We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale(for short,TCS) model coupled with Stokes equations in the whole space.The coupled system consists of the k...We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale(for short,TCS) model coupled with Stokes equations in the whole space.The coupled system consists of the kinetic TCS equation for a particle ensemble and the Stokes equations for a fluid via a drag force.In this paper,we present a complete analysis of the existence of global-in-time strong solutions to the coupled model without any smallness restrictions on the initial data.展开更多
The aims of this paper are to discuss global existence and uniqueness of strong solution for a class of isentropic compressible navier-Stokes equations with non-Newtonian in one-dimensional bounded intervals. We prove...The aims of this paper are to discuss global existence and uniqueness of strong solution for a class of isentropic compressible navier-Stokes equations with non-Newtonian in one-dimensional bounded intervals. We prove two global existence results on strong solutions of isentropic compressible Navier-Stokes equations. The first result shows only the existence. And the second one shows the existence and uniqueness result based on the first result, but the uniqueness requires some compatibility condition.展开更多
In this article, we are concerned with the strong solutions of the coupled Navier-Stokes-Poisson equations for isentropic compressible fluids in a domain Ω R^3. We prove the local existence of unique strong solution...In this article, we are concerned with the strong solutions of the coupled Navier-Stokes-Poisson equations for isentropic compressible fluids in a domain Ω R^3. We prove the local existence of unique strong solutions provided that the initial data u0 and u0 satisfy a nature compatibility condition. The important point in this article is that we allow the initial vacuum: the initial density may vanish in an open subset of Ω. This is achieved by getting some uniform estimates and using a Schauder fixed point theorem.展开更多
In this article, we are concerned with the strong solutions for the incompress- ible fluid models of Korteweg type in a bounded domain Ω СR^3. We prove the existence and uniqueness of local strong solutions to the i...In this article, we are concerned with the strong solutions for the incompress- ible fluid models of Korteweg type in a bounded domain Ω СR^3. We prove the existence and uniqueness of local strong solutions to the initial boundary value problem. We point out that in this article we allow the existence of initial vacuum provided initial data satisfy a compatibility condition.展开更多
In this article,we study the initial boundary value problem of the two-dimensional nonhomogeneous incompressible primitive equations and obtain the local existence and uniqueness of strong solutions.The initial vacuum...In this article,we study the initial boundary value problem of the two-dimensional nonhomogeneous incompressible primitive equations and obtain the local existence and uniqueness of strong solutions.The initial vacuum is allowed.展开更多
In this paper,the Cauchy problem for a two-phase model with a magnetic field in three dimensions is considered.Based on a new linearized system with respect to(c−c_(∞),P−P_(∞),u,H)for constants c_(∞)≥0 and P_(∞)&...In this paper,the Cauchy problem for a two-phase model with a magnetic field in three dimensions is considered.Based on a new linearized system with respect to(c−c_(∞),P−P_(∞),u,H)for constants c_(∞)≥0 and P_(∞)>0,the existence theory of global strong solution is established when the initial data is close to its equilibrium in three dimensions for the small H^(2) initial data.We improve the existence results obtained by Wen and Zhu in[40]where an additional assumption that the initial perturbations are bounded in L^(1)-norm was needed.The energy method combined with the low-frequency and high-frequency decomposition is used to derive the decay of the solution and hence the global existence.As a by-product,the time decay estimates of the solution and its derivatives in the L^(2)-norm are obtained.展开更多
In this article,we focus on the short time strong solution to a compressible quantum hydrodynamic model.We establish a blow-up criterion about the solutions of the compressible quantum hydrodynamic model in terms of t...In this article,we focus on the short time strong solution to a compressible quantum hydrodynamic model.We establish a blow-up criterion about the solutions of the compressible quantum hydrodynamic model in terms of the gradient of the velocity,the second spacial derivative of the square root of the density,and the first order time derivative and first order spacial derivative of the square root of the density.展开更多
This paper concerns the global existence of strong solutions to the 3 D compressible isothermal Navier-Stokes equations with a vacuum at infinity.Based on the special structure of the Zlotnik inequality,the time unifo...This paper concerns the global existence of strong solutions to the 3 D compressible isothermal Navier-Stokes equations with a vacuum at infinity.Based on the special structure of the Zlotnik inequality,the time uniform upper bounds for density are established through some time-dependant a priori estimates under the assumption that the total mass is suitably small.展开更多
The authors prove two global existence results of strong solutions of the isentropic compressible Navier-Stokes-Poisson equations in one-dimensional bounded intervals. The first result shows only the existence. And th...The authors prove two global existence results of strong solutions of the isentropic compressible Navier-Stokes-Poisson equations in one-dimensional bounded intervals. The first result shows only the existence. And the second one shows the existence and uniqueness result based on the first result, but the uniqueness requires some compatibility condition. In this paper the initial vacuum is allowed, and T is bounded.展开更多
In this paper, we study the Cauchy problem of the 2D incompressible magnetohydrodynamic equations in Lei-Lin space. The global well-posedness of a strong solution in the Lei-Lin space χ^(-1)(R^(2)) with any initial d...In this paper, we study the Cauchy problem of the 2D incompressible magnetohydrodynamic equations in Lei-Lin space. The global well-posedness of a strong solution in the Lei-Lin space χ^(-1)(R^(2)) with any initial data in χ^(-1)(R^(2)) ∩ L^(2)(R^(2)) is established. Furthermore, the uniqueness of the strong solution in χ^(-1)(R^(2)) and the Leray-Hopf weak solution in L^(2)(R^(2)) is proved.展开更多
We consider the Navier-Stokes system with non-Newtonian potential for heat-conducting incompressible fluids in a domain Ω R3. The viscosity, heat conduc- tion coefficients and specific heat at constant volume are all...We consider the Navier-Stokes system with non-Newtonian potential for heat-conducting incompressible fluids in a domain Ω R3. The viscosity, heat conduc- tion coefficients and specific heat at constant volume are allowed to depend smoothly on the density and temperature. We prove the existence of unique local strong solu- tions for all initial data satisfying a natural compatibility condition. The difficult of this type model is mainly that the equations are coupled with elliptic, parabolic and hyper- bolic, and the vacuum of density cause also much trouble, that is, the initial density need not be positive and may vanish in an open set.展开更多
In this paper, we consider the viscous, micropolar, compressible flow in one dimension. We give the proof of existence and uniqueness of strong solutions for the initial boundary problem that vacuum can be allowed ini...In this paper, we consider the viscous, micropolar, compressible flow in one dimension. We give the proof of existence and uniqueness of strong solutions for the initial boundary problem that vacuum can be allowed initially.展开更多
In this paper, the Dirichlet problem of Stokes approximate of non-homogeneous incompressible Navier-Stokes equations is studied. It is shown that there exist global weak solutions as well as global and unique strong s...In this paper, the Dirichlet problem of Stokes approximate of non-homogeneous incompressible Navier-Stokes equations is studied. It is shown that there exist global weak solutions as well as global and unique strong solution for this problem, under the assumption that initial density po(x) is bounded away from 0 and other appropriate assumptions (see Theorem 1 and Theorem 2). The semi-Galerkin method is applied to construct the approximate solutions and a prior estimates are made to elaborate upon the compactness of the approximate solutions.展开更多
We consider the Cauchy problem for one-dimensional compressible isentropic Navier-Stokes equations with density-dependent viscosity μ(ρ) = Aρα, where α〉 0 and A 〉0. The global existence of strong solutions is...We consider the Cauchy problem for one-dimensional compressible isentropic Navier-Stokes equations with density-dependent viscosity μ(ρ) = Aρα, where α〉 0 and A 〉0. The global existence of strong solutions is obtained, which improves the previous results by enlarging the interval of α. Moreover, our result shows that no vacuum is developed in a finite time provided the initial data does not contain vacuum.展开更多
In this paper we study the strong and weak property of travelling wave front solutions for a class of degenerate parabolic equations. How the strong and weak property changes under the effects of wave speed and reacti...In this paper we study the strong and weak property of travelling wave front solutions for a class of degenerate parabolic equations. How the strong and weak property changes under the effects of wave speed and reaction diffusion terms are showed.展开更多
I. Introduction In this paper we are looking for solutions of the following Hamiltonian system of second order: where x= (x1, x2) and V satisfies (V. 1) V: R×R2→R is a C1-function, 1-periodic In t, (V.2) V...I. Introduction In this paper we are looking for solutions of the following Hamiltonian system of second order: where x= (x1, x2) and V satisfies (V. 1) V: R×R2→R is a C1-function, 1-periodic In t, (V.2) V is periodic in x1 with the period T>0, (V. 3) V→O, Vx→O as |x2|→∞, uniformly in (t, x1).展开更多
In this paper, we mainly study the global L2 stability for large solutions to the MHD equations in three-dimensional bounded or unbounded domains. Under suitable conditions of the large solutions, it is shown that the...In this paper, we mainly study the global L2 stability for large solutions to the MHD equations in three-dimensional bounded or unbounded domains. Under suitable conditions of the large solutions, it is shown that the large solutions are stable. And we obtain the equivalent condition of this stability condition. Moreover, the global existence and the stability of two-dimensional MHD equations under three-dimensional perturbations are also established.展开更多
We study the initial boundary value problem for the three-dimensional isentropic compressible Navier-Stokes equations in the exterior domain outside a rotating obstacle,with initial density having a compact support.By...We study the initial boundary value problem for the three-dimensional isentropic compressible Navier-Stokes equations in the exterior domain outside a rotating obstacle,with initial density having a compact support.By the coordinate system attached to the obstacle and an appropriate transformation of unknown functions,we obtain the three-dimensional isentropic compressible Navier-Stokes equations with a rotation effect in a fixed exterior domain.We first construct a sequence of unique local strong solutions for the related approximation problems restricted in a sequence of bounded domains,and derive some uniform bounds of higher order norms,which are independent of the size of the bounded domains.Then we prove the local existence of unique strong solution of the problem in the exterior domain,provided that the initial data satisfy a natural compatibility condition.展开更多
In this paper, we study the Cauchy problem of the density-dependent Boussinesq equations of Korteweg type on the whole space with a vacuum. It is proved that there exists a unique strong solution for the two-dimension...In this paper, we study the Cauchy problem of the density-dependent Boussinesq equations of Korteweg type on the whole space with a vacuum. It is proved that there exists a unique strong solution for the two-dimensional Cauchy problem established that the initial density and the initial temperature decay not extremely slow. Particularly, it is allowed to be arbitrarily large for the initial data and vacuum states for the initial density, even including the compact support. Moreover, when the density depends on the Korteweg term with the viscosity coefficient and capillary coefficient, we obtain a consistent priority estimate by the energy method, and extend the local strong solutions to the global strong solutions. Finally, when the pressure and external force are not affected, we deform the fluid models of Korteweg type, we can obtain the large time decay rates of the gradients of velocity, temperature and pressure.展开更多
We prove the global existence and exponential decay of strong solutions to the three-dimensional nonhomogeneous asymmetric fluid equations with nonnegative density provided that the initial total energy is suitably sm...We prove the global existence and exponential decay of strong solutions to the three-dimensional nonhomogeneous asymmetric fluid equations with nonnegative density provided that the initial total energy is suitably small.Note that although the system degenerates near vacuum,there is no need to require compatibility conditions for the initial data via time-weighted techniques.展开更多
基金supported by the National Natural Science Foundation of China (12001033)。
文摘We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale(for short,TCS) model coupled with Stokes equations in the whole space.The coupled system consists of the kinetic TCS equation for a particle ensemble and the Stokes equations for a fluid via a drag force.In this paper,we present a complete analysis of the existence of global-in-time strong solutions to the coupled model without any smallness restrictions on the initial data.
文摘The aims of this paper are to discuss global existence and uniqueness of strong solution for a class of isentropic compressible navier-Stokes equations with non-Newtonian in one-dimensional bounded intervals. We prove two global existence results on strong solutions of isentropic compressible Navier-Stokes equations. The first result shows only the existence. And the second one shows the existence and uniqueness result based on the first result, but the uniqueness requires some compatibility condition.
基金Supported by National Natural Science Foundation of China-NSAF (10976026)
文摘In this article, we are concerned with the strong solutions of the coupled Navier-Stokes-Poisson equations for isentropic compressible fluids in a domain Ω R^3. We prove the local existence of unique strong solutions provided that the initial data u0 and u0 satisfy a nature compatibility condition. The important point in this article is that we allow the initial vacuum: the initial density may vanish in an open subset of Ω. This is achieved by getting some uniform estimates and using a Schauder fixed point theorem.
基金Supported by NSF (10531020) of Chinathe Programof 985 Innovation Engineering on Information in Xiamen University (2004-2007) and NCETXMU
文摘In this article, we are concerned with the strong solutions for the incompress- ible fluid models of Korteweg type in a bounded domain Ω СR^3. We prove the existence and uniqueness of local strong solutions to the initial boundary value problem. We point out that in this article we allow the existence of initial vacuum provided initial data satisfy a compatibility condition.
基金partially supported by the National Natural Science Foundation of China (11671273 and 11931010)key research project of the Academy for Multidisciplinary Studies of CNU and Beijing Natural Science Foundation (1192001).
文摘In this article,we study the initial boundary value problem of the two-dimensional nonhomogeneous incompressible primitive equations and obtain the local existence and uniqueness of strong solutions.The initial vacuum is allowed.
基金supported by the National Natural Science Foundation of China(11871341 and 12071152).
文摘In this paper,the Cauchy problem for a two-phase model with a magnetic field in three dimensions is considered.Based on a new linearized system with respect to(c−c_(∞),P−P_(∞),u,H)for constants c_(∞)≥0 and P_(∞)>0,the existence theory of global strong solution is established when the initial data is close to its equilibrium in three dimensions for the small H^(2) initial data.We improve the existence results obtained by Wen and Zhu in[40]where an additional assumption that the initial perturbations are bounded in L^(1)-norm was needed.The energy method combined with the low-frequency and high-frequency decomposition is used to derive the decay of the solution and hence the global existence.As a by-product,the time decay estimates of the solution and its derivatives in the L^(2)-norm are obtained.
基金The first author is supported by the National Natural Science Foundation of China(11801107)the second author is supported by the National Natural Science Foundation of China(11731014).
文摘In this article,we focus on the short time strong solution to a compressible quantum hydrodynamic model.We establish a blow-up criterion about the solutions of the compressible quantum hydrodynamic model in terms of the gradient of the velocity,the second spacial derivative of the square root of the density,and the first order time derivative and first order spacial derivative of the square root of the density.
基金partially supported by the National Natural Science Foundation of China(11701192)。
文摘This paper concerns the global existence of strong solutions to the 3 D compressible isothermal Navier-Stokes equations with a vacuum at infinity.Based on the special structure of the Zlotnik inequality,the time uniform upper bounds for density are established through some time-dependant a priori estimates under the assumption that the total mass is suitably small.
基金the National Natural Science Foundation of China (No.10531020)the Program of 985 Innovation Engineering on Information in Xiamen University (2004-2007)the New Century Excellent Talents in Xiamen University
文摘The authors prove two global existence results of strong solutions of the isentropic compressible Navier-Stokes-Poisson equations in one-dimensional bounded intervals. The first result shows only the existence. And the second one shows the existence and uniqueness result based on the first result, but the uniqueness requires some compatibility condition. In this paper the initial vacuum is allowed, and T is bounded.
基金the National Natural Science Foundation of China (No. 11471103)。
文摘In this paper, we study the Cauchy problem of the 2D incompressible magnetohydrodynamic equations in Lei-Lin space. The global well-posedness of a strong solution in the Lei-Lin space χ^(-1)(R^(2)) with any initial data in χ^(-1)(R^(2)) ∩ L^(2)(R^(2)) is established. Furthermore, the uniqueness of the strong solution in χ^(-1)(R^(2)) and the Leray-Hopf weak solution in L^(2)(R^(2)) is proved.
文摘We consider the Navier-Stokes system with non-Newtonian potential for heat-conducting incompressible fluids in a domain Ω R3. The viscosity, heat conduc- tion coefficients and specific heat at constant volume are allowed to depend smoothly on the density and temperature. We prove the existence of unique local strong solu- tions for all initial data satisfying a natural compatibility condition. The difficult of this type model is mainly that the equations are coupled with elliptic, parabolic and hyper- bolic, and the vacuum of density cause also much trouble, that is, the initial density need not be positive and may vanish in an open set.
文摘In this paper, we consider the viscous, micropolar, compressible flow in one dimension. We give the proof of existence and uniqueness of strong solutions for the initial boundary problem that vacuum can be allowed initially.
基金the National Natural Science Foundation of China(No.10431060)
文摘In this paper, the Dirichlet problem of Stokes approximate of non-homogeneous incompressible Navier-Stokes equations is studied. It is shown that there exist global weak solutions as well as global and unique strong solution for this problem, under the assumption that initial density po(x) is bounded away from 0 and other appropriate assumptions (see Theorem 1 and Theorem 2). The semi-Galerkin method is applied to construct the approximate solutions and a prior estimates are made to elaborate upon the compactness of the approximate solutions.
基金supported by the National Natural Science Foundation of China under Grant No.11301244the Foundation of Education Department of Liaoning Province of China under Grant L2013006+1 种基金the Doctor Startup Foundation of Liaoning Province of China Grant 20131040supported by the National Natural Science Foundation of China under Grant No.11371297
文摘We consider the Cauchy problem for one-dimensional compressible isentropic Navier-Stokes equations with density-dependent viscosity μ(ρ) = Aρα, where α〉 0 and A 〉0. The global existence of strong solutions is obtained, which improves the previous results by enlarging the interval of α. Moreover, our result shows that no vacuum is developed in a finite time provided the initial data does not contain vacuum.
文摘In this paper we study the strong and weak property of travelling wave front solutions for a class of degenerate parabolic equations. How the strong and weak property changes under the effects of wave speed and reaction diffusion terms are showed.
文摘I. Introduction In this paper we are looking for solutions of the following Hamiltonian system of second order: where x= (x1, x2) and V satisfies (V. 1) V: R×R2→R is a C1-function, 1-periodic In t, (V.2) V is periodic in x1 with the period T>0, (V. 3) V→O, Vx→O as |x2|→∞, uniformly in (t, x1).
基金supported by 973 Program(2011CB711100)supported by NSFC (11171229)
文摘In this paper, we mainly study the global L2 stability for large solutions to the MHD equations in three-dimensional bounded or unbounded domains. Under suitable conditions of the large solutions, it is shown that the large solutions are stable. And we obtain the equivalent condition of this stability condition. Moreover, the global existence and the stability of two-dimensional MHD equations under three-dimensional perturbations are also established.
基金supported by NSFC(11421061)by National Science Foundation of Shanghai(15ZR1403900).
文摘We study the initial boundary value problem for the three-dimensional isentropic compressible Navier-Stokes equations in the exterior domain outside a rotating obstacle,with initial density having a compact support.By the coordinate system attached to the obstacle and an appropriate transformation of unknown functions,we obtain the three-dimensional isentropic compressible Navier-Stokes equations with a rotation effect in a fixed exterior domain.We first construct a sequence of unique local strong solutions for the related approximation problems restricted in a sequence of bounded domains,and derive some uniform bounds of higher order norms,which are independent of the size of the bounded domains.Then we prove the local existence of unique strong solution of the problem in the exterior domain,provided that the initial data satisfy a natural compatibility condition.
文摘In this paper, we study the Cauchy problem of the density-dependent Boussinesq equations of Korteweg type on the whole space with a vacuum. It is proved that there exists a unique strong solution for the two-dimensional Cauchy problem established that the initial density and the initial temperature decay not extremely slow. Particularly, it is allowed to be arbitrarily large for the initial data and vacuum states for the initial density, even including the compact support. Moreover, when the density depends on the Korteweg term with the viscosity coefficient and capillary coefficient, we obtain a consistent priority estimate by the energy method, and extend the local strong solutions to the global strong solutions. Finally, when the pressure and external force are not affected, we deform the fluid models of Korteweg type, we can obtain the large time decay rates of the gradients of velocity, temperature and pressure.
基金supported by National Natural Science Foundation of China(11701193,11671086)Natural Science Foundation of Fujian Province(2018J05005,2017J01562)+3 种基金Program for Innovative Research Team in Science and Technology in Fujian Province University Quanzhou High-Level Talents Support Plan(2017ZT012)supported by National Natural Science Foundation of China(11901474)the Chongqing Talent Plan for Young Topnotch Talents(CQYC202005074)the Innovation Support Program for Chongqing Overseas Returnees(cx2020082).
文摘We prove the global existence and exponential decay of strong solutions to the three-dimensional nonhomogeneous asymmetric fluid equations with nonnegative density provided that the initial total energy is suitably small.Note that although the system degenerates near vacuum,there is no need to require compatibility conditions for the initial data via time-weighted techniques.