Soil structure plays an important role in understanding soil attributes as well as hydrological processes. Effective method to obtain high quality soil map is therefore important for both soil science research and soi...Soil structure plays an important role in understanding soil attributes as well as hydrological processes. Effective method to obtain high quality soil map is therefore important for both soil science research and soil work ability improvement. However,traditional method such as digging soil pits is destructive and time-consuming. In this study, the structure of headwater hillslopes from Hemuqiao catchment(Taihu Basin, China) have been analyzed both by indirect(ground penetrating radar, GPR) and direct(excavation or soil auger) methods. Four transects at different locations of hillslopes in the catchment were selected for GPR survey. Three of them(#1, #2, and #3) were excavated to obtain fullscale soil information for interpreting radar images.We found that the most distinct boundary that can be detected by GPR is the boundary between soil and underlain bedrock. In some cases(e.g., 8-17 m in transect #2), in which the in situ soil was scarcely affected by colluvial process, different soil layers can be identified. This identification process utilized the sensitive of GPR to capture abrupt changes of soil characteristics in layer boundaries, e.g., surface organic layer(layer #1) and bamboo roots layer(layer#2, contain stone fragments), illuvial deposits layer(layer #3) and regolith layer(layer #4). However, in areas where stone fragments were irregularly distributed in the soil profile(highly affected bycolluvial and/or fluvial process), it was possible to distinguish which part contains more stone fragments in soil profile on the basis of reflection density(transect #3). Transect #4(unexcavated) was used to justify the GPR method for soil survey based on experiences from former transects. After that, O horizon thickness was compared by a hand auger.This work has demonstrated that GPR images can be of a potential data source for hydrological predictions.展开更多
Layered double hydroxides (LDHs) are effective molecular carriers in cytological research, gene therapy, and transgenic applications. Herein, we investigated the internalization behavior of the LDH-DNA biocon- jugat...Layered double hydroxides (LDHs) are effective molecular carriers in cytological research, gene therapy, and transgenic applications. Herein, we investigated the internalization behavior of the LDH-DNA biocon- jugates via a microscopic approach and analyzed the internalization pathway by dissipative particle dynamics (DPD) simulations. We experimentally found that LDH can efficiently carry DNA into the nucleus of cell in BY-2 suspension cells. Furthermore, atomic force microscopy and X-ray diffraction anal- ysis demonstrated that the LDH-DNA bioconjugates mainly exist as a DNA-LDH-DNA sandwich complex, while the LDH-DNA-LDH sandwich complex and DNA-LDH complex cannot be excluded. The DPD simu- lations further indicated that only the DNA-LDH-DNA sandwich structure could penetrate the plasma membrane (PM), while PM is impermeable to the LDH-DNA-LDH sandwich complex and the DNA-LDH complex. This work provides novel perspective for understanding the membrane penetration mechanism of LDH nano-sheets and new insights into the design of novel molecular delivery systems.展开更多
基金supported by the National Nature Science Foundation of China (Grants No. 41271040, 51190091)The Special Fund of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering (Grant No. 20145028012)
文摘Soil structure plays an important role in understanding soil attributes as well as hydrological processes. Effective method to obtain high quality soil map is therefore important for both soil science research and soil work ability improvement. However,traditional method such as digging soil pits is destructive and time-consuming. In this study, the structure of headwater hillslopes from Hemuqiao catchment(Taihu Basin, China) have been analyzed both by indirect(ground penetrating radar, GPR) and direct(excavation or soil auger) methods. Four transects at different locations of hillslopes in the catchment were selected for GPR survey. Three of them(#1, #2, and #3) were excavated to obtain fullscale soil information for interpreting radar images.We found that the most distinct boundary that can be detected by GPR is the boundary between soil and underlain bedrock. In some cases(e.g., 8-17 m in transect #2), in which the in situ soil was scarcely affected by colluvial process, different soil layers can be identified. This identification process utilized the sensitive of GPR to capture abrupt changes of soil characteristics in layer boundaries, e.g., surface organic layer(layer #1) and bamboo roots layer(layer#2, contain stone fragments), illuvial deposits layer(layer #3) and regolith layer(layer #4). However, in areas where stone fragments were irregularly distributed in the soil profile(highly affected bycolluvial and/or fluvial process), it was possible to distinguish which part contains more stone fragments in soil profile on the basis of reflection density(transect #3). Transect #4(unexcavated) was used to justify the GPR method for soil survey based on experiences from former transects. After that, O horizon thickness was compared by a hand auger.This work has demonstrated that GPR images can be of a potential data source for hydrological predictions.
基金supported by the Fundamental Research Funds for the Central Universities (2016JX01, BLX2015-01)the National Natural Science Foundation of China (31671489, 31601149 and 31271433)+2 种基金the Beijing Nova Programme (Z131109000413013)the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fundthe Chemical Grid Program and Excellent Talent of Beijing University of Chemical Technology
文摘Layered double hydroxides (LDHs) are effective molecular carriers in cytological research, gene therapy, and transgenic applications. Herein, we investigated the internalization behavior of the LDH-DNA biocon- jugates via a microscopic approach and analyzed the internalization pathway by dissipative particle dynamics (DPD) simulations. We experimentally found that LDH can efficiently carry DNA into the nucleus of cell in BY-2 suspension cells. Furthermore, atomic force microscopy and X-ray diffraction anal- ysis demonstrated that the LDH-DNA bioconjugates mainly exist as a DNA-LDH-DNA sandwich complex, while the LDH-DNA-LDH sandwich complex and DNA-LDH complex cannot be excluded. The DPD simu- lations further indicated that only the DNA-LDH-DNA sandwich structure could penetrate the plasma membrane (PM), while PM is impermeable to the LDH-DNA-LDH sandwich complex and the DNA-LDH complex. This work provides novel perspective for understanding the membrane penetration mechanism of LDH nano-sheets and new insights into the design of novel molecular delivery systems.