSE, NFI and nestin mRNA, and NF1 mRNA and expression was increased with induction of Salvia miltiorrhiza. A small number of hBMSC were stained by anti-nestin, anti-GFAP and anti-S 100. Salvia miltiorrhiza could induce hBMSC to differentiate into neuron-like cells. Some differentiated neuron-like cells, that expressed NSE, beta-tubulin and NF-200, showed typical neuron morphology, but some neuron-like cells also expressed alpha smooth muscle protein, making their neuron identification complicated, rBMSC could migrate and adapted in the host brains after being transplanted. Conclusion Bone marrow stromal cells could express phenotypes of neurons, and Salvia milliorrhiza could induce hBMSC to differentiate into neuron-like cells, If BMSC could be converted into neurons instead of mesenchymal derivatives, they would be an abundant and accessible cellular source to treat a variety of neurological diseases.
文摘β-mercaptoethanol can induce adipose-derived stromal cells to rapidly and efficiently differentiate into neurons in vitro.However,because of the short survival time of the differentiated cells,clinical applications for this technique are limited.As such,we examined apoptosis of neurons differentiated from adipose-derived stromal cells induced with β-mercaptoethanol in vitro using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and transmission electron microscopy.The results revealed that the number of surviving cells decreased and apoptosis rate increased as induction time extended.Taken together,these results suggest that apoptosis occurring in the process of adipose-derived stromal cells differentiating into neurons is the main cause of cell death.However,the mechanism underlying cellular apoptosis should be researched further to develop methods of controlling apoptosis for clinical applications.
文摘β-mercaptoethanol induces in vitro adult adipose-derived stromal cells (ADSCs) to differentiate into neurons. However, the ultrastructural features of the differentiated neuronal-like cells remain unknown. In the present study, inverted phase contrast microscopy was utilized to observe β-mercaptoethanol-induced differentiation of neuronal-like cells from human ADSCs, and immunocytochemistry and real-time polymerase chain reaction were employed to detect expression of a neural stem cells marker (nestin), a neuronal marker (neuron-specific enolase), and a glial marker (glial fibrillary acidic protein). In addition, ultrastructure of neuronal-like cells was observed by transmission election microscopy. Results revealed highest expression rate of nestin and neuron-specific enolase at 3 and 5 hours following induced differentiation; cells in the 5-hour induction group exhibited a neuronal-specific structure, i.e., Nissl bodies. However, when induction solution was replaced by complete culture medium after 8-hour induction, the differentiated cells reverted to the fibroblast-like morphology from day 1. These results demonstrate that β-mercaptoethanol-induced ADSCs induced differentiation into neural stem cells, followed by morphology of neuronal-like cells. However, this differentiation state was not stable.
基金supported by a grant from the open fund ofKey Laboratory of Molecular Imaging of Hubei Province(No.2008-72)
文摘This study explored whether the transplantation of modified marrow stromal cells (MSCs) has angiogenic effects in a left middle cerebral artery occlusion infarction/reperfusion (MCAO I/R) rat model and preliminarily examined the mechanism of angiogenesis following cerebral infarction.MSCs were isolated by using a direct adherent method and cultured.Vascular endothelial growth factor (VEGF) was transfected into MSCs by employing the liposome transfection.The transfection efficiency was measured by the optical density method.The protein expression of VEGF gene before and after transfection was measured by Western blotting.SD rat model of transient occlusion of the left middle cerebral artery was established by using an approach of intra-luminal occlusion.Tetrazolium (TTC) and HE staining were performed to observe the cerebral infarction.ELISAs were used to measure the levels of VEGF in the rat cerebral tissues.The expression patterns of angiopoietin-2 (Ang-2) and CD34 in cells surrounding the area of infarction were immunohistochemistrically oserved.Ang-2 protein expression in the tissue surrounding the area of infarction was measured by Western blotting.VEGF expression in the MSCs increased after transfection at a rate of approximately 28%±3.4%.ELISA showed that the expression of VEGF in the cerebral tissue was significantly increased after induction of infarction,peaking on the 4th day and decreasing to the levels of the sham surgery group (normal) within 7 to 10 days.The VEGF level was significantly higher at each time point in the VEGF-MSC and MSC groups compared to the model group.Moreover,the VEGF level was higher in the VEGF-MSC group than in the MSC group and stayed relatively high until the 10th day.The immunohistochemical results showed that 10 days after the infarction,the number of Ang-2 and CD34-expressing cells in the area surrounding the infarction was significantly higher in the VEGF-MSC group and the MSC group compared to the model group.Moreover,the VEGF level was higher in the VEGF-MSC group than the MSC group.A similar trend in Ang-2 protein expression was revealed by Western blotting.In the MCAO rat model transfected with modified MSCs over-expressing VEGF,compared to the MSC transplantation group,the concentration of VEGF was significantly increased in the brain tissue after cerebral infarction.In addition,the level of Ang-2 was up-regulated,with angiogenesis promoted,the blood supply to the areas surrounding the cerebral infarction increased,and neurological function improved.We are led to speculate that the synergistic effects of VEGF and Ang-2 may be responsible for the angiogenesis following cerebral infarction.
基金Acknowledgment This research was funded by the following grants: the National Basic Research Program (973 Program, No.2009CB918900), the National Natural Science Foundation of China (grant No. 30672101, 30872592), the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20070055023) and the key research project of Tianjin Municipal Science and Technology Commission (grant No. 06YFSYSF02000, 07jczdjc08300). The authors declare that there is no conflict of interest that would prejudice the impartiality of this scientific work.
文摘It is known that human benign prostatic hyperplasia might arise from an estrogen/androgen (E/T) imbalance. We studied the response of castrated rat prostate to different ratios of circulating E/T. The castrated male Wistar rats were randomly injected with E/T at different ratios for 4 weeks. The prostates of E/T (1:100) group showed a distinct prostatic hyperplasia response by prostatic index, hematoxylin and eosin staining, and quantitative immunohistochemical analysis of a-smooth muscle actin (SMA). In this group, cells positive for Vimentin, non-muscle myosin heavy chain (NMMHC) and proliferating cell nuclear antigen (PCNA) increased in the stroma and epithelium. Furthermore, the mRNA levels of smooth muscle myosin heavy chain (SMMHC) and NMMHC increased. So E/T at a ratio of 1:100 can induce a stromal hyperplastic response in the prostate of castrated rats. The main change observed was an increase of smooth muscle cells, whereas some epithelial changes were also seen in the rat prostates.
文摘The quantity and survival time of astrocytes,which were differentiated from adult adipose-derived stromal cells after exposure to an inducer containing 3-isobutyl-1-methylxanthine,have thus far been unsatisfactory.The present study investigated the growth and differentiation characteristics of induced astrocytes by observing their growth curves.After induction for 48 hours with an inducer containing 0.5% ethanol,some adult adult adipose-derived stromal cells displayed typical astrocytic morphology.The cell quantity gradually decreased with prolonged induction time.Nestin,glial fibrillary acidic protein,and S-100 expression reached peak levels at 14 days,but neuron-specific enolase was not expressed.These results suggest that the induced astrocytes reached their peak at 14 days.Further optimization of the culture environment may yield mature astrocytes with normal functions,in greater quantity,and prolonged survival time.