Basic loads applied on the airship envelope were analyzed.The resultant forces,the static bending moment and the dynamic bending moment were formulated.Based on classic linear elastic membrane theory,the procedures to...Basic loads applied on the airship envelope were analyzed.The resultant forces,the static bending moment and the dynamic bending moment were formulated.Based on classic linear elastic membrane theory,the procedures to calculate the minimum pressure were proposed for sufficient rigidity evaluation.The limit load capacity was further investigated,and the related formula were developed.Finally,the stress and internal forces analysis was carried out for cylindrical and non-cylindrical approximations of envelope hull of airship.The present research is very valuable to the overall preliminary design of airship and further research.展开更多
The cable-strut structural system is statically and kinematically indeterminate. The initial pre-stress is a key factor for determining the shape and load carrying capacity. A new numerical algorithm is presented here...The cable-strut structural system is statically and kinematically indeterminate. The initial pre-stress is a key factor for determining the shape and load carrying capacity. A new numerical algorithm is presented herein for the initial pre-stress finding procedure of complete cable-strut assembly. This method is based on the linear adjustment theory and does not take into account the material behavior. By using this method,the initial pre-stress of the multi self-stress modes can be found easily and the cal-culation process is simplified and efficient also. Finally,the initial pre-stress and structural performances of a particular Levy cable dome are analyzed comprehensively. The algorithm has proven to be efficient and correct,and the numerical results are valuable for practical design of Levy cable dome.展开更多
Structure characteristics about activated carbon fibers (ACF) and polyimide (P84) doped ACF modified by HNO3 solution were studied to apply in mercury removal in coal-fired flue gases. The P84, which was always used i...Structure characteristics about activated carbon fibers (ACF) and polyimide (P84) doped ACF modified by HNO3 solution were studied to apply in mercury removal in coal-fired flue gases. The P84, which was always used in the non-woven fabric for bag filter, was intermingled with polyacrylonitrile-based ACF (PAN-ACF) in the weight ratio of 1∶1 in order to make the doped ACF with P84 (doped-ACF-P84). Then the doped-ACF-P84 fibers were modified by HNO3 solution. The structure and morphology of doped-ACF-P84 were characterized and compared with those of ACF and doped-ACF-P84 modified by HNO3solution. The results show that the modified doped-ACF-P84 fibers have almost the same pore structure and specific surface area comparing with the original one. However, contrasted with the original PAN-ACF, the doped-ACF-P84 fibers modified by HNO3 solution have more oxygen-containing groups used for mercury removal. In particular, they have more lactone and carboxyl groups.展开更多
Currently,more than ten ultrahigh arch dams have been constructed or are being constructed in China.Safety control is essential to long-term operation of these dams.This study employed the flexibility coefficient and ...Currently,more than ten ultrahigh arch dams have been constructed or are being constructed in China.Safety control is essential to long-term operation of these dams.This study employed the flexibility coefficient and plastic complementary energy norm to assess the structural safety of arch dams.A comprehensive analysis was conducted,focusing on differences among conventional methods in characterizing the structural behavior of the Xiaowan arch dam in China.Subsequently,the spatiotemporal characteristics of the measured performance of the Xiaowan dam were explored,including periodicity,convergence,and time-effect characteristics.These findings revealed the governing mechanism of main factors.Furthermore,a heterogeneous spatial panel vector model was developed,considering both common factors and specific factors affecting the safety and performance of arch dams.This model aims to comprehensively illustrate spatial heterogeneity between the entire structure and local regions,introducing a specific effect quantity to characterize local deformation differences.Ultimately,the proposed model was applied to the Xiaowan arch dam,accurately quantifying the spatiotemporal heterogeneity of dam performance.Additionally,the spatiotemporal distri-bution characteristics of environmental load effects on different parts of the dam were reasonably interpreted.Validation of the model prediction enhances its credibility,leading to the formulation of health diagnosis criteria for future long-term operation of the Xiaowan dam.The findings not only enhance the predictive ability and timely control of ultrahigh arch dams'performance but also provide a crucial basis for assessing the effectiveness of engineering treatment measures.展开更多
This paper presents a review of the studies on the structural performance of recycled aggregate concrete(RAC) elements and structures in the past 10 years in China.The flexural and shear behaviour of RAC beams,the com...This paper presents a review of the studies on the structural performance of recycled aggregate concrete(RAC) elements and structures in the past 10 years in China.The flexural and shear behaviour of RAC beams,the compression performance of RAC columns as well as the flexural performance of RAC slabs are overviewed and summarized.The seismic responses of beam-column joints,shear walls as well as frames made of RAC are also covered.The experimental observations indicate that the structural performance of RAC elements and structures is somewhat similar to that of natural aggregate concrete(NAC) members.A brief introduction to the application of RAC in sustainable buildings in China is also presented.展开更多
An experimental and numerical investigation into the structural performance of reinforced concrete box sewers with typical corrosion-related extreme defects localized at the ceiling was conducted.Firstly,during the la...An experimental and numerical investigation into the structural performance of reinforced concrete box sewers with typical corrosion-related extreme defects localized at the ceiling was conducted.Firstly,during the large-scale laboratory test,some key struc-tural responses were captured and evaluated,including the crack width development process(via digital image correlation measurement),ceiling deflection,and material strains of both complete and typical defective boxes.The failure modes and load-carrying mechanism throughout the specimen loading phases were analyzed.Furthermore,the specimen failure process was simulated using a damage-basedfinite element method,and a related parameter sensitivity analysis was performed.The results indicate that the defective ceiling cracked at mid-span under a low load value,but the bending capacity loss can be substituted by two shoulders and carry three tofive times more load before completely collapsing.The simulation matched the lab test qualitatively,and with the suggested set strategy of material parameters,the load-deflection feature curve could provide a practical prediction of the ultimate bearing capacity of the defec-tive sewers,with a 10–15%error on the safe side.展开更多
The objectives of this study are to explain the repairing and strengthening methods which are used to improve the structural performance of the bridge structure,to analyze the static and dynamic responses after streng...The objectives of this study are to explain the repairing and strengthening methods which are used to improve the structural performance of the bridge structure,to analyze the static and dynamic responses after strengthening,and to evaluate the performance of the bridge structure after repairing and strengthening.The methods of repairing and strengthening include reconstruction the deck of the bridge by casting 10 cm layer of concrete,strengthening the web and bottom floor of box girders of middle spans and side spans by sticking the steel plates,strengthening the whole bridge structure by using external pre-stressing tendons,and treatment the cracks.The results of theoretical analysis show that the values of tensile stress and vertical deflection are decreased and the compressive stress is increased after strengthening.There are not tensile stresses are appeared in the sections of the bridge structure.The modal analysis results show that the value of natural frequency is equal to 2.09 Hz which is more than the values before strengthening which is equal to 1.64 Hz,indicating that the stiffness of the bridge structure is improved and the strengthening process is effective to improve the cracks resistance and bearing capacity of the bridge structure.展开更多
The tensile cable-strut structure is a self-equilibrate pre-stressed system.The initial pre-stress cal- culation is the fundamental structural analysis.A new numerical procedure was developed.The force density method ...The tensile cable-strut structure is a self-equilibrate pre-stressed system.The initial pre-stress cal- culation is the fundamental structural analysis.A new numerical procedure was developed.The force density method is the cornerstone of analytical formula,and then introduced into linear adjustment theory;the least square least norm solution,the optimized initial pre-stress,is yielded.The initial pre-stress and structural performances of a particular single-layer saddle-shaped cable-net structure were analyzed with the developed method,which is proved to be efficient and correct.The modal analyses were performed with respect to various pre-stress levels.Finally,the structural performances were investigated comprehensively.展开更多
The effects of structure parameters, such as molecular structure, segment kinds, molecular weight, and organic functional groups, on the performance of polyacrylic acid superplasticizer were discussed. According to th...The effects of structure parameters, such as molecular structure, segment kinds, molecular weight, and organic functional groups, on the performance of polyacrylic acid superplasticizer were discussed. According to the differences of chain sections, functional groups, eic, polyacrylic acid superplasticizer could be divided into A, B, C three parts. Among them, A chain section included sulfonic acid groups, B chain section carboxyl groups, C chain section polyester. Polyacrylic acid superplasticizers with different matching of A, B, C chain sections, different length of C chain section and different molecular weights were synthesized by acrylic acid, polyethylene glycol, sodium methyl allylsulfonate; the relation between the molecular structure and perfolxnance was also studied. The expetimental results indicate that the water-reduction ratio increases obviously with the increment of the proportion of sodium methyl allylsulfonate chain section in the molecular; the slump retention increases greatly with the increment of the proportion of acrylic acid chain section; the dispersion of cement particles increases with the increment of the chain length of polyethylene glycol; when the molecular weight is in the range of 5000, the dispersion and slump retentibity increase with the increment of the average molecular weight of polymers.展开更多
Selective hydrogenation of 1,3‐butadiene is an essential process in the upgrading of the crude C4 cut from the petroleum chemical sector.Catalyst design is crucial to achieve a virtually alkadiene‐free product while...Selective hydrogenation of 1,3‐butadiene is an essential process in the upgrading of the crude C4 cut from the petroleum chemical sector.Catalyst design is crucial to achieve a virtually alkadiene‐free product while avoiding over‐hydrogenating valuable olefins.In addition to the great industrial relevance,this demanding selectivity pattern renders 1,3‐butadiene hydrogenation a widely used model reaction to discriminate selective hydrogenation catalysts in academia.Nonetheless,critical reviews on the catalyst development are extremely lacking in literature.In this review,we aim to provide the reader an in‐depth overview of different catalyst families,particularly the precious metal‐based monometallic catalysts(Pd,Pt,and Au),developed in the last half century.The emphasis is placed on the development of new strategies to design high‐performance architectures,the establishment of structure‐performance relationships,and the reaction and deactivation mechanisms.Thrilling directions for future optimization of catalyst formulations and engineering aspect are also provided.展开更多
The geological condition of Chinese coal mines are complex and high gassy,which account for ffty percent to seventy percent.Because of the abundant pores and cracks around the drainage drilling hole,the gas concentrat...The geological condition of Chinese coal mines are complex and high gassy,which account for ffty percent to seventy percent.Because of the abundant pores and cracks around the drainage drilling hole,the gas concentration attenuates rapidly,and the effective gas drainage period is short.The traditional sealing materials of yellow mud and cement-sand grout will readily shrink after the drilling hole is sealed,the sealing length is short and the sealing quality is not satisfactory.Currently widely used polyurethane material will shrink when it comes into contact with water,and the price is also very high.In this study,taking cement as a base material,a novel composite sealing material mixed by expansion admixture,additive,and fbrin and coupling agent was developed and the sealing performance and expansion property of the material were also studied and analyzed.The FEI Quanta TM 250 environmental scanning electron microscope was used to investigate the microstructure of material.The results revealed that the new composite sealing material had a desirable expansion performance and a defnite fluidity convenient for grouting.The solidifed material,combining closely with the drilling wall,possessed an adequate strength and was not easy to shrink.Compared to the conventional polyurethane,the gas drainage concentration by drilling sealing exceeded 40 percent,and the sealing capacity improves5 times,the sealing effect increases signifcantly.展开更多
The structure and performances of the large dimension steel ball made of 45 steel quenched after forging have been researched. The experiments indicate that the optimum results can be obtained under proper pro...The structure and performances of the large dimension steel ball made of 45 steel quenched after forging have been researched. The experiments indicate that the optimum results can be obtained under proper processes.展开更多
This paper focuses on how aging can affect performance of safety-related structures in nuclear power plant (NPP). Knowledge and assessment of impacts of aging on structures are essential to plant life extension analys...This paper focuses on how aging can affect performance of safety-related structures in nuclear power plant (NPP). Knowledge and assessment of impacts of aging on structures are essential to plant life extension analysis,especially performance to severe loadings such as loss-of-coolant-accidents or major seismic events. Plant life extension issues are of keen interest in countries (like the United States) which have a large,aging fleet of NPPs. This paper addresses the overlap and relationship of structure aging to severe loading performance,with particular emphasis on containment structures.展开更多
A typical privately-run enterprise has a mixed ownership structure with. four predominant groups of shareholders the state, legal persons, domestic individuals, and foreign investors. This paper gives an empirical ana...A typical privately-run enterprise has a mixed ownership structure with. four predominant groups of shareholders the state, legal persons, domestic individuals, and foreign investors. This paper gives an empirical analysis on the relationship among ownership concentration, insider shareholding and firm performance in nearly one thousand Chinese privately-run enterprises. The results show: the ownership concentration ratio and the percentage of insider shareholding are 'inverse U--shaped' related to finn performance, respectively, the debt-to-asset ratio is negative related to finn performance, the firm size is positive related to firm performance.展开更多
Whether a decision group does its function or not directly depends on the rationality of its characters. The decision science, also with other correlation disciplines, wants to know how the group characters affect the...Whether a decision group does its function or not directly depends on the rationality of its characters. The decision science, also with other correlation disciplines, wants to know how the group characters affect the group performance. Although there are great deals of means to describe the group characters theoretically and practically, in this paper, we consider that the integrity character of a group is composed of the group scale, the constitution and the structure. So the research on how group characters affect the group performance should focus on the three aspects. In order to grasp the present research situation and clear the prospective direction of the studies, we will summarize the study on how the group characters affect the group performance from these three aspects.展开更多
We study the stability and performance of Li absorption on the composite structure (B80 C72) of boron fullerene and graphene by first-principles calculations. Our results show that the Li storage capacity of the com...We study the stability and performance of Li absorption on the composite structure (B80 C72) of boron fullerene and graphene by first-principles calculations. Our results show that the Li storage capacity of the composite structure is estimated to be at least Li54B80C72, which is steady with improved dispersibility and electronic conductivity. The composite structure could have the potential application as the anode material of Li-ion batteries with high Li storage capacity and great mechanical property.展开更多
In order to realize the potential of composite materials, it is imperative to develop a manufacturing process, to understand the microstructures, and to assess the structural performance of the composite. The braided-...In order to realize the potential of composite materials, it is imperative to develop a manufacturing process, to understand the microstructures, and to assess the structural performance of the composite. The braided-pultrusion process, which combines the pultrusion process with the braiding technology, has been developed by utilizing a novel resin impregnation device. The goal of the development is to achieve both costeffectiveness and performance of the composite. The tubular composites of diameter 5.3 mm have been produced using Kevlar 49 fiber and polyester resin. In order to assess the mechanical performance of the composites, an analytical method for predicting the elastic constants has been developed. The analysis includes the geometric model of a unit cell, coordinate transformation, and averaging of stiffness and compliance constants of the constituent materials. The analytic predictions compared favorably with experimental results.展开更多
Stone structures with dry joints, that is, without mortar, have shown a surprising behavior when earthquakes occur. An example of this behavior is the perennially of the so-called Inca wall in Peru, which despite havi...Stone structures with dry joints, that is, without mortar, have shown a surprising behavior when earthquakes occur. An example of this behavior is the perennially of the so-called Inca wall in Peru, which despite having suffered several earthquakes over time has remained stable without collapsing. This article presents the research carried out on stone masonry wails with dry joint, without mortar, subject to a seismic action. In order to understand the behavior of the masonry without mortar, it designs a Grid mode/ of Finite Elements. From the results, it is concluded that these walls with a certain thickness have ductility that allows them to withstand high displacement and rotation values, thus accommodating the movement of the earth subject to an earthquake. The individual stone blocks move relative to each other through rotations and displacements, which are processed in the free joints of any mortar. The joints work as energy sinks. The free movements in the joints dissipate the energy transmitted by the earthquake, not causing in this way the rupture of the stone blocks. The goal of this article is to understand the p importance of lack of mortar in the seismic behavior of the mansonry.展开更多
The locomotive turntable is an essential device for the steering operation of the railway locomotive. This paper has introduced the structural composition and characteristics of the box girder locomotive turntable, ha...The locomotive turntable is an essential device for the steering operation of the railway locomotive. This paper has introduced the structural composition and characteristics of the box girder locomotive turntable, has ana- lyzed its vertical load, horizontal load and torsional load, and has established a mechanical model for the symmet- rical structure of the box girder locomotive turntable under the action of positive and negative symmetric vertical loads. Furthermore, it has also demonstrated the safe and reliable structural performance of this type of locomotive turntable on the basis of the practical example of a 35 m box girder locomotive turntable.展开更多
基金The National High Technology Research and Development Program of China(863Program)(No.705201)The Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,StateEducation Ministry
文摘Basic loads applied on the airship envelope were analyzed.The resultant forces,the static bending moment and the dynamic bending moment were formulated.Based on classic linear elastic membrane theory,the procedures to calculate the minimum pressure were proposed for sufficient rigidity evaluation.The limit load capacity was further investigated,and the related formula were developed.Finally,the stress and internal forces analysis was carried out for cylindrical and non-cylindrical approximations of envelope hull of airship.The present research is very valuable to the overall preliminary design of airship and further research.
基金Project (No.863-705-210) supported by the Hi-Tech Research and Development Program (863) of China
文摘The cable-strut structural system is statically and kinematically indeterminate. The initial pre-stress is a key factor for determining the shape and load carrying capacity. A new numerical algorithm is presented herein for the initial pre-stress finding procedure of complete cable-strut assembly. This method is based on the linear adjustment theory and does not take into account the material behavior. By using this method,the initial pre-stress of the multi self-stress modes can be found easily and the cal-culation process is simplified and efficient also. Finally,the initial pre-stress and structural performances of a particular Levy cable dome are analyzed comprehensively. The algorithm has proven to be efficient and correct,and the numerical results are valuable for practical design of Levy cable dome.
基金National High Technology Research and Development Program,China(No.2008AA05Z305)
文摘Structure characteristics about activated carbon fibers (ACF) and polyimide (P84) doped ACF modified by HNO3 solution were studied to apply in mercury removal in coal-fired flue gases. The P84, which was always used in the non-woven fabric for bag filter, was intermingled with polyacrylonitrile-based ACF (PAN-ACF) in the weight ratio of 1∶1 in order to make the doped ACF with P84 (doped-ACF-P84). Then the doped-ACF-P84 fibers were modified by HNO3 solution. The structure and morphology of doped-ACF-P84 were characterized and compared with those of ACF and doped-ACF-P84 modified by HNO3solution. The results show that the modified doped-ACF-P84 fibers have almost the same pore structure and specific surface area comparing with the original one. However, contrasted with the original PAN-ACF, the doped-ACF-P84 fibers modified by HNO3 solution have more oxygen-containing groups used for mercury removal. In particular, they have more lactone and carboxyl groups.
基金supported by the National Natural Science Foundation of China(Grant No.52079046).
文摘Currently,more than ten ultrahigh arch dams have been constructed or are being constructed in China.Safety control is essential to long-term operation of these dams.This study employed the flexibility coefficient and plastic complementary energy norm to assess the structural safety of arch dams.A comprehensive analysis was conducted,focusing on differences among conventional methods in characterizing the structural behavior of the Xiaowan arch dam in China.Subsequently,the spatiotemporal characteristics of the measured performance of the Xiaowan dam were explored,including periodicity,convergence,and time-effect characteristics.These findings revealed the governing mechanism of main factors.Furthermore,a heterogeneous spatial panel vector model was developed,considering both common factors and specific factors affecting the safety and performance of arch dams.This model aims to comprehensively illustrate spatial heterogeneity between the entire structure and local regions,introducing a specific effect quantity to characterize local deformation differences.Ultimately,the proposed model was applied to the Xiaowan arch dam,accurately quantifying the spatiotemporal heterogeneity of dam performance.Additionally,the spatiotemporal distri-bution characteristics of environmental load effects on different parts of the dam were reasonably interpreted.Validation of the model prediction enhances its credibility,leading to the formulation of health diagnosis criteria for future long-term operation of the Xiaowan dam.The findings not only enhance the predictive ability and timely control of ultrahigh arch dams'performance but also provide a crucial basis for assessing the effectiveness of engineering treatment measures.
基金supported by the Natural National Science Foundation of China (Grant No. 51178340)the Shanghai Science and Technology Committee (Grant No. 10231202000)the New Century Excellent Talents in China Ministry of Education Project (Grant No. NCET-06-0383)
文摘This paper presents a review of the studies on the structural performance of recycled aggregate concrete(RAC) elements and structures in the past 10 years in China.The flexural and shear behaviour of RAC beams,the compression performance of RAC columns as well as the flexural performance of RAC slabs are overviewed and summarized.The seismic responses of beam-column joints,shear walls as well as frames made of RAC are also covered.The experimental observations indicate that the structural performance of RAC elements and structures is somewhat similar to that of natural aggregate concrete(NAC) members.A brief introduction to the application of RAC in sustainable buildings in China is also presented.
基金support received from the Science and Technology Commission of Shanghai Municipality(Contract Number:16DZ1200500).
文摘An experimental and numerical investigation into the structural performance of reinforced concrete box sewers with typical corrosion-related extreme defects localized at the ceiling was conducted.Firstly,during the large-scale laboratory test,some key struc-tural responses were captured and evaluated,including the crack width development process(via digital image correlation measurement),ceiling deflection,and material strains of both complete and typical defective boxes.The failure modes and load-carrying mechanism throughout the specimen loading phases were analyzed.Furthermore,the specimen failure process was simulated using a damage-basedfinite element method,and a related parameter sensitivity analysis was performed.The results indicate that the defective ceiling cracked at mid-span under a low load value,but the bending capacity loss can be substituted by two shoulders and carry three tofive times more load before completely collapsing.The simulation matched the lab test qualitatively,and with the suggested set strategy of material parameters,the load-deflection feature curve could provide a practical prediction of the ultimate bearing capacity of the defec-tive sewers,with a 10–15%error on the safe side.
文摘The objectives of this study are to explain the repairing and strengthening methods which are used to improve the structural performance of the bridge structure,to analyze the static and dynamic responses after strengthening,and to evaluate the performance of the bridge structure after repairing and strengthening.The methods of repairing and strengthening include reconstruction the deck of the bridge by casting 10 cm layer of concrete,strengthening the web and bottom floor of box girders of middle spans and side spans by sticking the steel plates,strengthening the whole bridge structure by using external pre-stressing tendons,and treatment the cracks.The results of theoretical analysis show that the values of tensile stress and vertical deflection are decreased and the compressive stress is increased after strengthening.There are not tensile stresses are appeared in the sections of the bridge structure.The modal analysis results show that the value of natural frequency is equal to 2.09 Hz which is more than the values before strengthening which is equal to 1.64 Hz,indicating that the stiffness of the bridge structure is improved and the strengthening process is effective to improve the cracks resistance and bearing capacity of the bridge structure.
文摘The tensile cable-strut structure is a self-equilibrate pre-stressed system.The initial pre-stress cal- culation is the fundamental structural analysis.A new numerical procedure was developed.The force density method is the cornerstone of analytical formula,and then introduced into linear adjustment theory;the least square least norm solution,the optimized initial pre-stress,is yielded.The initial pre-stress and structural performances of a particular single-layer saddle-shaped cable-net structure were analyzed with the developed method,which is proved to be efficient and correct.The modal analyses were performed with respect to various pre-stress levels.Finally,the structural performances were investigated comprehensively.
基金the Western Region Traffic Construction Technology Program of the Ministry of Communications of China(No.2007-088)
文摘The effects of structure parameters, such as molecular structure, segment kinds, molecular weight, and organic functional groups, on the performance of polyacrylic acid superplasticizer were discussed. According to the differences of chain sections, functional groups, eic, polyacrylic acid superplasticizer could be divided into A, B, C three parts. Among them, A chain section included sulfonic acid groups, B chain section carboxyl groups, C chain section polyester. Polyacrylic acid superplasticizers with different matching of A, B, C chain sections, different length of C chain section and different molecular weights were synthesized by acrylic acid, polyethylene glycol, sodium methyl allylsulfonate; the relation between the molecular structure and perfolxnance was also studied. The expetimental results indicate that the water-reduction ratio increases obviously with the increment of the proportion of sodium methyl allylsulfonate chain section in the molecular; the slump retention increases greatly with the increment of the proportion of acrylic acid chain section; the dispersion of cement particles increases with the increment of the chain length of polyethylene glycol; when the molecular weight is in the range of 5000, the dispersion and slump retentibity increase with the increment of the average molecular weight of polymers.
基金supported by Zhejiang Normal University (YS304320035, YS304320036)
文摘Selective hydrogenation of 1,3‐butadiene is an essential process in the upgrading of the crude C4 cut from the petroleum chemical sector.Catalyst design is crucial to achieve a virtually alkadiene‐free product while avoiding over‐hydrogenating valuable olefins.In addition to the great industrial relevance,this demanding selectivity pattern renders 1,3‐butadiene hydrogenation a widely used model reaction to discriminate selective hydrogenation catalysts in academia.Nonetheless,critical reviews on the catalyst development are extremely lacking in literature.In this review,we aim to provide the reader an in‐depth overview of different catalyst families,particularly the precious metal‐based monometallic catalysts(Pd,Pt,and Au),developed in the last half century.The emphasis is placed on the development of new strategies to design high‐performance architectures,the establishment of structure‐performance relationships,and the reaction and deactivation mechanisms.Thrilling directions for future optimization of catalyst formulations and engineering aspect are also provided.
基金fnancially supported by the National Natural Science Foundation of China(No.51274195)the Natural Science Foundation of Jiangsu Province(No.BK2012571)+3 种基金the Program for New Century Excellent Talents in University(No.NCET-12-0959)the China Postdoctoral Science Foundation(No.20090450930)the National Basic Research Program of China(No.2011CB201205)Qing Lan Project,and the Youth Foundation of China University of Mining and Technology(No.2007A003)
文摘The geological condition of Chinese coal mines are complex and high gassy,which account for ffty percent to seventy percent.Because of the abundant pores and cracks around the drainage drilling hole,the gas concentration attenuates rapidly,and the effective gas drainage period is short.The traditional sealing materials of yellow mud and cement-sand grout will readily shrink after the drilling hole is sealed,the sealing length is short and the sealing quality is not satisfactory.Currently widely used polyurethane material will shrink when it comes into contact with water,and the price is also very high.In this study,taking cement as a base material,a novel composite sealing material mixed by expansion admixture,additive,and fbrin and coupling agent was developed and the sealing performance and expansion property of the material were also studied and analyzed.The FEI Quanta TM 250 environmental scanning electron microscope was used to investigate the microstructure of material.The results revealed that the new composite sealing material had a desirable expansion performance and a defnite fluidity convenient for grouting.The solidifed material,combining closely with the drilling wall,possessed an adequate strength and was not easy to shrink.Compared to the conventional polyurethane,the gas drainage concentration by drilling sealing exceeded 40 percent,and the sealing capacity improves5 times,the sealing effect increases signifcantly.
文摘The structure and performances of the large dimension steel ball made of 45 steel quenched after forging have been researched. The experiments indicate that the optimum results can be obtained under proper processes.
文摘This paper focuses on how aging can affect performance of safety-related structures in nuclear power plant (NPP). Knowledge and assessment of impacts of aging on structures are essential to plant life extension analysis,especially performance to severe loadings such as loss-of-coolant-accidents or major seismic events. Plant life extension issues are of keen interest in countries (like the United States) which have a large,aging fleet of NPPs. This paper addresses the overlap and relationship of structure aging to severe loading performance,with particular emphasis on containment structures.
文摘A typical privately-run enterprise has a mixed ownership structure with. four predominant groups of shareholders the state, legal persons, domestic individuals, and foreign investors. This paper gives an empirical analysis on the relationship among ownership concentration, insider shareholding and firm performance in nearly one thousand Chinese privately-run enterprises. The results show: the ownership concentration ratio and the percentage of insider shareholding are 'inverse U--shaped' related to finn performance, respectively, the debt-to-asset ratio is negative related to finn performance, the firm size is positive related to firm performance.
基金This paper is supported by the National Nature Science Foundation (NSF) (No.70371038), and Excellent Innovative Research Group Funds Project from the NSF of China (No. 70121001).
文摘Whether a decision group does its function or not directly depends on the rationality of its characters. The decision science, also with other correlation disciplines, wants to know how the group characters affect the group performance. Although there are great deals of means to describe the group characters theoretically and practically, in this paper, we consider that the integrity character of a group is composed of the group scale, the constitution and the structure. So the research on how group characters affect the group performance should focus on the three aspects. In order to grasp the present research situation and clear the prospective direction of the studies, we will summarize the study on how the group characters affect the group performance from these three aspects.
基金Supported by the National Natural Science Foundation of China under Grant No 51302097the Scientific Research Foundation of the Returned Overseas Chinese Scholars of the State Education Ministry
文摘We study the stability and performance of Li absorption on the composite structure (B80 C72) of boron fullerene and graphene by first-principles calculations. Our results show that the Li storage capacity of the composite structure is estimated to be at least Li54B80C72, which is steady with improved dispersibility and electronic conductivity. The composite structure could have the potential application as the anode material of Li-ion batteries with high Li storage capacity and great mechanical property.
文摘In order to realize the potential of composite materials, it is imperative to develop a manufacturing process, to understand the microstructures, and to assess the structural performance of the composite. The braided-pultrusion process, which combines the pultrusion process with the braiding technology, has been developed by utilizing a novel resin impregnation device. The goal of the development is to achieve both costeffectiveness and performance of the composite. The tubular composites of diameter 5.3 mm have been produced using Kevlar 49 fiber and polyester resin. In order to assess the mechanical performance of the composites, an analytical method for predicting the elastic constants has been developed. The analysis includes the geometric model of a unit cell, coordinate transformation, and averaging of stiffness and compliance constants of the constituent materials. The analytic predictions compared favorably with experimental results.
文摘Stone structures with dry joints, that is, without mortar, have shown a surprising behavior when earthquakes occur. An example of this behavior is the perennially of the so-called Inca wall in Peru, which despite having suffered several earthquakes over time has remained stable without collapsing. This article presents the research carried out on stone masonry wails with dry joint, without mortar, subject to a seismic action. In order to understand the behavior of the masonry without mortar, it designs a Grid mode/ of Finite Elements. From the results, it is concluded that these walls with a certain thickness have ductility that allows them to withstand high displacement and rotation values, thus accommodating the movement of the earth subject to an earthquake. The individual stone blocks move relative to each other through rotations and displacements, which are processed in the free joints of any mortar. The joints work as energy sinks. The free movements in the joints dissipate the energy transmitted by the earthquake, not causing in this way the rupture of the stone blocks. The goal of this article is to understand the p importance of lack of mortar in the seismic behavior of the mansonry.
文摘The locomotive turntable is an essential device for the steering operation of the railway locomotive. This paper has introduced the structural composition and characteristics of the box girder locomotive turntable, has ana- lyzed its vertical load, horizontal load and torsional load, and has established a mechanical model for the symmet- rical structure of the box girder locomotive turntable under the action of positive and negative symmetric vertical loads. Furthermore, it has also demonstrated the safe and reliable structural performance of this type of locomotive turntable on the basis of the practical example of a 35 m box girder locomotive turntable.