Fe-N-C catalysts are widely considered as promising non-precious-metal candidates for electrocatalytic oxygen reduction reaction(ORR),Yet despite their high catalytic activity through rational modulation,challenges re...Fe-N-C catalysts are widely considered as promising non-precious-metal candidates for electrocatalytic oxygen reduction reaction(ORR),Yet despite their high catalytic activity through rational modulation,challenges remain in their low site density and unsatisfactory mass transfer structure.Herein,we present a structural engineering approach employing a soft-template coating strategy to fabricate a hollow and hierarchically porous N-doped carbon framework anchored with atomically dispersed Fe sites(FeNCh) as an efficient ORR catalyst.The combination of hierarchical porosity and high exterior surface area is proven crucial for exposing more active sites,which gives rise to a remarkable ORR performance with a half-wave potential of 0.902 V in 0.1 m KOH and 0.814 V in 0.1 m HClO_(4),significantly outperforming its counterpart with solid structure and dominance of micropores(FeNC-s).The mass transfer property is revealed by in-situ electrochemical impedance spectroscopy(EIS) measurement.The distribution of relaxation time(DRT) analysis is further introduced to deconvolve the kinetic and mass transport processes,which demonstrates an alleviated mass transport resistance for FeNC-h,validating the effectiveness of structural engineering.This work not only provides an effective structural engineering approach but also contributes to the comprehensive mass transfer evaluation on advanced electrocatalyst for energy conversion applications.展开更多
Surface structural engineering is desirable in modifying the surface performance of carbonyl iron powder(CIP)to enhance microwave absorption(MA)and anti-oxidation performance.Herein,the surface shape-dependent CIP abs...Surface structural engineering is desirable in modifying the surface performance of carbonyl iron powder(CIP)to enhance microwave absorption(MA)and anti-oxidation performance.Herein,the surface shape-dependent CIP absorbers are designed via surface coating with zinc oxide(ZnO)nanoparticles and then a thermal annealing treatment.The morphology of ZnO nanoparticles which can be easily regulated by controlling the annealing temperature ultimately affects the MA performance of CIP coating with ZnO nanoparticles(CIP@ZnO).The core-shell CIP@ZnO particles with cubic cone ZnO nanoparticles exhibit ex-cellent MA performance and thermal stability in comparison to the original CIP.Specifically,the CIP@ZnO annealed at 350 ℃(CIP@ZnO-350)samples which have the cubic cone ZnO nanoparticles exhibit a min-imum reflection loss(RLmin)of-55.35 dB at a thickness of 2.1 mm and a maximum effective absorp-tion bandwidth(EAB)of 7.09 GHz at a thickness of 2.0 mm.In addition,the antioxidant property of the CIP@ZnO composite particles is abruptly enhanced,which breaks the restriction of the application of CIP at high temperatures.The superior MA performance of CIP@ZnO particles with cubic cone ZnO nanoparti-cles comes from the enhancement in surface shape-dependent multiple microwave scattering,interfacial polarization,and electromagnetic-dielectric synergism between ZnO and CIP.展开更多
Antimony(Sb)is recognized as a potential electrode material for sodium-ion batteries(SIBs)due to its huge reserves,affordability,and high theoretical capacity(660 mAh·g^(-1)).However,Sb-based materials experience...Antimony(Sb)is recognized as a potential electrode material for sodium-ion batteries(SIBs)due to its huge reserves,affordability,and high theoretical capacity(660 mAh·g^(-1)).However,Sb-based materials experience significant volume expansion during cycling,leading to comminution of the active substance and limiting their practical use in SIBs.Therefore,the volume expansion issue of Sb-based materials during charging/discharging must be solved to create high-performance SIBs.This paper presents a detailed review of structural engineering of Sb-based electrode materials,focusing on the performance effects of different kinds of structures on advanced performance SIBs.Finally,the future development and the challenges of Sb-based materials are prospected.This paper can provide specific perspectives on the structure construction and optimization of Sb-based anode materials so as to promote the rapid development and practical applications of SIBs.展开更多
Herein,we report three novel electron-deficient aromatics,ethenylene-bridged bisisoindigos 3,3′-((3E,3′E)-((E)-ethene-1,2-diyl)bis(1-(4-decyltetradecyl)-2-oxoind-oline-6-yl-3-ylidene))bis(1-(4-decyltetradecyl)-1,3-d...Herein,we report three novel electron-deficient aromatics,ethenylene-bridged bisisoindigos 3,3′-((3E,3′E)-((E)-ethene-1,2-diyl)bis(1-(4-decyltetradecyl)-2-oxoind-oline-6-yl-3-ylidene))bis(1-(4-decyltetradecyl)-1,3-dihydro-2H-pyrrolo[2,3-b]pyridin-2-one)(NCCN),3,3′-((3E,3′E)-((E)-ethene-1,2-diyl)bis(1-(4-decyltetradecyl)-7-fluoro-2-oxoindoline-6-yl-3-ylidene))bis(1-(4-decyltetradecyl)-1,3-dihydro-2H-pyrrolo[2,3-b]pyridin-2-one)(NFFN),and(3E,3″E)-6,6″-((E)-ethene-1,2-diyl)bis(1,1′-bis(4-decyltetradecyl)-[3,3′-bipyrrolo[2,3-b]pyridinylidene]-2,2′(1H,1′H)-dione)(NNNN),and their derived donor–acceptor(D–A)copolymers,namely poly[3,3′-((3E,3′E)-((E)-ethene-1,2-diyl)bis(1-(4-decyltetradecyl)-2-oxoindoline-6-yl-3-ylidene))bis(1-(4-decyltetradecyl)-1,3-dihydro-2H-pyrrolo[2,3-b]pyridin-2-one-6-yl)]-alt-[5,6-difluoro-4,7-di[(thiophen-2-yl)-5-yl)]benzo[c][1,2,5]thiadiazole](PNCCN-FBT),poly[3,3′-((3E,3′E)-((E)-ethene-1,2-diyl)bis(1-(4-decyltetradecyl)-7-fluoro-2-oxoindoline-6-yl-3-ylidene))bis(1-(4-decyltetradecyl)-1,3-dihydro-2H-pyrrolo[2,3-b]pyridin-2-one-6-yl)]-alt-[5,6-difluoro-4,7-di[(thiophen-2-yl)-5-yl)]benzo[c][1,2,5]thiadiazole](PNFFNFBT),and poly[(3E,3″E)-6′,6‴-((E)-ethene-1,2-diyl)bis(1,1′-bis(4-decyltetradecyl)-[3,3′-bipyrrolo[2,3-b]pyridinylidene]-2,2′(1H,1′H)-dione-6-yl)]-alt-[5,6-difluoro-4,7-di[(thiophen-2-yl)-5-yl)]benzo[c][1,2,5]thiadiazole](PNNNN-FBT),in which 5,6-difluoro-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole(FBT)acts as the electron-donating units.The ethenylene-bridging unit reduces the steric hindrance of the three bisisoindigos.Incorporation of heteroatoms,such as fluorine and sp2-nitrogen atoms,endows them with multiple CH···F,CH···N,and N···S intramolecular hydrogen bonds/nonbinding interactions,resulting in increasing backbone planarity from NCCN,NFFN,to NNNN,and thus from PNCCN-FBT,PNFFN-FBT,to PNNNN-FBT.We found that all copolymers formed an improved molecular packing in the 1-chloronaphthalene(CN)-processed thin film compared with the 1,2-dichlorobenzene-processed one.The CN-processed PNCCN-FBT-based polymer field-effect transistors showed ambipolar transport characteristics with the electron mobility(μe)and hole mobility of 1.20 and 0.46 cm^(2)V^(−1)^s(−1),respectively,while the PNFFN-FBT-and PNNNN-FBT-based ones afforded unique n-type transport characteristics with impressively highμe up to 3.28 cm^(2)V^(−1)^s(−1).The lower frontier molecular orbital energy levels of PNFFN-FBT are the key reason for its higherμe.This study demonstrated that heteroatom structural engineering on ethenylene-bridged bisisoindigos is an effective way to construct high-performance n-type polymer semiconductors.展开更多
As a two-dimensional(2D) material, polymeric carbon nitride(g-C_3N_4) nanosheet holds great potentials in environmental purification and solar energy conversion. In this review, we summarized latest progress in the op...As a two-dimensional(2D) material, polymeric carbon nitride(g-C_3N_4) nanosheet holds great potentials in environmental purification and solar energy conversion. In this review, we summarized latest progress in the optimization of photocatalytic performance in 2D g-C_3N_4. Some of the latest structural engineering methods were summed up, where the relevant influences on the behaviors of photoinduced species were emphasized. Furthermore, the construction strategies for band structure modulation and charge separation promotion were then discussed in detail. A brief discussion on the opportunity and challenge of 2D g-C_3N_4-based photocatalysis are presented as the conclusion of this review.展开更多
Carbon nitride(C_(3)N_(4))holds great promise for photocatalytic H_(2)O_(2)production from oxygen reduction.In spite of great research efforts,they still suffer from low catalytic efficiency primarily limited by the f...Carbon nitride(C_(3)N_(4))holds great promise for photocatalytic H_(2)O_(2)production from oxygen reduction.In spite of great research efforts,they still suffer from low catalytic efficiency primarily limited by the fast recombination of photogenerated charge carriers.In this work,we report the multiscale structural engineering of C_(3)N_(4)to significantly improve its optoelectronic properties and consequently photocatalytic performance.The product consists of porous spheres with high surface areas,abundant nitrogen defects,and alkali metal doping.Under visible light irradiation,our catalyst shows a remarkable H_(2)O_(2)production rate of 3,080μmol·g^(−1)·h^(−1),which is more than 10 times higher than that of bulk C_(3)N_(4)and exceeds those of most other C_(3)N_(4)-based photocatalysts.Moreover,the catalyst exhibits great stability,and can continuously work for 15 h without obvious activity decay under visible light irradiation,eventually giving rise to a high H_(2)O_(2)concentration of ca.45 mM.展开更多
Owing to the high theoretical capacity,metal sulfides have emerged as promising anode materials for potassium-ion batteries(PIBs).However,sluggish kinetics,drastic volume expansion,and polysulfide dissolution during c...Owing to the high theoretical capacity,metal sulfides have emerged as promising anode materials for potassium-ion batteries(PIBs).However,sluggish kinetics,drastic volume expansion,and polysulfide dissolution during charge/discharge result in unsatisfactory electrochemical performance.Herein,we design a core-shell structure consisting of an active bismuth sulfide core and a highly conductive sulfur-doped carbon shell(Bi2S3@SC)as a novel anode material for PIBs.Benefiting from its unique core-shell structure,this Bi2S3@SC is endowed with outstanding potassium storage performance with high specific capacity(626 mAh·g^(-1)under 50 mA·g^(-1))and excellent rate capability(268.9 mAh·g^(-1)at 1 A·g^(-1)).More importantly,a Bi2S3@SC//KFe[Fe(CN)6]full cell is successfully fabricated,which achieves a high reversible capacity of 257 mAh·g^(-1)at 50 mA·g^(-1)over 50 cycles,holding great potentials in practical applications.Density functional theory(DFT)calculations reveal that potassium ions have a low diffusion barrier of 0.54 eV in Bi2S3 due to the weak van der Waals interactions between layers.This work heralds a promising strategy in the structural design of high-performance anode materials for PIBs.展开更多
Noble-metal-free surface-enhanced Raman scattering(SERS)substrates have attracted great attention for their abundant sources,good signal uniformity,superior biocompatibility,and high chemical stability.However,the lac...Noble-metal-free surface-enhanced Raman scattering(SERS)substrates have attracted great attention for their abundant sources,good signal uniformity,superior biocompatibility,and high chemical stability.However,the lack of controllable synthesis and fabrication of noble-metal-free substrates with high SERS activity impedes their practical applications.Herein,we propose a general strategy to fabricate a series of planar transition-metal nitride(TMN)SERS chips via an ambient temperature sputtering deposition route.For the first time,tungsten nitride(WN)and tantalum nitride(TaN)are used as SERS materials.These planar TMN chips show remarkable Raman enhancement factors(EFs)with~105 owing to efficient photoinduced charge transfer process between TMN chips and probe molecules.Further,structural engineering of these TMN chips is used to improve their SERS activity.Benefiting from the synergistic effect of charge transfer process and electric field enhancement by constructing a nanocavity structure,the Raman EF of WN nanocavity chips could be greatly improved to~1.29×10^(7),which is an order of magnitude higher than that of planar chips.Moreover,we also design the WN/monolayer MoS2 heterostructure chips.With the increase of surface electron density on the upper WN and more exciton resonance transitions in the heterostructure,a~1.94×10^(7)level EF and a 5×10^(-10)M level detection limit could be achieved.Our results provide important guidance for the structural design of ultrasensitive noble-metal-free SERS chips.展开更多
Causality is the science of cause and effect.It is through causality that explanations can be derived,theories can be formed,and new knowledge can be discovered.This paper presents a modern look into establishing caus...Causality is the science of cause and effect.It is through causality that explanations can be derived,theories can be formed,and new knowledge can be discovered.This paper presents a modern look into establishing causality within structural engineering systems.In this pursuit,this paper starts with a gentle introduction to causality.Then,this paper pivots to contrast commonly adopted methods for inferring causes and effects,i.e.,induction(empiricism)and deduc-tion(rationalism),and outlines how these methods continue to shape our structural engineering philosophy and,by extension,our domain.The bulk of this paper is dedicated to establishing an approach and criteria to tie principles of induction and deduction to derive causal laws(i.e.,mapping functions)through explainable artificial intelligence(XAI)capable of describing new knowledge pertaining to structural engineering phenomena.The proposed approach and criteria are then examined via a case study.展开更多
The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various field...The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various fields,such as catalysis,energy storage,sensing,etc.In recent years,a lot of research work on TMDs based functional materials in the fields of electromagnetic wave absorption(EMA)has been carried out.Therefore,it is of great significance to elaborate the influence of TMDs on EMA in time to speed up the application.In this review,recent advances in the development of electromagnetic wave(EMW)absorbers based on TMDs,ranging from the VIB group to the VB group are summarized.Their compositions,microstructures,electronic properties,and synthesis methods are presented in detail.Particularly,the modulation of structure engineering from the aspects of heterostructures,defects,morphologies and phases are systematically summarized,focusing on optimizing impedance matching and increasing dielectric and magnetic losses in the EMA materials with tunable EMW absorption performance.Milestones as well as the challenges are also identified to guide the design of new TMDs based dielectric EMA materials with high performance.展开更多
Topometric auscultation is used to monitor the durability of structures, measure deformations linked to the structure of a structure or to the movement of the ground over a part of the globe, set up warning systems, e...Topometric auscultation is used to monitor the durability of structures, measure deformations linked to the structure of a structure or to the movement of the ground over a part of the globe, set up warning systems, etc. It first appeared as a visual method and rapidly evolved through the various techniques used. Some of these techniques using topography are used in several fields (civil engineering, geodesy, topography, mechanics, nuclear engineering, hydraulics, physics, etc.). These topometric techniques have undergone major changes as a result of technological advances, growing needs in the monitoring of movements or deformations, increased requirements and new challenges. The methodology adopted depends on the measuring instrument used, the parameters to be estimated and access to the area to be measured. There are two types of methods: destructive and non-destructive. In addition to the visual method, they can also be classified as mechanical, physico-chemical, dynamometric, electrophysical and geometric. The estimated parameter varies according to the methodology adopted. It can be defined by coordinates, distances, potential, electrical resistance, etc.展开更多
Doping with various impurities is an effective approach to improve the photoelectrochemical properties of TiO2. Here, we explore the effect of oxygen vacancy on geometric and elec- tronic properties of compensated (i...Doping with various impurities is an effective approach to improve the photoelectrochemical properties of TiO2. Here, we explore the effect of oxygen vacancy on geometric and elec- tronic properties of compensated (i.e. V-N and Cr-C) and non-compensated (i.e. V-C and Cr-N) codoped anatase TiO2 by performing extensive density functional theory calculations. Theoretical results show that oxygen vacancy prefers to the neighboring site of metal dopant (i.e. V or Cr atom). After introduction of oxygen vacancy, the unoccupied impurity bands located within band gap of these codoped TiO2 will be filled with electrons, and the posi- tion of conduction band offset does not change obviously, which result in the reduction of photoinduced carrier recombination and the good performance for hydrogen production via water splitting. Moreover, we find that oxygen vacancy is easily introduced in V-N codoped TiO2 under O-poor condition. These theoretical insights are helpful for designing codoped TiO2 with high photoelectrochemical performance.展开更多
Metal halide perovskite nanostructures have emerged as low-dimensional semiconductors of great significance in many fields such as photovoltaics,photonics,and optoelectronics.Extensive efforts on the controlled synthe...Metal halide perovskite nanostructures have emerged as low-dimensional semiconductors of great significance in many fields such as photovoltaics,photonics,and optoelectronics.Extensive efforts on the controlled synthesis of perovskite nanostructures have been made towards potential device applications.The engineering of their band structures holds great promise in the rational tuning of the electronic and optical properties of perovskite nanostructures,which is one of the keys to achieving efficient and multifunctional optoelectronic devices.In this article,we summarize recent advances in band structure engineering of perovskite nanostructures.A survey of bandgap engineering of nanostructured perovskites is firstly presented from the aspects of dimensionality tailoring,compositional substitution,phase segregation and transition,as well as strain and pressure stimuli.The strategies of electronic doping are then reviewed,including defect-induced self-doping,inorganic or organic molecules-based chemical doping,and modification by metal ions or nanostructures.Based on the bandgap engineering and electronic doping,discussions on engineering energy band alignments in perovskite nanostructures are provided for building high-performance perovskite p-n junctions and heterostructures.At last,we provide our perspectives in engineering band structures of perovskite nanostructures towards future low-energy optoelectronics technologies.展开更多
Artificially constructed van der Waals heterostructures(vdWHs)provide an ideal platform for realizing emerging quantum phenomena in condensed matter physics.Two methods for building vdWHs have been developed:stacking ...Artificially constructed van der Waals heterostructures(vdWHs)provide an ideal platform for realizing emerging quantum phenomena in condensed matter physics.Two methods for building vdWHs have been developed:stacking two-dimensional(2D)materials into a bilayer structure with different lattice constants,or with different orientations.The interlayer coupling stemming from commensurate or incommensurate superlattice pattern plays an important role in vdWHs for modulating the band structures and generating new electronic states.In this article,we review a series of novel quantum states discovered in two model vdWH systems—graphene/hexagonal boron nitride(hBN)hetero-bilayer and twisted bilayer graphene(tBLG),and discuss how the electronic structures are modified by such stacking and twisting.We also provide perspectives for future studies on hetero-bilayer materials,from which an expansion of 2D material phase library is expected.展开更多
In civil engineering, the nonlinear dynamic instability of structures occurs at a bifurcation point or a limit point. The instability at a bifurcation point can be analyzed with the theory of nonlinear dynamics, and t...In civil engineering, the nonlinear dynamic instability of structures occurs at a bifurcation point or a limit point. The instability at a bifurcation point can be analyzed with the theory of nonlinear dynamics, and that at a limit point can be discussed with the theory of elastoplasticity. In this paper, the nonlinear dynamic instability of structures was treated with mathematical and mechanical theories. The research methods for the problems of structural nonlinear dynamic stability were discussed first, and then the criterion of stability or instability of structures, the method to obtain the bifurcation point and the limit point, and the formulae of the directions of the branch solutions at a bifurcation point were elucidated. These methods can be applied to the problems of nonlinear dynamic instability of structures such as reticulated shells, space grid structures, and so on. Key words nonlinear dynamic instability - engineering structures - non-stationary nonlinear system - bifurcation point - instability at a bifurcation point - limit point MSC 2000 74K25 Project supported by the Science Foundation of Shanghai Municipal Commission of Education (Grant No. 02AK04), the Science Foundation of Shanghai Municipal Commission of Science and Technology (Grant No. 02ZA14034)展开更多
An adaptive Fourier Transform (FT) with an optimal window has been proposed for the time-frequency analysis of nonstationary time series. The method allows for a good estimation of both frequency and amplitude of th...An adaptive Fourier Transform (FT) with an optimal window has been proposed for the time-frequency analysis of nonstationary time series. The method allows for a good estimation of both frequency and amplitude of the spectrum and can be easily applied to the general case of time-varying signals. The evaluation of the proposed approach has been performed on measured time-varying signals from a suspension bridge model and a steel frame model whose data have the typical non-stationary characteristics. The numerical results show that the proposed approach can overcome some of the difficulties encountered in the classic Fourier transform technique and can achieve higher computation accuracy.展开更多
Neural networks are being used to construct meta-models in numerical simulation of structures.In addition to network structures and training algorithms,training samples also greatly affect the accuracy of neural netwo...Neural networks are being used to construct meta-models in numerical simulation of structures.In addition to network structures and training algorithms,training samples also greatly affect the accuracy of neural network models.In this paper,some existing main sampling techniques are evaluated,including techniques based on experimental design theory, random selection,and rotating sampling.First,advantages and disadvantages of each technique are reviewed.Then,seven techniques are used to generate samples for training radial neural networks models for two benchmarks:an antenna model and an aircraft model.Results show that the uniform design,in which the number of samples and mean square error network models are considered,is the best sampling technique for neural network based meta-model building.展开更多
In the design of building structures,joint efforts must be decided to resolve the depth of competent layers across the intended site to safeguard the durability of civil engineering structures and to avert the disastr...In the design of building structures,joint efforts must be decided to resolve the depth of competent layers across the intended site to safeguard the durability of civil engineering structures and to avert the disastrous consequences of structural failure and collapse.In this study,an integrated methodology that employed DC resistivity tomography involving 2-D and 3-D techniques and geotechnical-soil analysis was used to evaluate subsoil conditions for engineering site investigation at Okerenkoko primary school,in the Warri-southwest area of Delta State,to adduce the phenomena responsible for the visible cracks/structural failure observed in the buildings.The results obtained brought to light the geological structure beneath the subsurface,which consists of four geoelectric layers identified as topsoil,dry/lithified upper sandy layer,wet sand(water-saturated)and peat/clay/sandy clayey soil(highly water-saturated).The deeply-seated peat/clay materials(ρ≤20Ωm)were delineated in the study area to the depths of 17.1 m and 19.8 m from 2-D and 3-D tomography respectively.3-D images presented as horizontal depth slices revealed the dominance of very low resistivity materials i.e.peat/clay/sandy clay within the fourth,fifth and sixth layers at depths ranging from 8.68-12.5 m,12.5-16.9 m and 16.9-21.9 m respectively.The dominance of mechanically unstable peat/clay/sandy clay layers beneath the subsurface,which are highly mobile in response to volumetric changes,is responsible for the noticeable cracks/failure detected on structures within the study site.These observations were validated by a geotechnical test of soil samples in the study area.Atterberg’s limits of the samples revealed plasticity indices of zero.Thus,the soil samples within the depth analyzed were representatives of sandy soil that does not possess any plasticity.The methods justifiably provided relevant information on the subsurface geology beneath the study site and should be appropriated as major tools for engineering site assessment/geotechnical projects.展开更多
Lithium-sulfur batteries(LSBs)boasting remarkable energy density have garnered significant attention within academic and industrial spheres.Nevertheless,the progression of LSBs remains constrained by the languid redox...Lithium-sulfur batteries(LSBs)boasting remarkable energy density have garnered significant attention within academic and industrial spheres.Nevertheless,the progression of LSBs remains constrained by the languid redox kinetics intrinsic to sulfur and the pronounced shuttle effect induced by lithium polysulfides(Li PSs),which seriously affecting the energy density,cycling life and rate capacity.The conceptualization and implementation of catalytic materials stand acknowledged as a propitious stratagem for orchestrating kinetic modulation,particularly in excavating the conversion of LiPSs and has evolved into a focal point for disposing.Among them,chalcogenide catalytic materials(CCMs)have shown satisfactory catalytic effects ascribe to the unique physicochemical properties,and have been extensively developed in recent years.Considering the lack of systematic summary regarding the development of CCMs and corresponding performance optimization strategies,herein,we initiate a comprehensive review regarding the recent progress of CCMs for effective collaborative immobilization and accelerated transformation kinetics of Li PSs.Following that,the modulation strategies to improve the catalytic activity of CCMs are summarized,including structural engineering(morphology engineering,surface/interface engineering,crystal engineering)and electronic engineering(doping and vacancy,etc.).Finally,the application prospect of CCMs in LSBs is clarified,and some enlightenment is provided for the reasonable design of CCMs serving practical LSBs.展开更多
In this review,we discuss the electrochemical properties of Prussian blue(PB)for Na^(+)storage by combining structural engineering and electrolyte modifications.We integrated experimental data and density functional t...In this review,we discuss the electrochemical properties of Prussian blue(PB)for Na^(+)storage by combining structural engineering and electrolyte modifications.We integrated experimental data and density functional theory(DFT)in sodium-ion battery(SIB)research to refine the atomic arrangements and crystal lattices and introduce substitutions and dopants.These changes affect the lattice stability,intercalation,electronic and ionic conductivities,and electrochemical performance.We unraveled the intricate structure-electrochemical behavior relationship by combining experimental data with computational models,including first-principles calculations.This holistic approach identified techniques for optimizing PB and Prussian blue analog(PBA)structu ral properties for SIBs.We also discuss the tuning of electrolytes by systematically adjusting their composition,concentration,and additives using a combination of molecular dynamics(MD)simulations and DFT computations.Our review offers a comprehensive assessment of strategies for enhancing the electrochemical properties of PB and PBAs through structural engineering and electrolyte modifications,combining experimental insights with advanced computational simulations,and paving the way for next-generation energy storage systems.展开更多
基金National Natural Science Foundation of China (Nos. 22078242 and U20A20153)Applied Basic Research Program of Yunnan Province (Nos. 202101BE070001-032 and 202101BH070002)。
文摘Fe-N-C catalysts are widely considered as promising non-precious-metal candidates for electrocatalytic oxygen reduction reaction(ORR),Yet despite their high catalytic activity through rational modulation,challenges remain in their low site density and unsatisfactory mass transfer structure.Herein,we present a structural engineering approach employing a soft-template coating strategy to fabricate a hollow and hierarchically porous N-doped carbon framework anchored with atomically dispersed Fe sites(FeNCh) as an efficient ORR catalyst.The combination of hierarchical porosity and high exterior surface area is proven crucial for exposing more active sites,which gives rise to a remarkable ORR performance with a half-wave potential of 0.902 V in 0.1 m KOH and 0.814 V in 0.1 m HClO_(4),significantly outperforming its counterpart with solid structure and dominance of micropores(FeNC-s).The mass transfer property is revealed by in-situ electrochemical impedance spectroscopy(EIS) measurement.The distribution of relaxation time(DRT) analysis is further introduced to deconvolve the kinetic and mass transport processes,which demonstrates an alleviated mass transport resistance for FeNC-h,validating the effectiveness of structural engineering.This work not only provides an effective structural engineering approach but also contributes to the comprehensive mass transfer evaluation on advanced electrocatalyst for energy conversion applications.
基金National Natural Science Foundation of China(No.52173264).
文摘Surface structural engineering is desirable in modifying the surface performance of carbonyl iron powder(CIP)to enhance microwave absorption(MA)and anti-oxidation performance.Herein,the surface shape-dependent CIP absorbers are designed via surface coating with zinc oxide(ZnO)nanoparticles and then a thermal annealing treatment.The morphology of ZnO nanoparticles which can be easily regulated by controlling the annealing temperature ultimately affects the MA performance of CIP coating with ZnO nanoparticles(CIP@ZnO).The core-shell CIP@ZnO particles with cubic cone ZnO nanoparticles exhibit ex-cellent MA performance and thermal stability in comparison to the original CIP.Specifically,the CIP@ZnO annealed at 350 ℃(CIP@ZnO-350)samples which have the cubic cone ZnO nanoparticles exhibit a min-imum reflection loss(RLmin)of-55.35 dB at a thickness of 2.1 mm and a maximum effective absorp-tion bandwidth(EAB)of 7.09 GHz at a thickness of 2.0 mm.In addition,the antioxidant property of the CIP@ZnO composite particles is abruptly enhanced,which breaks the restriction of the application of CIP at high temperatures.The superior MA performance of CIP@ZnO particles with cubic cone ZnO nanoparti-cles comes from the enhancement in surface shape-dependent multiple microwave scattering,interfacial polarization,and electromagnetic-dielectric synergism between ZnO and CIP.
基金financially supported by Zhejiang Province Postdoctoral Research Project(No.ZJ 2023146)the Municipal Key R&D Program of Ningbo(No.2023Z064)。
文摘Antimony(Sb)is recognized as a potential electrode material for sodium-ion batteries(SIBs)due to its huge reserves,affordability,and high theoretical capacity(660 mAh·g^(-1)).However,Sb-based materials experience significant volume expansion during cycling,leading to comminution of the active substance and limiting their practical use in SIBs.Therefore,the volume expansion issue of Sb-based materials during charging/discharging must be solved to create high-performance SIBs.This paper presents a detailed review of structural engineering of Sb-based electrode materials,focusing on the performance effects of different kinds of structures on advanced performance SIBs.Finally,the future development and the challenges of Sb-based materials are prospected.This paper can provide specific perspectives on the structure construction and optimization of Sb-based anode materials so as to promote the rapid development and practical applications of SIBs.
基金support from the Beijing Municipal Natural Science Foundation(grant no.2212054)the National Natural Science Foundation of China(grant nos.22075294,22175021,22275194,and 22021002)Beijing National Laboratory for Molecular Sciences(grant no.BNLMS-CXXM-202101).
文摘Herein,we report three novel electron-deficient aromatics,ethenylene-bridged bisisoindigos 3,3′-((3E,3′E)-((E)-ethene-1,2-diyl)bis(1-(4-decyltetradecyl)-2-oxoind-oline-6-yl-3-ylidene))bis(1-(4-decyltetradecyl)-1,3-dihydro-2H-pyrrolo[2,3-b]pyridin-2-one)(NCCN),3,3′-((3E,3′E)-((E)-ethene-1,2-diyl)bis(1-(4-decyltetradecyl)-7-fluoro-2-oxoindoline-6-yl-3-ylidene))bis(1-(4-decyltetradecyl)-1,3-dihydro-2H-pyrrolo[2,3-b]pyridin-2-one)(NFFN),and(3E,3″E)-6,6″-((E)-ethene-1,2-diyl)bis(1,1′-bis(4-decyltetradecyl)-[3,3′-bipyrrolo[2,3-b]pyridinylidene]-2,2′(1H,1′H)-dione)(NNNN),and their derived donor–acceptor(D–A)copolymers,namely poly[3,3′-((3E,3′E)-((E)-ethene-1,2-diyl)bis(1-(4-decyltetradecyl)-2-oxoindoline-6-yl-3-ylidene))bis(1-(4-decyltetradecyl)-1,3-dihydro-2H-pyrrolo[2,3-b]pyridin-2-one-6-yl)]-alt-[5,6-difluoro-4,7-di[(thiophen-2-yl)-5-yl)]benzo[c][1,2,5]thiadiazole](PNCCN-FBT),poly[3,3′-((3E,3′E)-((E)-ethene-1,2-diyl)bis(1-(4-decyltetradecyl)-7-fluoro-2-oxoindoline-6-yl-3-ylidene))bis(1-(4-decyltetradecyl)-1,3-dihydro-2H-pyrrolo[2,3-b]pyridin-2-one-6-yl)]-alt-[5,6-difluoro-4,7-di[(thiophen-2-yl)-5-yl)]benzo[c][1,2,5]thiadiazole](PNFFNFBT),and poly[(3E,3″E)-6′,6‴-((E)-ethene-1,2-diyl)bis(1,1′-bis(4-decyltetradecyl)-[3,3′-bipyrrolo[2,3-b]pyridinylidene]-2,2′(1H,1′H)-dione-6-yl)]-alt-[5,6-difluoro-4,7-di[(thiophen-2-yl)-5-yl)]benzo[c][1,2,5]thiadiazole](PNNNN-FBT),in which 5,6-difluoro-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole(FBT)acts as the electron-donating units.The ethenylene-bridging unit reduces the steric hindrance of the three bisisoindigos.Incorporation of heteroatoms,such as fluorine and sp2-nitrogen atoms,endows them with multiple CH···F,CH···N,and N···S intramolecular hydrogen bonds/nonbinding interactions,resulting in increasing backbone planarity from NCCN,NFFN,to NNNN,and thus from PNCCN-FBT,PNFFN-FBT,to PNNNN-FBT.We found that all copolymers formed an improved molecular packing in the 1-chloronaphthalene(CN)-processed thin film compared with the 1,2-dichlorobenzene-processed one.The CN-processed PNCCN-FBT-based polymer field-effect transistors showed ambipolar transport characteristics with the electron mobility(μe)and hole mobility of 1.20 and 0.46 cm^(2)V^(−1)^s(−1),respectively,while the PNFFN-FBT-and PNNNN-FBT-based ones afforded unique n-type transport characteristics with impressively highμe up to 3.28 cm^(2)V^(−1)^s(−1).The lower frontier molecular orbital energy levels of PNFFN-FBT are the key reason for its higherμe.This study demonstrated that heteroatom structural engineering on ethenylene-bridged bisisoindigos is an effective way to construct high-performance n-type polymer semiconductors.
基金supported by the National Natural Science Foundation of China (21437003, 21673126, 21621003, 21761142017)the Youth Innovation Promotion Association of CAS (2017493)Young Elite Scientist Sponsorship Program by CAST and Collaborative Innovation Center for Regional Environmental Quality
文摘As a two-dimensional(2D) material, polymeric carbon nitride(g-C_3N_4) nanosheet holds great potentials in environmental purification and solar energy conversion. In this review, we summarized latest progress in the optimization of photocatalytic performance in 2D g-C_3N_4. Some of the latest structural engineering methods were summed up, where the relevant influences on the behaviors of photoinduced species were emphasized. Furthermore, the construction strategies for band structure modulation and charge separation promotion were then discussed in detail. A brief discussion on the opportunity and challenge of 2D g-C_3N_4-based photocatalysis are presented as the conclusion of this review.
基金the financial support from the National Key R&D Program of China(No.2017YFA0204800)the National Natural Science Foundation of China(No.22002100)the Collaborative Innovation Center of Suzhou Nano Science and Technology,and the 111 Project and Joint International Research Laboratory of Carbon-Based Functional Materials and Devices.
文摘Carbon nitride(C_(3)N_(4))holds great promise for photocatalytic H_(2)O_(2)production from oxygen reduction.In spite of great research efforts,they still suffer from low catalytic efficiency primarily limited by the fast recombination of photogenerated charge carriers.In this work,we report the multiscale structural engineering of C_(3)N_(4)to significantly improve its optoelectronic properties and consequently photocatalytic performance.The product consists of porous spheres with high surface areas,abundant nitrogen defects,and alkali metal doping.Under visible light irradiation,our catalyst shows a remarkable H_(2)O_(2)production rate of 3,080μmol·g^(−1)·h^(−1),which is more than 10 times higher than that of bulk C_(3)N_(4)and exceeds those of most other C_(3)N_(4)-based photocatalysts.Moreover,the catalyst exhibits great stability,and can continuously work for 15 h without obvious activity decay under visible light irradiation,eventually giving rise to a high H_(2)O_(2)concentration of ca.45 mM.
基金This study was supported by the Hong Kong Scholars Program(No.XJ2019022)the Fundamental Research Funds for the Central Universities(No.WK2060000032)+1 种基金the National Natural Science Foundation(Nos.51772283,21972145,and 51872249)General Research Fund(GRF,No.CityU 11307619).
文摘Owing to the high theoretical capacity,metal sulfides have emerged as promising anode materials for potassium-ion batteries(PIBs).However,sluggish kinetics,drastic volume expansion,and polysulfide dissolution during charge/discharge result in unsatisfactory electrochemical performance.Herein,we design a core-shell structure consisting of an active bismuth sulfide core and a highly conductive sulfur-doped carbon shell(Bi2S3@SC)as a novel anode material for PIBs.Benefiting from its unique core-shell structure,this Bi2S3@SC is endowed with outstanding potassium storage performance with high specific capacity(626 mAh·g^(-1)under 50 mA·g^(-1))and excellent rate capability(268.9 mAh·g^(-1)at 1 A·g^(-1)).More importantly,a Bi2S3@SC//KFe[Fe(CN)6]full cell is successfully fabricated,which achieves a high reversible capacity of 257 mAh·g^(-1)at 50 mA·g^(-1)over 50 cycles,holding great potentials in practical applications.Density functional theory(DFT)calculations reveal that potassium ions have a low diffusion barrier of 0.54 eV in Bi2S3 due to the weak van der Waals interactions between layers.This work heralds a promising strategy in the structural design of high-performance anode materials for PIBs.
基金This work was supported by the National Natural Science Foundation of China(No.11874108).
文摘Noble-metal-free surface-enhanced Raman scattering(SERS)substrates have attracted great attention for their abundant sources,good signal uniformity,superior biocompatibility,and high chemical stability.However,the lack of controllable synthesis and fabrication of noble-metal-free substrates with high SERS activity impedes their practical applications.Herein,we propose a general strategy to fabricate a series of planar transition-metal nitride(TMN)SERS chips via an ambient temperature sputtering deposition route.For the first time,tungsten nitride(WN)and tantalum nitride(TaN)are used as SERS materials.These planar TMN chips show remarkable Raman enhancement factors(EFs)with~105 owing to efficient photoinduced charge transfer process between TMN chips and probe molecules.Further,structural engineering of these TMN chips is used to improve their SERS activity.Benefiting from the synergistic effect of charge transfer process and electric field enhancement by constructing a nanocavity structure,the Raman EF of WN nanocavity chips could be greatly improved to~1.29×10^(7),which is an order of magnitude higher than that of planar chips.Moreover,we also design the WN/monolayer MoS2 heterostructure chips.With the increase of surface electron density on the upper WN and more exciton resonance transitions in the heterostructure,a~1.94×10^(7)level EF and a 5×10^(-10)M level detection limit could be achieved.Our results provide important guidance for the structural design of ultrasensitive noble-metal-free SERS chips.
文摘Causality is the science of cause and effect.It is through causality that explanations can be derived,theories can be formed,and new knowledge can be discovered.This paper presents a modern look into establishing causality within structural engineering systems.In this pursuit,this paper starts with a gentle introduction to causality.Then,this paper pivots to contrast commonly adopted methods for inferring causes and effects,i.e.,induction(empiricism)and deduc-tion(rationalism),and outlines how these methods continue to shape our structural engineering philosophy and,by extension,our domain.The bulk of this paper is dedicated to establishing an approach and criteria to tie principles of induction and deduction to derive causal laws(i.e.,mapping functions)through explainable artificial intelligence(XAI)capable of describing new knowledge pertaining to structural engineering phenomena.The proposed approach and criteria are then examined via a case study.
基金This work was supported by the National Natural Science Foundation of China(52372289,52102368,52072192 and 51977009)Regional Joint Fund for Basic Research and Applied Basic Research of Guangdong Province(No.2020SA001515110905).
文摘The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various fields,such as catalysis,energy storage,sensing,etc.In recent years,a lot of research work on TMDs based functional materials in the fields of electromagnetic wave absorption(EMA)has been carried out.Therefore,it is of great significance to elaborate the influence of TMDs on EMA in time to speed up the application.In this review,recent advances in the development of electromagnetic wave(EMW)absorbers based on TMDs,ranging from the VIB group to the VB group are summarized.Their compositions,microstructures,electronic properties,and synthesis methods are presented in detail.Particularly,the modulation of structure engineering from the aspects of heterostructures,defects,morphologies and phases are systematically summarized,focusing on optimizing impedance matching and increasing dielectric and magnetic losses in the EMA materials with tunable EMW absorption performance.Milestones as well as the challenges are also identified to guide the design of new TMDs based dielectric EMA materials with high performance.
文摘Topometric auscultation is used to monitor the durability of structures, measure deformations linked to the structure of a structure or to the movement of the ground over a part of the globe, set up warning systems, etc. It first appeared as a visual method and rapidly evolved through the various techniques used. Some of these techniques using topography are used in several fields (civil engineering, geodesy, topography, mechanics, nuclear engineering, hydraulics, physics, etc.). These topometric techniques have undergone major changes as a result of technological advances, growing needs in the monitoring of movements or deformations, increased requirements and new challenges. The methodology adopted depends on the measuring instrument used, the parameters to be estimated and access to the area to be measured. There are two types of methods: destructive and non-destructive. In addition to the visual method, they can also be classified as mechanical, physico-chemical, dynamometric, electrophysical and geometric. The estimated parameter varies according to the methodology adopted. It can be defined by coordinates, distances, potential, electrical resistance, etc.
基金This work was supported by the National Natural Sci- ence Foundation of China (No.11034006, No.21273208, and No.21473168), the Anhui Provincial Natural Sci- ence Foundation (No.1408085QB26), the hmdamental Research Funds for the Central Universities, the China Postdoctoral Science Foundation (No.2012M511409), and the Supercomputing Center of Chinese Academy of Sciences, Shanghai and USTC Supercomputer Cen- ters.
文摘Doping with various impurities is an effective approach to improve the photoelectrochemical properties of TiO2. Here, we explore the effect of oxygen vacancy on geometric and elec- tronic properties of compensated (i.e. V-N and Cr-C) and non-compensated (i.e. V-C and Cr-N) codoped anatase TiO2 by performing extensive density functional theory calculations. Theoretical results show that oxygen vacancy prefers to the neighboring site of metal dopant (i.e. V or Cr atom). After introduction of oxygen vacancy, the unoccupied impurity bands located within band gap of these codoped TiO2 will be filled with electrons, and the posi- tion of conduction band offset does not change obviously, which result in the reduction of photoinduced carrier recombination and the good performance for hydrogen production via water splitting. Moreover, we find that oxygen vacancy is easily introduced in V-N codoped TiO2 under O-poor condition. These theoretical insights are helpful for designing codoped TiO2 with high photoelectrochemical performance.
基金support from Australian Research Council (ARC, FT150100450, IH150100006 and CE170100039)support from the MCATM and the FLEET+1 种基金the support from Shenzhen Nanshan District Pilotage Team Program (LHTD20170006)support from Guangzhou Science and Technology Program (Grant No. 201804010322)
文摘Metal halide perovskite nanostructures have emerged as low-dimensional semiconductors of great significance in many fields such as photovoltaics,photonics,and optoelectronics.Extensive efforts on the controlled synthesis of perovskite nanostructures have been made towards potential device applications.The engineering of their band structures holds great promise in the rational tuning of the electronic and optical properties of perovskite nanostructures,which is one of the keys to achieving efficient and multifunctional optoelectronic devices.In this article,we summarize recent advances in band structure engineering of perovskite nanostructures.A survey of bandgap engineering of nanostructured perovskites is firstly presented from the aspects of dimensionality tailoring,compositional substitution,phase segregation and transition,as well as strain and pressure stimuli.The strategies of electronic doping are then reviewed,including defect-induced self-doping,inorganic or organic molecules-based chemical doping,and modification by metal ions or nanostructures.Based on the bandgap engineering and electronic doping,discussions on engineering energy band alignments in perovskite nanostructures are provided for building high-performance perovskite p-n junctions and heterostructures.At last,we provide our perspectives in engineering band structures of perovskite nanostructures towards future low-energy optoelectronics technologies.
基金support from the National Natural Science Foundation of China(Grant No.11725418)the National Key Research and Development Program of China(Grant No.2016YFA0301004)+3 种基金Science Challenge Project,China(Grant No.TZ2016004)Beijing Advanced Innovation Center for Future Chip(ICFC)Tsinghua University Initiative Scientific Research Programfunded by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)–TRR 173–268565370(projects A02)。
文摘Artificially constructed van der Waals heterostructures(vdWHs)provide an ideal platform for realizing emerging quantum phenomena in condensed matter physics.Two methods for building vdWHs have been developed:stacking two-dimensional(2D)materials into a bilayer structure with different lattice constants,or with different orientations.The interlayer coupling stemming from commensurate or incommensurate superlattice pattern plays an important role in vdWHs for modulating the band structures and generating new electronic states.In this article,we review a series of novel quantum states discovered in two model vdWH systems—graphene/hexagonal boron nitride(hBN)hetero-bilayer and twisted bilayer graphene(tBLG),and discuss how the electronic structures are modified by such stacking and twisting.We also provide perspectives for future studies on hetero-bilayer materials,from which an expansion of 2D material phase library is expected.
文摘In civil engineering, the nonlinear dynamic instability of structures occurs at a bifurcation point or a limit point. The instability at a bifurcation point can be analyzed with the theory of nonlinear dynamics, and that at a limit point can be discussed with the theory of elastoplasticity. In this paper, the nonlinear dynamic instability of structures was treated with mathematical and mechanical theories. The research methods for the problems of structural nonlinear dynamic stability were discussed first, and then the criterion of stability or instability of structures, the method to obtain the bifurcation point and the limit point, and the formulae of the directions of the branch solutions at a bifurcation point were elucidated. These methods can be applied to the problems of nonlinear dynamic instability of structures such as reticulated shells, space grid structures, and so on. Key words nonlinear dynamic instability - engineering structures - non-stationary nonlinear system - bifurcation point - instability at a bifurcation point - limit point MSC 2000 74K25 Project supported by the Science Foundation of Shanghai Municipal Commission of Education (Grant No. 02AK04), the Science Foundation of Shanghai Municipal Commission of Science and Technology (Grant No. 02ZA14034)
基金Sponsored by the National Natural Science Foundation of China (Grant No. 50378041) the Specialized Research Fund for the Doctoral Program ofHigher Education (Grant No. 20030487016).
文摘An adaptive Fourier Transform (FT) with an optimal window has been proposed for the time-frequency analysis of nonstationary time series. The method allows for a good estimation of both frequency and amplitude of the spectrum and can be easily applied to the general case of time-varying signals. The evaluation of the proposed approach has been performed on measured time-varying signals from a suspension bridge model and a steel frame model whose data have the typical non-stationary characteristics. The numerical results show that the proposed approach can overcome some of the difficulties encountered in the classic Fourier transform technique and can achieve higher computation accuracy.
基金Specialized Research Fund for the Doctoral Program of Higher Education,China (No.20010227012)
文摘Neural networks are being used to construct meta-models in numerical simulation of structures.In addition to network structures and training algorithms,training samples also greatly affect the accuracy of neural network models.In this paper,some existing main sampling techniques are evaluated,including techniques based on experimental design theory, random selection,and rotating sampling.First,advantages and disadvantages of each technique are reviewed.Then,seven techniques are used to generate samples for training radial neural networks models for two benchmarks:an antenna model and an aircraft model.Results show that the uniform design,in which the number of samples and mean square error network models are considered,is the best sampling technique for neural network based meta-model building.
文摘In the design of building structures,joint efforts must be decided to resolve the depth of competent layers across the intended site to safeguard the durability of civil engineering structures and to avert the disastrous consequences of structural failure and collapse.In this study,an integrated methodology that employed DC resistivity tomography involving 2-D and 3-D techniques and geotechnical-soil analysis was used to evaluate subsoil conditions for engineering site investigation at Okerenkoko primary school,in the Warri-southwest area of Delta State,to adduce the phenomena responsible for the visible cracks/structural failure observed in the buildings.The results obtained brought to light the geological structure beneath the subsurface,which consists of four geoelectric layers identified as topsoil,dry/lithified upper sandy layer,wet sand(water-saturated)and peat/clay/sandy clayey soil(highly water-saturated).The deeply-seated peat/clay materials(ρ≤20Ωm)were delineated in the study area to the depths of 17.1 m and 19.8 m from 2-D and 3-D tomography respectively.3-D images presented as horizontal depth slices revealed the dominance of very low resistivity materials i.e.peat/clay/sandy clay within the fourth,fifth and sixth layers at depths ranging from 8.68-12.5 m,12.5-16.9 m and 16.9-21.9 m respectively.The dominance of mechanically unstable peat/clay/sandy clay layers beneath the subsurface,which are highly mobile in response to volumetric changes,is responsible for the noticeable cracks/failure detected on structures within the study site.These observations were validated by a geotechnical test of soil samples in the study area.Atterberg’s limits of the samples revealed plasticity indices of zero.Thus,the soil samples within the depth analyzed were representatives of sandy soil that does not possess any plasticity.The methods justifiably provided relevant information on the subsurface geology beneath the study site and should be appropriated as major tools for engineering site assessment/geotechnical projects.
基金financially supported by the National Natural Science Foundation of China(No.U21A2077)the Taishan Scholar Project Foundation of Shandong Province(No.ts20190908)+1 种基金the Natural Science Foundation of Shandong Province(No.ZR2021ZD05)the China Postdoctoral Science Foundation(Nos.2023TQ0192,2023M742065)。
文摘Lithium-sulfur batteries(LSBs)boasting remarkable energy density have garnered significant attention within academic and industrial spheres.Nevertheless,the progression of LSBs remains constrained by the languid redox kinetics intrinsic to sulfur and the pronounced shuttle effect induced by lithium polysulfides(Li PSs),which seriously affecting the energy density,cycling life and rate capacity.The conceptualization and implementation of catalytic materials stand acknowledged as a propitious stratagem for orchestrating kinetic modulation,particularly in excavating the conversion of LiPSs and has evolved into a focal point for disposing.Among them,chalcogenide catalytic materials(CCMs)have shown satisfactory catalytic effects ascribe to the unique physicochemical properties,and have been extensively developed in recent years.Considering the lack of systematic summary regarding the development of CCMs and corresponding performance optimization strategies,herein,we initiate a comprehensive review regarding the recent progress of CCMs for effective collaborative immobilization and accelerated transformation kinetics of Li PSs.Following that,the modulation strategies to improve the catalytic activity of CCMs are summarized,including structural engineering(morphology engineering,surface/interface engineering,crystal engineering)and electronic engineering(doping and vacancy,etc.).Finally,the application prospect of CCMs in LSBs is clarified,and some enlightenment is provided for the reasonable design of CCMs serving practical LSBs.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(NRF-2022R1C1C1011058)。
文摘In this review,we discuss the electrochemical properties of Prussian blue(PB)for Na^(+)storage by combining structural engineering and electrolyte modifications.We integrated experimental data and density functional theory(DFT)in sodium-ion battery(SIB)research to refine the atomic arrangements and crystal lattices and introduce substitutions and dopants.These changes affect the lattice stability,intercalation,electronic and ionic conductivities,and electrochemical performance.We unraveled the intricate structure-electrochemical behavior relationship by combining experimental data with computational models,including first-principles calculations.This holistic approach identified techniques for optimizing PB and Prussian blue analog(PBA)structu ral properties for SIBs.We also discuss the tuning of electrolytes by systematically adjusting their composition,concentration,and additives using a combination of molecular dynamics(MD)simulations and DFT computations.Our review offers a comprehensive assessment of strategies for enhancing the electrochemical properties of PB and PBAs through structural engineering and electrolyte modifications,combining experimental insights with advanced computational simulations,and paving the way for next-generation energy storage systems.