期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
The Structure of Ore-controlling Strain and Stress Fields in the Shangzhuang Gold Deposit in Shandong Province,China 被引量:43
1
作者 DENG Jun WANG Qingfei +6 位作者 YANG Liqiang ZHOU Lei GONG Qingjie YUAN Wanming XU Hao GUO Chunying LIU Xiangwei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2008年第4期769-780,共12页
The Shangzhuang altered-rock type gold ore deposit is located in the middle segment of and controlled by the Wang'ershan fault zone in the northwestern part of the Jiaodong gold province, China. The deformation evolu... The Shangzhuang altered-rock type gold ore deposit is located in the middle segment of and controlled by the Wang'ershan fault zone in the northwestern part of the Jiaodong gold province, China. The deformation evolution, the structure of strain and stress fields and its ore-controlling effect in the Shangzhuang deposit are discussed in this paper. It is revealed that the deformation evolution has mainly undergone four phases: the early ductile deformation, the second NE-striking horizontal simple shear, the third NE-striking compression-shear and the final NW-striking compression. The mineralization happened during the third stage in which the maximum principal stress gradually transited from NE to NW. The 3-D numerical simulations of the stress field show that, on the condition that the maximum principal stress is NE-striking, the fracture development in the fault zone is favored, while when the maximum principal stress is NW-striking, the fault zone is relatively extensional and it is suitable for the influx and emplacement of ore-forming fluids. The compression-shear strain field during the mineralization is characterized by the λ-type structure, the positive flower structure, etc. Orebodies are mostly equidistantly located in the dilatational spaces, which are distributed in the integral compressional circumstances. And the dilatational spaces are developed where the fault attitude changes or shear joint systems develop. In the overall compression-shear stress field, the strain field bears self-similarity at multiple scales, including the orebody, ore deposit and orefield. The selfsimilarity of the structure comprises the subequidistant distribution of fractures at the same scale and the similar shape of the fractures at various scales. Yet, due to the special geological structure, the orebodies are mostly located in the hanging wall in the Shangzhuang deposit, which is different from most deposits in the Jiaodong gold province. Analyses of the ore-controlling stress and strain fields in the deposit provide an important basis for deposit seeking. 展开更多
关键词 Shangzhuang gold deposit 3-D structural stress field altered rock
下载PDF
NUMERICAL SIMULATION OF THE STRUCTURAL STRESS FIELD OF BEIYA GOLD DEPOSIT
2
作者 MA Deyun and GAO Zhenmin(Open Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China Department of Earth Science, Kunming University of Scienceand Technology, Kunming 650093, China) 《Geotectonica et Metallogenia》 2003年第1期91-103,共13页
Based on the study about the geological background of Beiya Gold Deposit, numerical simulation was conducted about the three-dimensional structural stress field for Beiya Gold Deposit by applying finite element theory... Based on the study about the geological background of Beiya Gold Deposit, numerical simulation was conducted about the three-dimensional structural stress field for Beiya Gold Deposit by applying finite element theory and by employing a linear elasticity model. Results of the simulation indicate that the Beiya syncline is a faulted basin, and a hidden fracture occurs in the west wing of the syncline.Under the action of the EW-trending compressive force, four nearly NS-trending fractures (groups) were generated in the stress stretching areas of the two wings of the syncline, and these fractures constitute favorable tectonic positions for the upward intrusion of porphyry magma and the occurrence of Au-Pb-Zn polymetallic deposits. 展开更多
关键词 Beiya gold deposit structural stress field numerical simulation
下载PDF
Quantitative Prediction of Fracture Distribution of the Longmaxi Formation in the Dingshan Area, China using FEM Numerical Simulation 被引量:2
3
作者 XIE Jiatong QIN Qirong FAN Cunhui 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第6期1662-1672,共11页
Fracture prediction is a technical issue in the field of petroleum exploration and production worldwide.Although there are many approaches to predict the distribution of cracks underground,these approaches have some l... Fracture prediction is a technical issue in the field of petroleum exploration and production worldwide.Although there are many approaches to predict the distribution of cracks underground,these approaches have some limitations.To resolve these issues,we ascertained the relation between numerical simulations of tectonic stress and the predicted distribution of fractures from the perspective of geologic genesis,based on the characteristics of the shale reservoir in the Longmaxi Formation in Dingshan;the features of fracture development in this reservoir were considered.3 D finite element method(FEM)was applied in combination with rock mechanical parameters derived from the acoustic emissions.The paleotectonic stress field of the crack formation period was simulated for the Longmaxi Formation in the Dingshan area.The splitting factor in the study area was calculated based on the rock breaking criterion.The coefficient of fracture development was selected as the quantitative prediction classification criteria for the cracks.The results show that a higher coefficient of fracture development indicates a greater degree of fracture development.On the basis of the fracture development coefficient classification,a favorable area was identified for the development of fracture prediction in the study area.The prediction results indicate that the south of the Dingshan area and the DY3 well of the central region are favorable zones for fracture development. 展开更多
关键词 FEM numerical simulation structural stress field fracture prediction Longmaxi Formation
下载PDF
JUNCTION BETWEEN GANJIANG FAULT AND TANLU FAULT AND ITS SIGNIFICANCE TO MINERALIZATION 被引量:2
4
作者 CUIXuejun XIABin +3 位作者 ZENGZuoxun LIULilin CHENXiangyun YANGWeiran 《Geotectonica et Metallogenia》 2005年第1期1-12,共12页
The concept of fault junction is proposed to describe the relationship between the two faults by the authors. The junction relationship between Ganjiang and Tanlu faults is analyzed in this paper, and this has been el... The concept of fault junction is proposed to describe the relationship between the two faults by the authors. The junction relationship between Ganjiang and Tanlu faults is analyzed in this paper, and this has been elucidated through numerical simulation about the tectonic stress field analysis. Numerical simulation of the tectonic stress field conducted for the major mineralization stage of the Jiujiang-Ruichang junction area reveals that the stress field of the junction structure at the major mineralization stage shows a relatively close relationship with the formation of the ore deposits (occurrences). 展开更多
关键词 junction relationship numerical simulation Jiujiang-Ruichang junction area structural stress field MINERALIZATION
下载PDF
Deformation tests and failure process analysis of an anchorage structure 被引量:4
5
作者 Zhao Tongbin Yin Yanchun +1 位作者 Tan Yunliang Song Yimin 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第2期237-242,共6页
In order to study the failure process of an anchorage structure and the evolution law of the body's defor- mation field, anchor push-out tests were carried out based on digital speckle correlation methods (DSCM). T... In order to study the failure process of an anchorage structure and the evolution law of the body's defor- mation field, anchor push-out tests were carried out based on digital speckle correlation methods (DSCM). The stress distribution of the anchorage interface was investigated using the particle flow numerical simulation method. The results indicate that there are three stages in the deformation and fail- ure process of an anchorage structure: elastic bonding stage, a de-bonding stage and a failure stage. The stress distribution in the interface controls the stability of the structure. In the elastic bonding stage, the shear stress peak point of the interface is close to the loading end, and the displacement field gradually develops into a "V" shape, in the de-bonding stage, there is a shear stress plateau in the center of the anchorage section, and shear strain localization begins to form in the deformation field. In the failure stage, the bonding of the interface fails rapidly and the shear stress peak point moves to the anchorage free end. The anchorage structure moves integrally along the macro-cracl~ The de-bonding stage is a research focus in the deformation and failure process of an anchorage structure, and plays an important guiding role in roadway support design and prediction of the stability of the surrounding rock. 展开更多
关键词 Anchorage structure Digital speckle correlation methods Deformation field Interface stress Failure process
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部