The cultivation of engineering capabilities aims to equip engineering professionals with high-level expertise to meet the demands of society and industry development,thereby enhancing their competitiveness and career ...The cultivation of engineering capabilities aims to equip engineering professionals with high-level expertise to meet the demands of society and industry development,thereby enhancing their competitiveness and career potential.This article focuses on engineering capability development,exploring teaching strategies for the Reinforced Concrete Structure course.It aims to provide insights for educators in engineering programs at universities and vocational colleges in China.By doing so,teaching plans that meet the needs of engineering capability development,laying a solid educational foundation for the healthy growth of engineering professionals in the new era,and enhancing their application of knowledge and skills can be developed.展开更多
The aim of this study is to characterize soil/reinforcement interaction in reinforced earth structures. The study showed that the internal behavior of this type of structure depends on a number of factors, including t...The aim of this study is to characterize soil/reinforcement interaction in reinforced earth structures. The study showed that the internal behavior of this type of structure depends on a number of factors, including the engineering backfill, the reinforcement and the soil/reinforcement interaction. The study also showed that the soil-reinforcement interaction phenomenon is a fairly complex mechanism that depends on the applied load, the geometry of the structure, the characteristics of the soil and a set of parameters characterizing the nailing: density, number and length of reinforcements, inclination of the reinforcements in relation to the sliding surface, mechanical characteristics of the reinforcements and, in particular, the relative stiffness of the reinforcements and the soil. The results showed that the tensile forces developed in the reinforcement are not entirely reversible, and that the soil at the interface undergoes permanent deformation, leading to the appearance of irreversible tensile forces in the reinforcement.展开更多
A numerical model using the coupled smoothed panicle hydrodynamics-finite element method (SPH-FEM) approach is presented for analysis of structures under blast loads. The analyses on two numerical cases, one for fre...A numerical model using the coupled smoothed panicle hydrodynamics-finite element method (SPH-FEM) approach is presented for analysis of structures under blast loads. The analyses on two numerical cases, one for free field explosive and the other for structural response under blast loads, are performed to model the whole processes from the propagation of the pressure wave to the response of structures. Based on the simulation, it is concluded that this model can be used for reasonably accurate explosive analysis of structures. The resulting information would be valuable for protecting structures under blast loads.展开更多
In this paper, the tensile properties of the MWK structures produced with different basic stitches for composite reinforcement were experimentally studied. The results show that the MWK structures with the double loop...In this paper, the tensile properties of the MWK structures produced with different basic stitches for composite reinforcement were experimentally studied. The results show that the MWK structures with the double loop pillar stitches have better mechanical properties.展开更多
The properties and tensile behaviors of polypropylene (PP) geogrids and geonets for reinforcement of soil structures are investigated.Mass per unit area of the geogrids and geonets was weighed using an electronic bala...The properties and tensile behaviors of polypropylene (PP) geogrids and geonets for reinforcement of soil structures are investigated.Mass per unit area of the geogrids and geonets was weighed using an electronic balance and aperture sizes of the geonets were exactly measured using a computer.Laboratory tests were performed using a small tensile machine capable of monitoring tensile force and displacement.Tensile failure behaviors were described,and tensile index properties such as tensile strength,maximum tensile strain,tensile forces corresponding to different strains in the geogrids and gronets were obtained.The characterization of these indexes is discussed.展开更多
The paper mainly summarized the developments on structural aseismic theory, aseismic analysis and design of reinforced concrete structure, lifeline system, several another kinds of structures, site and structure found...The paper mainly summarized the developments on structural aseismic theory, aseismic analysis and design of reinforced concrete structure, lifeline system, several another kinds of structures, site and structure foundation, structure mitigation and isolation of vibration in China in recent four years. This is the introduction of recent re-search results of Chinese professionals for international organizations and professionals. At the same time, it provides numerous abstract materials for colleagues to realize the trend of the structural aseismic theory and re-search range needing more study.展开更多
Seeking for innovative structures with higher mechanical performance is a continuous target in railway vehicle crashworthiness design.In the present study,three types of hexagonal reinforced honeycomb-like structures ...Seeking for innovative structures with higher mechanical performance is a continuous target in railway vehicle crashworthiness design.In the present study,three types of hexagonal reinforced honeycomb-like structures were developed and analyzed subjected to out-of-plane compression,namely triangular honeycomb(TH),double honeycomb(DH)and full inside honeycomb(FH).Theoretical formulas of average force and specific energy absorption(SEA)were constructed based on the energy minimization principle.To validate,corresponding numerical simulations were carried out by explicit finite element method.Good agreement has been observed between them.The results show that all these honeycomb-like structures maintain the same collapsed stages as conventional honeycomb;cell reinforcement can significantly promote the performance,both in the average force and SEA;full inside honeycomb performs better than the general,triangular and double schemes in average force;meanwhile,its SEA is close to that of double scheme;toroidal surface can dissipate higher plastic energy,so more toroidal surfaces should be considered in design of thin-walled structure.These achievements pave a way for designing high-performance cellular energy absorption devices.展开更多
Different strategies can be used to perform reparations and reinforcements of ancient bolted and riveted metallic bridges. As the riveting process is not currently a common practice, it requires proper equipment and s...Different strategies can be used to perform reparations and reinforcements of ancient bolted and riveted metallic bridges. As the riveting process is not currently a common practice, it requires proper equipment and skilled workers. Another solution is the use of welding. However, the weldability of old steels is poor. Bolts are very attractive alternative solutions, and are most commonly used to repair old metallic bridges. Fitted bolts are expensive solutions; the alternative is the use of resin-injected bolts. The behavior of bolted joints with preloaded resin-injected bolts has been studied using quasi-static and creep tests; however, few studies on the slip and fatigue behavior of these joints can be found in the literature. This paper presents an overview of a few experimental programs that were carried out by several authors aiming at evaluating the fatigue behavior of single and double shear resin-injected bolted connections. A comparison between the experimental data of joints with preloaded standard bolts and preloaded resin- injected bolts shows a fatigue strength reduction in the latter. Since Eurocode 3 (EC3) suggests the same fatigue strength curve for joints made of resin-injected bolts and standard bolts, this may raise some con- cerns. Furthermore, research on the feasibility of using both bonded and bolted connections is shown. This last study was performed with high-strength low-alloy structural steel plates and an acrylic struc- tural adhesive for metal bonding. For both case studies, a statistical analysis is performed on fatigue experimental data using linearized boundaries and the Castillo and Fernandez-Canteli model. Fatigue design curves are proposed and compared with the design suggestions of several European and North American standards,展开更多
An anchorage reliability analysis approach for simply supported reinforced concrete beams under corrosion attack in the anchorage zone is developed.The first-order second-moment method is employed to analyze the effec...An anchorage reliability analysis approach for simply supported reinforced concrete beams under corrosion attack in the anchorage zone is developed.The first-order second-moment method is employed to analyze the effects of various factors on the anchorage reliability.These factors include both the length and width of cover cracking due to reinforcement corrosion,the cover thickness,the anchorage length,and the stirrup ratio.The results show that the effect of corrosion-induced crack length on the reliability index for anchorage,β0,is negligible when the crack on the concrete surface is just appearing,but with the crack widening,the β0 value is reduced significantly;the considerable changes in β0 result from a variation in cover depth and anchorage length;the effect of changes in the diameter or space of stirrups on the anchorage resistance is very limited,and the variation in β0 is also very low.展开更多
Implications of the differences in leaf life span are still subject to debate in the field of ecophysiology.Since leaf traits associated with these differences may be decisive for determining the distribution of tree ...Implications of the differences in leaf life span are still subject to debate in the field of ecophysiology.Since leaf traits associated with these differences may be decisive for determining the distribution of tree species,this topic is particularly relevant in the context of climate change.This study analyzes the effects of the differences in leaf life span on premature losses of leaf area owing to insect herbivory and to abiotic stress.Loss of leaf area may be an important determinant of total leaf carbon assimilation.Seven Mediterranean tree species,distributed on four sites with different climates were studied.The species exhibited strong differences in leaf life span and in leaf traits,especially leaf mass per unit area.Premature leaf area losses were estimated in response to insect herbivory and summer drought over two years.The results revealed that,despite having older leaf cohorts with more damage,species with longer leaf duration had lower area lost to herbivores and less damage due to accelerated senescence during the summer drought.With respect to the predicted increase in water stress,deciduous species are at a disadvantage due to their high premature loss of leaf area and thus loss of photosynthetic capacity.展开更多
in order to evaluate the capacity of reinforced concrete (RC) structures subjected to blast Ioadings, the damaged plasticity model for concrete was used in the analysis of the dynamic responses of blast-loaded RC st...in order to evaluate the capacity of reinforced concrete (RC) structures subjected to blast Ioadings, the damaged plasticity model for concrete was used in the analysis of the dynamic responses of blast-loaded RC structures, and all three failure modes were numerically simulated by the finite element software ABAQUS. Simulation results agree with the experimental observations. It is demonstrated that the damaged plasticity model for concrete in the finite element software ABAQUS can predict dynamic responses and typical flexure, flexure-shear and direct shear failure modes of the blast-loaded RC structures.展开更多
This paper presents the results of a parametric study of self-centering seismic retrofit schemes for reinforced concrete (RC) frame buildings. The self-centering retrofit system features flag-shaped hysteresis and min...This paper presents the results of a parametric study of self-centering seismic retrofit schemes for reinforced concrete (RC) frame buildings. The self-centering retrofit system features flag-shaped hysteresis and minimal residual deformation. For comparison purpose,an alternate seismic retrofit scheme that uses a bilinear-hysteresis retrofit system such as buckling-restrained braces (BRB) is also considered in this paper. The parametric study was carried out in a single-degree-of-freedom (SDOF) system framework since a multi-story building structure may be idealized as an equivalent SDOF system and investigation of the performance of this equivalent SDOF system can provide insight into the seismic response of the multi-story building. A peak-oriented hysteresis model which can consider the strength and stiffness degradation is used to describe the hysteretic behavior of RC structures. The parametric study involves two key parameters -the strength ratio and elastic stiffness ratio between the seismic retrofit system and the original RC frame. An ensemble of 172 earthquake ground motion records scaled to the design basis earthquake in California with a probability of exceedance of 10% in 50 years was constructed for the simulation-based parametric study. The effectiveness of the two seismic retrofit schemes considered in this study is evaluated in terms of peak displacement ratio,peak acceleration ratio,energy dissipation demand ratio and residual displacement ratio between the SDOF systems with and without retrofit. It is found from this parametric study that RC structures retrofitted with the self-centering retrofit scheme (SCRS) can achieve a seismic performance level comparable to the bilinear-hysteresis retrofit scheme (BHRS) in terms of peak displacement and energy dissipation demand ratio while having negligible residual displacement after earthquake.展开更多
Earthquake simulator tests of a 1/6-scale nine-story reinforced concrete frame-wall model are described in the paper. The test results and associated numerical simulation are summarized and discussed. Based on the tes...Earthquake simulator tests of a 1/6-scale nine-story reinforced concrete frame-wall model are described in the paper. The test results and associated numerical simulation are summarized and discussed. Based on the test data, a relationship between maximum inter-story drift and damage state is established. Equations of variation of structural characteristics (natural frequency and equivalent stiffness) with overall drifts are derived by data fitting, which can be used to estimate structural damage state if structural characteristics can be measured. A comparison of the analytical and experimental results show that both the commonly used equivalent beam and fiber element models can simulate the nonlinear seismic response of structures very well. Finally, conclusions associated with seismic design and damage evaluation of RC structures are presented.展开更多
A nonlinear finite element model of the nut post reinforced concrete (RC) structure of the safety mechanism in the Three Gorges Project (TGP) ship lift was built by ANSYS software. Some irregular structures such a...A nonlinear finite element model of the nut post reinforced concrete (RC) structure of the safety mechanism in the Three Gorges Project (TGP) ship lift was built by ANSYS software. Some irregular structures such as the nut post and the rotary rod were divided by curved surface into a series of regular parts, and the structures were all meshed to hexahedron. Constraint equations were defined between two interfaces with different element sizes and mesh patterns. PRETS179 elements were used to simulate the preload in the tendons and the pre-stressed screws, and the loss of prestressing force was calculated. Five extreme load cases were analyzed. The stress of each part in the structure was obtained. The results indicate that the maximum compressive stress of concrete C35 is 24.13 MPa, so the concrete may be partially crushed; the maximum tensile stress of the grouting motar is 6.73 MPa, so the grouting motar may partially fracture; the maximum yon Mises stress of the rotary rod is 648.70 MPa, therefore the rotary rod may partially yield.展开更多
The reinforcement corrosion is the pitting corrosion of chloride corrosion.Hence,in this study,the variations of reinforcement tensile strength due to stress concentration of pitting corrosion are analyzed.The stress ...The reinforcement corrosion is the pitting corrosion of chloride corrosion.Hence,in this study,the variations of reinforcement tensile strength due to stress concentration of pitting corrosion are analyzed.The stress concentration consequence of corrosion on the reinforcement tensile capacity is studied utilizing tension tests and creating different ABAQUS software models.According to the modelling in various corrosion depths,strength reduction is less than 5%in corrosion with pit radius to reinforcement diameter ratio up to 0.3 and for corrosions higher than 0.4,the measure of capacity reduction is increased more to 30%.展开更多
The interaction between geogrid and soil is crucial for the stability of geogrid-reinforced earth structure. In finite element (FE) analysis, geogrids are usually assumed as beam or truss elements, and the interacti...The interaction between geogrid and soil is crucial for the stability of geogrid-reinforced earth structure. In finite element (FE) analysis, geogrids are usually assumed as beam or truss elements, and the interaction between geogrid and soil is considered as Coulomb friction resistance, which cannot reflect the true stress and displacement developed in the reinlbrcement. And the traditional Lagrangian elements used to simulate soil always become highly distorted and lose accuracy in high-stress blocks. An improved geogrid model that can produce shear resistance and passive resistance and a soil model using the Eulerian technique, in combination with the coupled Eulerian-Lagrangian (CEL) method, are used to analyze the interaction between geogrid and soil of reinforced foundation test in ABAQUS. The stress in the backfill, resistance of geogrid, and settlement of foundation were computed and the results of analysis agree well with the experimental results. This simulation method is of referential value for FE analysis of reinforced earth structure.展开更多
The objective of this paper is to provide an analytical basis for the quantitative evaluation of damage to a reinforced concrete structure based on the vibration data obtained by using the damage detection technique. ...The objective of this paper is to provide an analytical basis for the quantitative evaluation of damage to a reinforced concrete structure based on the vibration data obtained by using the damage detection technique. A partial reinforced concrete system of a weak beam/strong column moment frame is chosen as an example. A pushover analysis is carried out in order to numerically examine both the story shear-relative displacement characteristics and the associated damage level. In the analysis, a two dimensional nonlinear finite element analysis is employed considering several constitutive models. As a result, the degradation of the stiffness at the damaged story is characterized in association with the story relative displacement. It is also pointed out that the rotation angle of the column-base is highly correlated with the story relative displacement. Based on the analytical findings, quantitative approaches for a structural health monitoring system are suggested considering both the current sensor technologies and those available in the future. Keywords nonlinear FEM analysis - structural health monitoring - reinforced concrete structure - story stiffness - rotation angle of column-base Supported by: Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research (Base Research (c) (1), Research No. 14550555)展开更多
A reliability-based quantitative durability design methodology is presented for reinforced concrete(RC)structures in the marine environment on the basis of natural exposure data derived from four berths(1.5,1.5,4 and ...A reliability-based quantitative durability design methodology is presented for reinforced concrete(RC)structures in the marine environment on the basis of natural exposure data derived from four berths(1.5,1.5,4 and 15 years)of a concrete port.More than 200 chloride profiles are obtained and analyzed.The relationship between nominal surface chloride ion concentration and altitude is discussed.Subsequently,the formula of the apparent chloride diffusion coefficient is proposed with consideration of the surrounding temperature,sodium chloride solution concentration,age factor and altitude.Then,the reliability-based method to predict the durability of RC structures is developed according to Fick s second law.Relationships between the predicted penetration depth of the chloride ion,the ratio of the wetting time per-period and the corresponding altitude are discussed.Subsequently,the environmental zonation methodology is established for concrete structures under a marine chloride environment by considering the ratio of the wetting time per-period of concrete as the zoning index.Finally,the corres-ponding durability design method for each zone level is established,which contains the durability design regulations of the specimen,and correction coefficients for different water/binder ratios,ages,temperatures and chloride ion concentrations.展开更多
An investigation on damage location due to the corrosion in reinforced concrete structures is conducted. The frequency change square ratio is used as a parameter for the damage. It is theoretically verified that the p...An investigation on damage location due to the corrosion in reinforced concrete structures is conducted. The frequency change square ratio is used as a parameter for the damage. It is theoretically verified that the parameter is a function of the damage location. Experimental results of the corrosion in reinforced concrete structures show that the predicted damage location is in agreement with the real damage location. The modal parameters are used to detect the damages in structural concrete elements, and so they are useful for structural appraisal.展开更多
The column-to-beam flexural strength ratio(CBFSR)has been used in many seismic codes to achieve the strong column-weak beam(SCWB)failure mode in reinforced concrete(RC)frames,in which plastic hinges appear earlier in ...The column-to-beam flexural strength ratio(CBFSR)has been used in many seismic codes to achieve the strong column-weak beam(SCWB)failure mode in reinforced concrete(RC)frames,in which plastic hinges appear earlier in beams than in columns.However,seismic investigations show that the required limit of CBFSR in seismic codes usually cannot achieve the SCWB failure mode under strong earthquakes.This study investigates the failure modes of RC frames with different CBFSRs.Nine typical three-story RC frame models with different CBFSRs are designed in accordance with Chinese seismic codes.The seismic responses and failure modes of the frames are investigated through time-history analyses using 100 ground motion records.The results show that the required limit of the CBFSR that guarantees the SCWB failure mode depends on the beam-column connection type and the seismic intensity,and different types of beam-column connections exhibit different failure modes even though they are designed with the same CBFSR.Recommended CBFSRs are proposed for achieving the designed SCWB failure mode for different types of connections in RC frames under different seismic intensities.These results may provide some reference for further revisions of the SCWB design criterion in Chinese seismic codes.展开更多
文摘The cultivation of engineering capabilities aims to equip engineering professionals with high-level expertise to meet the demands of society and industry development,thereby enhancing their competitiveness and career potential.This article focuses on engineering capability development,exploring teaching strategies for the Reinforced Concrete Structure course.It aims to provide insights for educators in engineering programs at universities and vocational colleges in China.By doing so,teaching plans that meet the needs of engineering capability development,laying a solid educational foundation for the healthy growth of engineering professionals in the new era,and enhancing their application of knowledge and skills can be developed.
文摘The aim of this study is to characterize soil/reinforcement interaction in reinforced earth structures. The study showed that the internal behavior of this type of structure depends on a number of factors, including the engineering backfill, the reinforcement and the soil/reinforcement interaction. The study also showed that the soil-reinforcement interaction phenomenon is a fairly complex mechanism that depends on the applied load, the geometry of the structure, the characteristics of the soil and a set of parameters characterizing the nailing: density, number and length of reinforcements, inclination of the reinforcements in relation to the sliding surface, mechanical characteristics of the reinforcements and, in particular, the relative stiffness of the reinforcements and the soil. The results showed that the tensile forces developed in the reinforcement are not entirely reversible, and that the soil at the interface undergoes permanent deformation, leading to the appearance of irreversible tensile forces in the reinforcement.
基金National Basic Research Program (973) of China (No. 2002CB412709)the National Natural Science Foun-dation of China (No. 50378054)
文摘A numerical model using the coupled smoothed panicle hydrodynamics-finite element method (SPH-FEM) approach is presented for analysis of structures under blast loads. The analyses on two numerical cases, one for free field explosive and the other for structural response under blast loads, are performed to model the whole processes from the propagation of the pressure wave to the response of structures. Based on the simulation, it is concluded that this model can be used for reasonably accurate explosive analysis of structures. The resulting information would be valuable for protecting structures under blast loads.
文摘In this paper, the tensile properties of the MWK structures produced with different basic stitches for composite reinforcement were experimentally studied. The results show that the MWK structures with the double loop pillar stitches have better mechanical properties.
文摘The properties and tensile behaviors of polypropylene (PP) geogrids and geonets for reinforcement of soil structures are investigated.Mass per unit area of the geogrids and geonets was weighed using an electronic balance and aperture sizes of the geonets were exactly measured using a computer.Laboratory tests were performed using a small tensile machine capable of monitoring tensile force and displacement.Tensile failure behaviors were described,and tensile index properties such as tensile strength,maximum tensile strain,tensile forces corresponding to different strains in the geogrids and gronets were obtained.The characterization of these indexes is discussed.
基金National Naturel Science Foundation of China (59678048 and 50178055).
文摘The paper mainly summarized the developments on structural aseismic theory, aseismic analysis and design of reinforced concrete structure, lifeline system, several another kinds of structures, site and structure foundation, structure mitigation and isolation of vibration in China in recent four years. This is the introduction of recent re-search results of Chinese professionals for international organizations and professionals. At the same time, it provides numerous abstract materials for colleagues to realize the trend of the structural aseismic theory and re-search range needing more study.
基金Projects(51875581,51505502)supported by the National Natural Science Foundation of ChinaProjects(2017M620358,2018T110707)supported by China Postdoctoral Science FoundationProject(kq1905057)supported by the Training Program for Excellent Young Innovators of Changsha,China
文摘Seeking for innovative structures with higher mechanical performance is a continuous target in railway vehicle crashworthiness design.In the present study,three types of hexagonal reinforced honeycomb-like structures were developed and analyzed subjected to out-of-plane compression,namely triangular honeycomb(TH),double honeycomb(DH)and full inside honeycomb(FH).Theoretical formulas of average force and specific energy absorption(SEA)were constructed based on the energy minimization principle.To validate,corresponding numerical simulations were carried out by explicit finite element method.Good agreement has been observed between them.The results show that all these honeycomb-like structures maintain the same collapsed stages as conventional honeycomb;cell reinforcement can significantly promote the performance,both in the average force and SEA;full inside honeycomb performs better than the general,triangular and double schemes in average force;meanwhile,its SEA is close to that of double scheme;toroidal surface can dissipate higher plastic energy,so more toroidal surfaces should be considered in design of thin-walled structure.These achievements pave a way for designing high-performance cellular energy absorption devices.
基金the financial support of the Portuguese Foundation for Science and Technology (FCT) through the postdoctoral grant (SFRH/BPD/107825/2015)the funding of Pro-Life-Prolonging the Lifetime of Old Steel and Steel-Concrete Bridges (RFSR-CT-2015-00025) by the Research Fund for Coal and Steel (RFCS)
文摘Different strategies can be used to perform reparations and reinforcements of ancient bolted and riveted metallic bridges. As the riveting process is not currently a common practice, it requires proper equipment and skilled workers. Another solution is the use of welding. However, the weldability of old steels is poor. Bolts are very attractive alternative solutions, and are most commonly used to repair old metallic bridges. Fitted bolts are expensive solutions; the alternative is the use of resin-injected bolts. The behavior of bolted joints with preloaded resin-injected bolts has been studied using quasi-static and creep tests; however, few studies on the slip and fatigue behavior of these joints can be found in the literature. This paper presents an overview of a few experimental programs that were carried out by several authors aiming at evaluating the fatigue behavior of single and double shear resin-injected bolted connections. A comparison between the experimental data of joints with preloaded standard bolts and preloaded resin- injected bolts shows a fatigue strength reduction in the latter. Since Eurocode 3 (EC3) suggests the same fatigue strength curve for joints made of resin-injected bolts and standard bolts, this may raise some con- cerns. Furthermore, research on the feasibility of using both bonded and bolted connections is shown. This last study was performed with high-strength low-alloy structural steel plates and an acrylic struc- tural adhesive for metal bonding. For both case studies, a statistical analysis is performed on fatigue experimental data using linearized boundaries and the Castillo and Fernandez-Canteli model. Fatigue design curves are proposed and compared with the design suggestions of several European and North American standards,
基金The Key Science Foundation of Liaoning ProvincialCommunications Department (No.0101).
文摘An anchorage reliability analysis approach for simply supported reinforced concrete beams under corrosion attack in the anchorage zone is developed.The first-order second-moment method is employed to analyze the effects of various factors on the anchorage reliability.These factors include both the length and width of cover cracking due to reinforcement corrosion,the cover thickness,the anchorage length,and the stirrup ratio.The results show that the effect of corrosion-induced crack length on the reliability index for anchorage,β0,is negligible when the crack on the concrete surface is just appearing,but with the crack widening,the β0 value is reduced significantly;the considerable changes in β0 result from a variation in cover depth and anchorage length;the effect of changes in the diameter or space of stirrups on the anchorage resistance is very limited,and the variation in β0 is also very low.
基金financial support from the Regional Government of Castilla-León(Project No.SA126G18)。
文摘Implications of the differences in leaf life span are still subject to debate in the field of ecophysiology.Since leaf traits associated with these differences may be decisive for determining the distribution of tree species,this topic is particularly relevant in the context of climate change.This study analyzes the effects of the differences in leaf life span on premature losses of leaf area owing to insect herbivory and to abiotic stress.Loss of leaf area may be an important determinant of total leaf carbon assimilation.Seven Mediterranean tree species,distributed on four sites with different climates were studied.The species exhibited strong differences in leaf life span and in leaf traits,especially leaf mass per unit area.Premature leaf area losses were estimated in response to insect herbivory and summer drought over two years.The results revealed that,despite having older leaf cohorts with more damage,species with longer leaf duration had lower area lost to herbivores and less damage due to accelerated senescence during the summer drought.With respect to the predicted increase in water stress,deciduous species are at a disadvantage due to their high premature loss of leaf area and thus loss of photosynthetic capacity.
基金Supported by National Natural Science Foundation of China (No.50638030 and 50525825)National Science and Technology Support Program (No.2006BAJ13B02).
文摘in order to evaluate the capacity of reinforced concrete (RC) structures subjected to blast Ioadings, the damaged plasticity model for concrete was used in the analysis of the dynamic responses of blast-loaded RC structures, and all three failure modes were numerically simulated by the finite element software ABAQUS. Simulation results agree with the experimental observations. It is demonstrated that the damaged plasticity model for concrete in the finite element software ABAQUS can predict dynamic responses and typical flexure, flexure-shear and direct shear failure modes of the blast-loaded RC structures.
基金Univeristy of Maryland,Start-up Grant to the First Author
文摘This paper presents the results of a parametric study of self-centering seismic retrofit schemes for reinforced concrete (RC) frame buildings. The self-centering retrofit system features flag-shaped hysteresis and minimal residual deformation. For comparison purpose,an alternate seismic retrofit scheme that uses a bilinear-hysteresis retrofit system such as buckling-restrained braces (BRB) is also considered in this paper. The parametric study was carried out in a single-degree-of-freedom (SDOF) system framework since a multi-story building structure may be idealized as an equivalent SDOF system and investigation of the performance of this equivalent SDOF system can provide insight into the seismic response of the multi-story building. A peak-oriented hysteresis model which can consider the strength and stiffness degradation is used to describe the hysteretic behavior of RC structures. The parametric study involves two key parameters -the strength ratio and elastic stiffness ratio between the seismic retrofit system and the original RC frame. An ensemble of 172 earthquake ground motion records scaled to the design basis earthquake in California with a probability of exceedance of 10% in 50 years was constructed for the simulation-based parametric study. The effectiveness of the two seismic retrofit schemes considered in this study is evaluated in terms of peak displacement ratio,peak acceleration ratio,energy dissipation demand ratio and residual displacement ratio between the SDOF systems with and without retrofit. It is found from this parametric study that RC structures retrofitted with the self-centering retrofit scheme (SCRS) can achieve a seismic performance level comparable to the bilinear-hysteresis retrofit scheme (BHRS) in terms of peak displacement and energy dissipation demand ratio while having negligible residual displacement after earthquake.
基金Basic Research Fund of Institute of Engineering Mechanics, China Earthquake Administration for Special Project Under Grant No.2007A02Joint Earthquake Science Foundation of China Under Grant No.95-07-443
文摘Earthquake simulator tests of a 1/6-scale nine-story reinforced concrete frame-wall model are described in the paper. The test results and associated numerical simulation are summarized and discussed. Based on the test data, a relationship between maximum inter-story drift and damage state is established. Equations of variation of structural characteristics (natural frequency and equivalent stiffness) with overall drifts are derived by data fitting, which can be used to estimate structural damage state if structural characteristics can be measured. A comparison of the analytical and experimental results show that both the commonly used equivalent beam and fiber element models can simulate the nonlinear seismic response of structures very well. Finally, conclusions associated with seismic design and damage evaluation of RC structures are presented.
基金Project (SPKJ 016-06) supported by the Key Research Project of State Power CorporationProject (2004AC101D31) supported the Key Scientific Research Project of Hubei Province, China
文摘A nonlinear finite element model of the nut post reinforced concrete (RC) structure of the safety mechanism in the Three Gorges Project (TGP) ship lift was built by ANSYS software. Some irregular structures such as the nut post and the rotary rod were divided by curved surface into a series of regular parts, and the structures were all meshed to hexahedron. Constraint equations were defined between two interfaces with different element sizes and mesh patterns. PRETS179 elements were used to simulate the preload in the tendons and the pre-stressed screws, and the loss of prestressing force was calculated. Five extreme load cases were analyzed. The stress of each part in the structure was obtained. The results indicate that the maximum compressive stress of concrete C35 is 24.13 MPa, so the concrete may be partially crushed; the maximum tensile stress of the grouting motar is 6.73 MPa, so the grouting motar may partially fracture; the maximum yon Mises stress of the rotary rod is 648.70 MPa, therefore the rotary rod may partially yield.
文摘The reinforcement corrosion is the pitting corrosion of chloride corrosion.Hence,in this study,the variations of reinforcement tensile strength due to stress concentration of pitting corrosion are analyzed.The stress concentration consequence of corrosion on the reinforcement tensile capacity is studied utilizing tension tests and creating different ABAQUS software models.According to the modelling in various corrosion depths,strength reduction is less than 5%in corrosion with pit radius to reinforcement diameter ratio up to 0.3 and for corrosions higher than 0.4,the measure of capacity reduction is increased more to 30%.
基金Supported by National Natural Science Foundation of China (No. 50678032)
文摘The interaction between geogrid and soil is crucial for the stability of geogrid-reinforced earth structure. In finite element (FE) analysis, geogrids are usually assumed as beam or truss elements, and the interaction between geogrid and soil is considered as Coulomb friction resistance, which cannot reflect the true stress and displacement developed in the reinlbrcement. And the traditional Lagrangian elements used to simulate soil always become highly distorted and lose accuracy in high-stress blocks. An improved geogrid model that can produce shear resistance and passive resistance and a soil model using the Eulerian technique, in combination with the coupled Eulerian-Lagrangian (CEL) method, are used to analyze the interaction between geogrid and soil of reinforced foundation test in ABAQUS. The stress in the backfill, resistance of geogrid, and settlement of foundation were computed and the results of analysis agree well with the experimental results. This simulation method is of referential value for FE analysis of reinforced earth structure.
基金Ministry of Education,Science,Sports and Culture,Grant-in-Aid for Scientific Research(Base Research(c)(1),Research No.14550555)
文摘The objective of this paper is to provide an analytical basis for the quantitative evaluation of damage to a reinforced concrete structure based on the vibration data obtained by using the damage detection technique. A partial reinforced concrete system of a weak beam/strong column moment frame is chosen as an example. A pushover analysis is carried out in order to numerically examine both the story shear-relative displacement characteristics and the associated damage level. In the analysis, a two dimensional nonlinear finite element analysis is employed considering several constitutive models. As a result, the degradation of the stiffness at the damaged story is characterized in association with the story relative displacement. It is also pointed out that the rotation angle of the column-base is highly correlated with the story relative displacement. Based on the analytical findings, quantitative approaches for a structural health monitoring system are suggested considering both the current sensor technologies and those available in the future. Keywords nonlinear FEM analysis - structural health monitoring - reinforced concrete structure - story stiffness - rotation angle of column-base Supported by: Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research (Base Research (c) (1), Research No. 14550555)
基金The National Natural Science Foundation of China(No.51508162)
文摘A reliability-based quantitative durability design methodology is presented for reinforced concrete(RC)structures in the marine environment on the basis of natural exposure data derived from four berths(1.5,1.5,4 and 15 years)of a concrete port.More than 200 chloride profiles are obtained and analyzed.The relationship between nominal surface chloride ion concentration and altitude is discussed.Subsequently,the formula of the apparent chloride diffusion coefficient is proposed with consideration of the surrounding temperature,sodium chloride solution concentration,age factor and altitude.Then,the reliability-based method to predict the durability of RC structures is developed according to Fick s second law.Relationships between the predicted penetration depth of the chloride ion,the ratio of the wetting time per-period and the corresponding altitude are discussed.Subsequently,the environmental zonation methodology is established for concrete structures under a marine chloride environment by considering the ratio of the wetting time per-period of concrete as the zoning index.Finally,the corres-ponding durability design method for each zone level is established,which contains the durability design regulations of the specimen,and correction coefficients for different water/binder ratios,ages,temperatures and chloride ion concentrations.
文摘An investigation on damage location due to the corrosion in reinforced concrete structures is conducted. The frequency change square ratio is used as a parameter for the damage. It is theoretically verified that the parameter is a function of the damage location. Experimental results of the corrosion in reinforced concrete structures show that the predicted damage location is in agreement with the real damage location. The modal parameters are used to detect the damages in structural concrete elements, and so they are useful for structural appraisal.
基金National Key R&D Program of China under Grant No.2017YFC1500601National Natural Science Foundation of China under Grant Nos.51678541 and 51708523Scientific Research Fund of the Institute of Engineering Mechanics,China Earthquake Administration under Grant No.2016A01。
文摘The column-to-beam flexural strength ratio(CBFSR)has been used in many seismic codes to achieve the strong column-weak beam(SCWB)failure mode in reinforced concrete(RC)frames,in which plastic hinges appear earlier in beams than in columns.However,seismic investigations show that the required limit of CBFSR in seismic codes usually cannot achieve the SCWB failure mode under strong earthquakes.This study investigates the failure modes of RC frames with different CBFSRs.Nine typical three-story RC frame models with different CBFSRs are designed in accordance with Chinese seismic codes.The seismic responses and failure modes of the frames are investigated through time-history analyses using 100 ground motion records.The results show that the required limit of the CBFSR that guarantees the SCWB failure mode depends on the beam-column connection type and the seismic intensity,and different types of beam-column connections exhibit different failure modes even though they are designed with the same CBFSR.Recommended CBFSRs are proposed for achieving the designed SCWB failure mode for different types of connections in RC frames under different seismic intensities.These results may provide some reference for further revisions of the SCWB design criterion in Chinese seismic codes.