期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
Nonlinear constitutive models of rock structural plane and their applications
1
作者 Wenlin Feng Shuangjian Niu +1 位作者 Chunsheng Qiao Dujian Zou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期790-806,共17页
Structural planes play an important role in controlling the stability of rock engineering,and the influence of structural planes should be considered in the design and construction process of rock engineering.In this ... Structural planes play an important role in controlling the stability of rock engineering,and the influence of structural planes should be considered in the design and construction process of rock engineering.In this paper,mechanical properties,constitutive theory,and numerical application of structural plane are studied by a combination method of laboratory tests,theoretical derivation,and program development.The test results reveal the change laws of various mechanical parameters under different roughness and normal stress.At the pre-peak stage,a non-stationary model of shear stiffness is established,and threedimensional empirical prediction models for initial shear stiffness and residual stage roughness are proposed.The nonlinear constitutive models are established based on elasto-plastic mechanics,and the algorithms of the models are developed based on the return mapping algorithm.According to a large number of statistical analysis results,empirical prediction models are proposed for model parameters expressed by structural plane characteristic parameters.Finally,the discrete element method(DEM)is chosen to embed the constitutive models for practical application.The running programs of the constitutive models have been compiled into the discrete element model library.The comparison results between the proposed model and the Mohr-Coulomb slip model show that the proposed model can better describe nonlinear changes at different stages,and the predicted shear strength,peak strain and shear stiffness are closer to the test results.The research results of the paper are conducive to the accurate evaluation of structural plane in rock engineering. 展开更多
关键词 structural plane Engineering stability ROUGHNESS Normal stress Elasto-plastic constitutive model Discrete element method
下载PDF
Testing method of rock structural plane using digital drilling
2
作者 Qi Wang Yuncai Wang +4 位作者 Bei Jiang Hongke Gao Fenglin Ma Dahu Zhai Songlin Cai 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2563-2578,共16页
The rock mass consists of rock blocks and structural planes,which can reduce its integrity and strength.Therefore,accurately obtaining the characteristics of the rock mass structural plane is a prerequisite for evalua... The rock mass consists of rock blocks and structural planes,which can reduce its integrity and strength.Therefore,accurately obtaining the characteristics of the rock mass structural plane is a prerequisite for evaluating stability and designing supports in underground engineering.Currently,there are no effective testing methods for the characteristic parameters of the rock mass structural plane in underground engineering.The paper presents the digital drilling technology as a new testing method of rock mass structural planes.Flawed rock specimens with cracks of varying widths and angles were used to simulate the rock mass structural planes,and the multifunctional rock mass digital drilling test system was employed to carry out the digital drilling tests.The analysis focuses on the variation laws of drilling parameters,such as drilling pressure and drilling torque,affected by the characteristics of prefabricated cracks,and clarifies the degradation mechanism of rock equivalent compressive strength.Additionally,an identification model for the characteristic parameters of rock mass structural planes during drilling is established.The test results indicate that the average difference of the characteristics of prefabricated cracks identified by the equivalent compressive strength is 2.45°and 0.82 mm,respectively.The identification model while drilling is verified to be correct due to the high identification accuracy.Based on this,a method for testing the characteristic parameters of the surrounding rock structural plane while drilling is proposed.The research offers a theoretical and methodological foundation for precise in situ identification of structural planes of the surrounding rock in underground engineering. 展开更多
关键词 structural planes in the rock mass Digital drilling Drilling parameters Equivalent compressive strength Testing method
下载PDF
Dynamic damage evolution of bank slopes with serrated structural planes considering the deteriorated rock mass and frequent reservoirinduced earthquakes 被引量:2
3
作者 Xinrong Liu Yan Wang +3 位作者 Bin Xu Xiaohan Zhou Xueyan Guo Luli Miao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第9期1131-1145,共15页
To investigate the dynamic damage evolution characteristics of bank slopes with serrated structural planes,the shaking table model test and the numerical simulation were utilized.The main findings indicate that under ... To investigate the dynamic damage evolution characteristics of bank slopes with serrated structural planes,the shaking table model test and the numerical simulation were utilized.The main findings indicate that under continuous seismic loads,the deformation of the bank slope increased,particularly around the hydro-fluctuation belt,accompanying by the pore water pressure rising.The soil pressure increased and then decreased showed dynamic variation characteristics.As the undulation angle of the serrated structural planes increased(30°, 45°, and 60°),the failure modes were climbing,climbinggnawing,and gnawing respectively.The first-order natural frequency was used to calculate the damage degree(Dd)of the bank slope.During microseisms and small earthquakes,it was discovered that the evolution of Dd followed the“S”shape,which was fitted by a logic function.Additionally,the quadratic function was used to fit the Dd during moderately strong earthquakes.Through the numerical simulation,the variation characteristics of safety factors(Sf)for slopes with serrated structural planes and slopes with straight structural planes were compared.Under continuous seismic loads,the Sf of slopes with straight structural planes reduce stalely,whereas the Sf for slopes with serrated structural planes was greater than the former and the reduction rate was increasing. 展开更多
关键词 Rock bedded slope Serrated structural planes Reservoir-induced earthquakes Hydro-fluctuation belt Damage evolution
下载PDF
Structural plane recognition from three-dimensional laser scanning points using an improved region-growing algorithm based on the robust randomized Hough transform 被引量:1
4
作者 XU Zhi-hua GUO Ge +3 位作者 SUN Qian-cheng WANG Quan ZHANG Guo-dong YE Run-qing 《Journal of Mountain Science》 SCIE CSCD 2023年第11期3376-3391,共16页
The staggered distribution of joints and fissures in space constitutes the weak part of any rock mass.The identification of rock mass structural planes and the extraction of characteristic parameters are the basis of ... The staggered distribution of joints and fissures in space constitutes the weak part of any rock mass.The identification of rock mass structural planes and the extraction of characteristic parameters are the basis of rock-mass integrity evaluation,which is very important for analysis of slope stability.The laser scanning technique can be used to acquire the coordinate information pertaining to each point of the structural plane,but large amount of point cloud data,uneven density distribution,and noise point interference make the identification efficiency and accuracy of different types of structural planes limited by point cloud data analysis technology.A new point cloud identification and segmentation algorithm for rock mass structural surfaces is proposed.Based on the distribution states of the original point cloud in different neighborhoods in space,the point clouds are characterized by multi-dimensional eigenvalues and calculated by the robust randomized Hough transform(RRHT).The normal vector difference and the final eigenvalue are proposed for characteristic distinction,and the identification of rock mass structural surfaces is completed through regional growth,which strengthens the difference expression of point clouds.In addition,nearest Voxel downsampling is also introduced in the RRHT calculation,which further reduces the number of sources of neighborhood noises,thereby improving the accuracy and stability of the calculation.The advantages of the method have been verified by laboratory models.The results showed that the proposed method can better achieve the segmentation and statistics of structural planes with interfaces and sharp boundaries.The method works well in the identification of joints,fissures,and other structural planes on Mangshezhai slope in the Three Gorges Reservoir area,China.It can provide a stable and effective technique for the identification and segmentation of rock mass structural planes,which is beneficial in engineering practice. 展开更多
关键词 3D laser scanning Rock discontinuity structural plane Intelligent recognition Robust randomized Hough transform Improved region growing algorithm
下载PDF
Effects of external dynamic disturbances and structural plane on rock fracturing around deep underground cavern 被引量:4
5
作者 Fan Feng Shaojie Chen +3 位作者 Xingdong Zhao Diyuan Li Xianlai Wang Jiqiang Cui 《International Journal of Coal Science & Technology》 EI CAS CSCD 2022年第1期99-119,共21页
The occurrence of disasters in deep mining engineering has been confirmed to be closely related to the external dynamic disturbances and geological discontinuities.Thus,a combined finite-element method was employed to... The occurrence of disasters in deep mining engineering has been confirmed to be closely related to the external dynamic disturbances and geological discontinuities.Thus,a combined finite-element method was employed to simulate the failure process of an underground cavern,which provided insights into the failure mechanism of deep hard rock affected by factors such as the dynamic stress-wave amplitudes,disturbance direction,and dip angles of the structural plane.The crack-propagation process,stress-field distribution,displacement,velocity of failed rock,and failure zone around the circular cavern were analyzed to identify the dynamic response and failure properties of the underground structures.The simulation results indicate that the dynamic disturbance direction had less influence on the dynamic response for the constant in situ stress state,while the failure intensity and damage range around the cavern always exhibited a monotonically increasing trend with an increase in the dynamic load.The crack distribution around the circular cavern exhibited an asymmetric pattern,possibly owing to the stress-wave reflection behavior and attenuation effect along the propagation route.Geological discontinuities significantly affected the stability of nearby caverns subjected to dynamic disturbances,during which the failure intensity exhibited the pattern of an initial increase followed by a decrease with an increase in the dip angle of the structural plane.Additionally,the dynamic disturbance direction led to variations in the crack distribution for specific structural planes and stress states.These results indicate that the failure behavior should be the integrated response of the excavation unloading effect,geological conditions,and external dynamic disturbances. 展开更多
关键词 Underground cavern Dynamic disturbances structural plane Crack propagation Failure intensity Excavation unloading
下载PDF
Engineering geological classification of the structural planes for hydroelectric projects in Emeishan Basalts 被引量:3
6
作者 SUN Shu-qin HUANG Run-qiu +1 位作者 PEI Xiang-jun ZHAO Song-jiang 《Journal of Mountain Science》 SCIE CSCD 2016年第2期330-341,共12页
The scale and characteristics of rock mass are important indexes of the rock mass structural plane classification. This paper firstly analyzes the spatial distribution characteristics, the structural plane types (ori... The scale and characteristics of rock mass are important indexes of the rock mass structural plane classification. This paper firstly analyzes the spatial distribution characteristics, the structural plane types (original structural plane, tectonic structural plane and hypergenic structural plane) and the associated features of the Emeishan basalts and then studies the classification schemes of the built hydropower structure planes of different rock areas (the east district, the central district and the west district) in the Emeishan basalt distribution area, Southwest China. Based on the analysis and comparison of the scale and the engineering geological characteristics of the typical structure planes in the basalt hydroelectric Stations, the types of structural planes are used in the first order classification. The secondary order classification is made by considering the impact factors of rock mass quality, e.g., the state of the structural planes, infilling, joint opening, extending length, the grade of weathering and strength. The engineering geological classification for Emeishan basalt is proposed. Because there are no evidences of a large structure presenting in study area, the first-order (Ⅰ) controlling structural planes do not appear in the classification, there only appear Ⅱ, Ⅲ, Ⅳ and Ⅴ grade structural planes influencing the rock-mass quality. According to the different rock-block types in bedding fault zone, the second-grade (Ⅱ) structural planes consisted of bedding fault zone is further classified into Ⅱ1, Ⅱ2 and Ⅱ3. The third-grade (Ⅲ) structural planes constructed by intraformational faulted zones are not subdivided. According to the different characteristics of intrusion, alteration and weathering unloading structural planes, the Ⅳ grade structure plane is divided into Ⅳ1, Ⅳ2 and Ⅳ3. According to the development characteristics of joints and fractures, the V grade structure plane is divided into fracture Ⅴ1 and columnar joint Ⅴ2. In all, the structural planes are classified into four groups with nine subsets. The research proposes the engineering geological classification of the structural plane for the hydropower project in the Emishan basalts, and the result of the study has a potential application in similar regions. 展开更多
关键词 Emeishan basalt Hydroelectric project structural plane Bedding fault zone Engineering geological classification
下载PDF
Analytical and numerical solutions for shear mechanical behaviors of structural plane
7
作者 何忠明 熊喆怡 +1 位作者 胡庆国 杨明 《Journal of Central South University》 SCIE EI CAS 2014年第7期2944-2949,共6页
The original descriptive model of shear stress and shear displacement only reflects the stress deformation characteristics of plastic structural plane.The index model was revised and piecewise index model was built to... The original descriptive model of shear stress and shear displacement only reflects the stress deformation characteristics of plastic structural plane.The index model was revised and piecewise index model was built to describe the stress deformation characteristics of plastic structural plane and brittle structural plane.The relation of stress and strain to the failure mode of structural plane considering the effect of its shape was investigated,and a model which could reflect the relation between undulate angle and shear strength was built.The result indicates that structural plane presents nonlinear characteristics,specifically,the value of undulate angle,as well as corresponding shear strength,becomes larger as the normal stress decreases. 展开更多
关键词 structural plane shear mechanical behavior model failure mode nonlinear characteristics numerical analysis
下载PDF
Discussion of Research Related to Structural Plane of Rock Mass Slope
8
作者 WANG Yongyi 《International English Education Research》 2016年第4期41-43,共3页
In this paper, firstly, the rock slope and rock mass structure are introduced. And then, two aspects of the study of the structural plane are discussed: The first aspect is method for determining mechanical parameter... In this paper, firstly, the rock slope and rock mass structure are introduced. And then, two aspects of the study of the structural plane are discussed: The first aspect is method for determining mechanical parameters of structural plane; The second aspect is analysis of shear strength of structural plane. 展开更多
关键词 Rock mass slope rock mass structure structural plane
下载PDF
Numerical Simulation Study on the Detection of Weak Structural Plane of Rock Slope by Using 3D Electrical Resistivity Tomography
9
作者 Xin Zhang 《Engineering(科研)》 2016年第7期438-444,共8页
The weak structure plane is an important factor affecting the stability of rock slope, and detecting the spatial structure of the weak structural plane is beneficial to analyze the stability of the slope and estimate ... The weak structure plane is an important factor affecting the stability of rock slope, and detecting the spatial structure of the weak structural plane is beneficial to analyze the stability of the slope and estimate the quantity of the landslide. Based on 3D electrical resistivity tomography, a model of rock slope with weak structure plane is established, and the characteristics of three-dimensional resistivity imaging of weak structure plane under different ground water conditions are simulated. The results show that the weak structural plane has a better reflection in 3D electrical resistivity tomography;the distribution of weak structural plane of 3D resistivity imaging can be roughly determined under different ground water conditions;the three-dimensional electrical resistivity tomography is feasible in the detection of weak structural plane of rock slope. 展开更多
关键词 Rock Slope Soft Structure plane 3D Electrical Resistivity Tomography Numerical Simulation
下载PDF
A review of rockburst:Insights from engineering sites to theoretical investigations
10
作者 HE Ben-guo WANG Biao +2 位作者 FENG Xia-ting ZHANG Heng-yuan JIN Zhao-tong 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2607-2643,共37页
Rockburst has perennially posed a formidable challenge to the stability of underground engineering works,particularly under conditions of deep-seated high stress.This paper provides a comprehensive review of recent ad... Rockburst has perennially posed a formidable challenge to the stability of underground engineering works,particularly under conditions of deep-seated high stress.This paper provides a comprehensive review of recent advancements in on-site research related to rockburst occurrences,covering on-site case analyses,monitoring methodologies,early warning systems,and risk(proneness)evaluation.Initially,the concepts and classifications of rockburst based on on-site understanding were summarized.The influences of structural planes(in various spatial distribution combinations),in-situ stress(particularly magnitude and direction of the principal stress),dynamic disturbances,and excavation profiles on rockburst were thoroughly assessed and discussed through the analysis of published rockburst cases and on-site survey results.Subsequently,a compendium of commonly employed on-site monitoring techniques was outlined,delineating their respective technical attributes.Particular emphasis is accorded to the efficacy of microseismic monitoring technology and its prospective utility in facilitating dynamic rockburst early warning mechanisms.Building upon this foundation,the feasibility of assessing rockburst propensity while considering on-site variables is verified,encompassing the selection and quantitative evaluation of pertinent indicators.Ultimately,a comprehensive synthesis of the paper is presented,alongside the articulation of prospective research goals for the future. 展开更多
关键词 ROCKBURST in-situ stress structural plane dynamic disturbance rockburst proneness evaluation
下载PDF
Determination of the Effect of Initial Inner-Core Structure on Tropical Cyclone Intensification and Track on a Beta Plane 被引量:1
11
作者 Guanghua CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第8期945-954,共10页
The sensitivity of TC intensification and track to the initial inner-core structure on a β plane is investigated using a numerical model. The results show that the vortex with large inner-core winds(CVEX-EXP) exper... The sensitivity of TC intensification and track to the initial inner-core structure on a β plane is investigated using a numerical model. The results show that the vortex with large inner-core winds(CVEX-EXP) experiences an earlier intensification than that with small inner-core winds(CCAVE-EXP), but they have nearly the same intensification rate after spin-up. In the early stage, the convective cells associated with surface heat flux are mainly confined within the inner-core region in CVEXEXP, whereas the vortex in CCAVE-EXP exhibits a considerably asymmetric structure with most of the convective vortices being initiated to the northeast in the outer-core region due to the β effect. The large inner-core inertial stability in CVEX-EXP can prompt a high efficiency in the conversion from convective heating to kinetic energy. In addition, much stronger straining deformation and PBL imbalance in the inner-core region outside the primary eyewall ensue during the initial development stage in CVEX-EXP than in CCAVE-EXP, which is conducive to the rapid axisymmetrization and early intensification in CVEX-EXP. The TC track in CVEX-EXP sustains a northwestward displacement throughout the integration, whereas the TC in CCAVE-EXP undergoes a northeastward recurvature when the asymmetric structure is dominant. Due to the enhanced asymmetric convection to the northeast of the TC center in CCAVE-EXP, a pair of secondary gyres embedded within the large-scale primary β gyres forms, which modulates the ventilation flow and thus steers the TC to move northeastward. 展开更多
关键词 inner-core structure tropical cyclone intensification track β plane
下载PDF
Influence of Structure Plane Size on Seismic Response of Soil-Structure Interaction
12
作者 姜忻良 张亚楠 《Transactions of Tianjin University》 EI CAS 2013年第5期345-350,共6页
The influence of the change of structure plane size on seismic response was studied for a soil-structure interaction system.Based on the finite element method,a soil-structure interaction calculation model was establi... The influence of the change of structure plane size on seismic response was studied for a soil-structure interaction system.Based on the finite element method,a soil-structure interaction calculation model was established to analyze the seismic response by changing the structure plane size and choosing different earthquake waves for different soil fields.The results show that when the natural periods of vibration for different structure plane sizes are close,under the same earthquake wave,the total displacement on the top layer of the structure and the foundation rotation displacement decrease with the increase of structure plane size,and the proportion of superstructure elastic selfdeformation displacement to the total displacement increases with the increase of structure plane size.While for different types of sites and seismic waves,under the horizontal and vertical seismic waves,the seismic responses of different plane sizes have a similar change rule. 展开更多
关键词 soil-structure interaction finite element analysis structure plane size seismic response time historyanalysis
下载PDF
Numerical Analysis on the Seismic Performance of Plane Irregular Structure Based on ABAQUS
13
作者 Lina Zong Feng Xu +1 位作者 Wei Yuan Xiaolei Ji 《Journal of Architectural Research and Development》 2020年第4期14-21,共8页
Rod element and shell element were used in finite element software ABAQUS to establish dynamic elastic-plastic analysis model of the structure,the seismic performance of an irregular plane complex overrun structure nu... Rod element and shell element were used in finite element software ABAQUS to establish dynamic elastic-plastic analysis model of the structure,the seismic performance of an irregular plane complex overrun structure numerical simulation,the structure was calculated under different input level and displacement response of the acceleration response,and analyses the force of the wear layer column and the floor of the open hole stress level.The results were compared with the shaking table test to verify the accuracy of the numerical simulation results.The results of numerical calculation were basically consistent with the experimental results,and the finite element model basically reflected the response of the structure under the simulated earthquake. 展开更多
关键词 plane Irregular structure ELASTIC-PLASTIC Acceleration response Seismic performance Weak component
下载PDF
Physical model test study on shear strength characteristics of slope sliding surface in Nanfen open-pit mine 被引量:10
14
作者 Zhigang Tao Yu Shu +3 位作者 Xiaojie Yang Yanyan Peng Qihang Chen Haijiang Zhang 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第3期421-429,共9页
A physical model for the footwall slope of Nanfen open-pit mine, China was established using a selfdeveloped deep geological engineering disaster model test system. A thermosensitive similar material,paraffin, was sel... A physical model for the footwall slope of Nanfen open-pit mine, China was established using a selfdeveloped deep geological engineering disaster model test system. A thermosensitive similar material,paraffin, was selected to simulate a weak structural plane in the slope to reproduce the landslide process.From an experimental perspective, the variation trend of shear strength parameters of weak structural plane and the mechanical support characteristics of NPR(negative Poisson’s ratio) anchor cable under the condition of a large landslide deformation and failure were examined. The results of this model test showed that slope failure has four distinct stages:(1) soil compaction stage,(2) crack generation stage,(3) crack propagation stage, and(4) sliding plane transfixion stage. According to the test results, the rock mechanics parameters of weak surface in the footwall slope of Nanfen open-pit mine were calculated.The cohesion is approximately 1.35×10~5 Pa, and the internal friction angle is approximately 6.33°.During slope failure, the NPR anchor cable experiences a large deformation but no damage occurs, indicating that the NPR anchor cable can be continuously monitored and reinforced during the deformation and failure of landslide. The stress characteristics of NPR anchor cables during the test are consistent with the monitoring results of Newtonian force at the landslide site, proving that NPR anchor cables are effective and reasonable in landslide monitoring and early warning. 展开更多
关键词 LANDSLIDE Slope stability structural plane Model test NPR anchor cable
下载PDF
Study on engineering geological stability of rock mass at Shanmen silver deposit 被引量:1
15
作者 Ming FENG Li LIU +2 位作者 Yu ZHANG Xigang REN Chengke XU 《Global Geology》 2006年第2期242-245,共4页
The natural balance conditions will be disturbed and produce a series of problems when mineral deposit has mined.This paper has researched the engineering rock masses have been researched in this study,structural plan... The natural balance conditions will be disturbed and produce a series of problems when mineral deposit has mined.This paper has researched the engineering rock masses have been researched in this study,structural planes,the distribution characteristics of tectonic geological factors and the stability of engineering structures according to the theory and research methods of rock mechanics,it will provide the engineering geological evidence for mining area exploited,meanwhile pledge the safety production.Shanmen silver deposit is a large epithermal deposit,it is controlled by NE to NNE strike faults.The stability of rock mass is acted on the tectonic movement and hot metalliferous brine in long-term.Especially,strength of rock mass becomes softened,muddy and loosed under the action of water,so the lower stability of rock mass is,the easier it can take place for harm of disaster threatening production safe of mining.For this reason,it is very important that drawing up a plan to lower harm for mine and protect. 展开更多
关键词 stability of rock mass rock mass texture structural plane
下载PDF
The establishment of 3D visualization modeling for the jointed slope
16
作者 LI Yu XU Jia HAN Chuan 《Journal of Civil Engineering and Architecture》 2009年第3期23-30,共8页
The 3D visualization model of slop with structural plane can displayed the characters of structural plane in slop directly, and illustrated the spatial combination. It is a modem and critical question in the field of ... The 3D visualization model of slop with structural plane can displayed the characters of structural plane in slop directly, and illustrated the spatial combination. It is a modem and critical question in the field of geotechnical engineering. Based on the peculiarity of the reconnaissance and the research of the visualization by formers, systemized the method fit for building 3D visualization model of slop with structural plane. Write the special program with Visual C^-+ computer language and illustrated it by OpenGL, the program can displayed and captured the random section plane. The program has a satisfied result by proving with the real projects. 展开更多
关键词 slop with structural plane 3D visualization model moving least squares method computer simulation
下载PDF
Developments and Prospects of Long-Span High-Speed Railway Bridge Technologies in China 被引量:61
17
作者 Shunquan Qin Zongyu Gao 《Engineering》 SCIE EI 2017年第6期787-794,共8页
With the rapid developments of the high-speed railway in China, a great number of long-span bridges have been constructed in order to cross rivers and gorges. At present, the longest main span of a constructed high-sp... With the rapid developments of the high-speed railway in China, a great number of long-span bridges have been constructed in order to cross rivers and gorges. At present, the longest main span of a constructed high-speed railway bridge is only 630 m. The main span of Hutong Yangtze River Bridge and of Wufengshan Yangtze River Bridge, which are under construction, will be much longer, at 1092 m each. In order to overcome the technical issues that originate from the extremely large dead loading and the relatively small structural stiffness of long-span high-speed railway bridges, many new technologies in bridge construction, design, materials, and so forth have been developed. This paper carefully reviews progress in the construction technologies of multi-function combined bridges in China, including com- bined highway and railway bridges and multi-track railway bridges. Innovations and practices regarding new types of bridge and composite bridge structures, such as bridges with three cable planes and three main trusses, inclined main trusses, slab-truss composite sections, and steel-concrete composite sections, are introduced. In addition, investigations into high-performance materials and integral fabrication and erection techniques for long-span railway bridges are summarized. At the end of the paper, prospects for the future development of long-span high-speed railwav bridges are provided. 展开更多
关键词 High-speed railway Long-span bridges Multi-function combined bridges High-performance materials Spatial structures with three cable planes Integral fabrication
下载PDF
A Constitutive Model for the Creep Behavior of Offwhite Marbles
18
作者 X.D.Song J.H.Ren 《Advances in Applied Mathematics and Mechanics》 SCIE 2012年第3期354-364,共11页
This paper reports an improved constitutive model for the shear creep behavior of offwhite marbles which are selected from slope and underground cavern and contain green schist’s weak structural planes.The shear cree... This paper reports an improved constitutive model for the shear creep behavior of offwhite marbles which are selected from slope and underground cavern and contain green schist’s weak structural planes.The shear creep behavior of the samples is characterized using the rheological tests.Based on the experimental measurements on mechanical properties under different normal stress conditions,an improved model is proposed to analyze the experimental results.It is demonstrated from a further discussion that such model can reflect the non-linear creep characteristics of structural planes,and especially,it is suitable for description of the viscoelastic and viscoplastic deformation behavior of structural planes. 展开更多
关键词 Rock structural plane shear creep creep curve creep model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部