The Putaohua Oilfield is a fault-prolific area and the faults have close relation with structural traps. The genetic models of the structural traps in the Putaohua Oilfield can be divided into two types: individual f...The Putaohua Oilfield is a fault-prolific area and the faults have close relation with structural traps. The genetic models of the structural traps in the Putaohua Oilfield can be divided into two types: individual fault model and multi-fault interaction model. This is based on the description of displacement distribution of typical individual normal faults, the geometry of the footwall and hanging wall, and the analysis of the interaction between faults and the corresponding change in geometry when the faults grow. The individual fault model is that the displacement reaches a maximum at or near the center of fault and decreases toward the fault tips, so a half-graben is formed on the hanging wall of the fault and a half- anticline is formed on the footwall because of the isostatic process. The multi-fault interaction model is that during the growth of faults, they overlap and interact with each other, and accommodation zones are formed in the overlapping segments. The accommodation zones are favorable targets for hydrocarbon exploration, and the trap characteristics are dependent The multi-fault interaction model can be subdivided on the extent of overlap and occurrence of faults. into three types: synthetic accommodation zone, convergent accommodation zone and divergent accommodation zone. Hydrocarbon migration and accumulation models of each type have been developed. The hydrocarbon migration and accumulation models of the traps with different genetic models have their own characteristics in the different stages of fault growth.展开更多
Detachment structures occur widely in the crust, and it is the commonest and most important deformation type developed in the region between orogenic belts and basins. The 'comb-like' and 'toughlike' fold belts in...Detachment structures occur widely in the crust, and it is the commonest and most important deformation type developed in the region between orogenic belts and basins. The 'comb-like' and 'toughlike' fold belts in eastern Sichuan are caused by multi-layer detachment. The duplex structure is the most important deformation style in the region, exhibiting different characteristics from typical detachment structures. Different deformation styles, scales, and shortenings resulting from independent deformations of various detachment systems would lead to the phenomenon whereby most of the topographical heights in the region do not correspond to the structural heights in depth. Based on systematic structural analysis and combined with practical oil/gas prospecting, four types of structural traps are described from eastern Sichuan Province, which are: detachment and thrust trap; detachment folding trap; fault-flat blocking trap; and detachment layer trap. Meticulous studies on the deformation and distribution of detachment layers in the eastern Sichuan Province will contribute to oil/gas prospecting and selection of potential regions of marine-origin oil/gas prospecting in South China.展开更多
The precise seismic substructural interpretation of the Turkwal oil field in the Central Potwar region of district Chakwal of Pakistan has been carried out. The research work was confined to the large fore-thrust that...The precise seismic substructural interpretation of the Turkwal oil field in the Central Potwar region of district Chakwal of Pakistan has been carried out. The research work was confined to the large fore-thrust that serves as an anticlinal structural trap through ten 2 D seismic lines. A precise seismic substructural model of the Eocene Chorgali Limestone with precise orientation of thrust and oblique slip faults shows the presence of a huge fracture, which made this deposit a good reservoir. The abrupt surface changes in dip azimuth for the Eocene Chorgali Limestone verifies the structural trends and also the presence of structural traps in the Turkwal field. The logs of three wells(Turkwal deep X-2, Turkwal-01 and Fimkassar-01) were analyzed for petrophysical studies, well synthetic results and generation of an Amplitude Versus Offset(AVO) model for the area. The AVO model of Turkwal deep X-2 shows abrupt changes in amplitude, which depicts the presence of hydrocarbon content. Well correlation technique was used to define the overall stratigraphic setting and the thickness of the reservoir formation in two wells, Turkwal-01 and Turkwal deep X-2. The Eocene Chorgali Limestone in Turkwal-01 is an upward thrusted anticlinal structure and because of the close position of both wells to the faulted anticlinal structure, its lesser thickness differs compared to Turkwal deep X-2. The overall results confirm that the Turkwal field is comparable to several similar thrust-bound oil-bearing structures in the Potwar basin.展开更多
The 3-D seismic dataset is a key tool to analyze and understand the mechanism of structural and stratigraphic hydrocarbon(HC)trapping in the subsurface.Conventionally used subsurface seismic characterization methods f...The 3-D seismic dataset is a key tool to analyze and understand the mechanism of structural and stratigraphic hydrocarbon(HC)trapping in the subsurface.Conventionally used subsurface seismic characterization methods for fractures are based on the theory of effective anisotropy medium.The aim of this work is to improve the structural images with dense sampling of 3-D survey to evaluate structural and stratigraphic models for reservoir development to predict reservoir quality.The present study of the Gullfaks Field,located in the Norwegian North Sea Gullfaks sector,identifies the shallowest structural elements.The steepness of westward structural dip decreases eastward during the Upper Jurassic to Lower Cretaceous deposition.Reservoir sands consist of the Middle Jurassic deltaic deposits and Lower Jurassic fluvial channel and delta plain deposits.Sediment supply steadily prevails on sea-level rise and the succession displays a regressive trend indicated by a good continuous stacking pattern.The key factor for the development of reservoirs in the Gullfaks Field is fault transmissibility with spatially distributed pressure.The majority of mapped faults with sand-to-sand contacts are non-sealing,which provide restriction for the HC flow between the fault blocks.The traps for HC accumulation occur between the post-rift and syn-rift strata,i.e.antiform set by extensional system,unconformity trap at the top of syndeposition,and structural trap due to normal faults.Overall reservoir quality in the studied area is generally excellent with average 35%porosity and permeability in the Darcy range.Our findings are useful to better understand the development of siliciclastic reservoirs in similar geological settings worldwide.展开更多
Mississippi Valley-type(MVT) Zn-Pb deposits predominantly form within both orogenic forelands and fold-andthrust belts, yet the mineralization process within the latter tectonic setting remains inadequately understood...Mississippi Valley-type(MVT) Zn-Pb deposits predominantly form within both orogenic forelands and fold-andthrust belts, yet the mineralization process within the latter tectonic setting remains inadequately understood. This study, through a comprehensive review of MVT deposits across global fold-and-thrust belts, introduces a novel model elucidating the mineralization process in the context of tectonic belt evolution. It is demonstrated that during the stage Ⅰ, regional compression is introduced by early stages of plate convergence, causing the folding and thrusting and creating structural or lithological traps such as evaporite diapirs and unconformity-related carbonate dissolution-collapse structures. Thereafter, in stage Ⅱ, hydrocarbons begin to migrate and accumulate within these traps, where reduced sulfur is generated through thermochemical or bacterial sulfate reduction concurrent with or preceding Zn-Pb mineralization. In the subsequent stage Ⅲ, as plate convergence persists, the regional stress transitions from compression to transpression or extension. Under these conditions, steeply-dipping extensional faults are generated, facilitating the ascent of metalliferous brines into early-formed structural or lithological traps. Precipitation of Zn and Pb sulfides occurs through the mixing of Zn-Pb-transporting fluids with pre-existing reduced sulfur or by interaction with hydrocarbons.展开更多
The Silurian hydrocarbon exploration in the northwest Tarim Basin had long been fruitless, till Well XSD1 drilled in 2018 in the Shajingzi structural belt, northwest Tarim Basin tapped industrial gas flow from the Sil...The Silurian hydrocarbon exploration in the northwest Tarim Basin had long been fruitless, till Well XSD1 drilled in 2018 in the Shajingzi structural belt, northwest Tarim Basin tapped industrial gas flow from the Silurian for the first time. The reservoir-forming model and resource extent need to be made clear urgently. Based on the comprehensive research of drilling,formation testing, geochemical data, and sedimentary and accumulation history, in combination with field surveys, experiments, structure interpretation and reconstruction of structure evolution, it is found that:(1) The northwest Tarim Basin had widespread tidal deltaic deposits in the Silurian period, which contain good reservoir-cap combinations;(2) the Shajingzi fault and associated faults connected the Cambrian-Ordovician source rocks in the Awati sag, and controlled the formation of Silurian structural traps, hence, the traps turned up along the structural belt in an orderly pattern and came together into contiguous tracts;(3) the Silurian petroleum in Shajingzi structural belt was dominated by gas, and the major accumulation period was the Himalayan period when the traps fixed in shape;(4) the Silurian gas resources in the Shajingzi belt were estimated at around 2.018×10^(11)m^(3), and Silurian gas resources of the northwest Tarim Basin were estimated at 2.03×10^(12)m^(3), implying huge exploration potential, so this area will become a major area for reserve and production increase from clastic strata in the basin;(5) with the Shajingzi fault of large scale and long active time connecting deep source rock layers, multiple formations in Lower Paleozoic of Shajingzi structural belt may have breakthroughs in hydrocarbon exploration.展开更多
Tancbeng-Lujiang fault system is one of the largest strike-slip fault systems in eastern Asia.It extends southward to Beibuwan Bay to the west of Hainan Island and northward through Lujiang of Anhui Province, Tancheng...Tancbeng-Lujiang fault system is one of the largest strike-slip fault systems in eastern Asia.It extends southward to Beibuwan Bay to the west of Hainan Island and northward through Lujiang of Anhui Province, Tancheng of Shandong Province and Luobei of Heilongjiang Province in China to the territory of Russia. Its formation is related to the subduction of Kula-Pacific plate to the Asian continent. It is oriented approximately parallel to the eastern edge of Asia. It is dominated by the sinistral translation from Jurassic to Eocene and then by dextrose strike-slip. It has the following characters: (1)clear linear character; (2)sharp dip angle, usually changing between normal and reverse faults; (3)showing braided structure on the plan and flower structure in section;(4)alternated by uplifts and sags along the fault belt; (5)many stages of the eruptions of alkaline to calc-alkaline basalt magma along the fault belt; and (6) frequent activities of earthquakes along the fault belt. Its control over the oil-gas distribution is shown by the following racts: (1) the formation of many oil-bearing fault depressions; (2) the increase of the basin area it has passed through, thus increasing the basin's subsiding quantity and the oil reservoirs; and (3)the formation of many kinds of oil-gas trap structures.展开更多
Broadband light trapping effect and arrays of sub-wavelength textured structures based on the butterfly wing scales are applicable to solar cells and stealth technologies. In this paper, the fine optical structures in...Broadband light trapping effect and arrays of sub-wavelength textured structures based on the butterfly wing scales are applicable to solar cells and stealth technologies. In this paper, the fine optical structures in wing scales of butterfly Papilio peranthus, exhibiting efficient light trapping effect, were carefully examined. First, the reflectivity was measured by reflectance spectrum. Field Emission Scanning Electronic Microscope (FESEM) and Transmission Electron Microscope (TEM) were used to observe the coupling morphologies and structures of the scales. Then, the optimized 3D model of the coupling structure was created combining Scanning Electron Microscope (SEM) and TEM data. Afterwards, the mechanism of the light trapping effect of these structures was analyzed by simulation and theoretical calculations. A multilayer nano-structure of chitin and air was found. These structures are effective in increasing optical path, resulting in that most of the incident light can be trapped and adsorbed within the structure at last. Furthermore, the simulated optical results are consistent with the experimental and calculated ones. This result reliably confirms that these structures induce an efficient light trapping effect. This work can be used as a reference for in-depth study on the fabrication of highly efficient bionic optical devices, such as solar cells, photo detectors, high-contrast, antiglare, and so forth.展开更多
Ag nanoparticles were fabricated on Si substrates by radio-frequency magnetron sputtering and thermal annealing treatments.It was found that Ag nanoparticles are ellipsoid at low annealing temperature,but the axis rat...Ag nanoparticles were fabricated on Si substrates by radio-frequency magnetron sputtering and thermal annealing treatments.It was found that Ag nanoparticles are ellipsoid at low annealing temperature,but the axis ratio decreases with the increase of annealing temperature,and a shape transformation from ellipsoid to sphere occurs when the temperature increases to a critical point.The experimental results showed that the surface plasmon resonances depend greatly on the nanoparticles'shape and size,which is in accordance with the theoretical calculation based on discrete dipole approximation.The results of forward-scattering efficiency(FSE) and light trapping spectrum(LTS) showed that Ag nanoparticles annealed at 400°C could strongly enhance the light harvest than those annealed at 300 and 500°C,and that the LTS peak intensity of the former is 1.7 and 1.5 times stronger than those of the later two samples,respectively.The conclusions obtained in this paper showed that Ag ellipsoid nanoparticles with appropriate size is more favorable for enhancing the light trapping.展开更多
In the last decades, surface drag reduction has been re-emphasized because of its practical values in engineering applications,including vehicles, aircrafts, ships, and fuel pipelines. The bionic study of drag reducti...In the last decades, surface drag reduction has been re-emphasized because of its practical values in engineering applications,including vehicles, aircrafts, ships, and fuel pipelines. The bionic study of drag reduction has been attracting scholars' attentions. Here, it was determined that the delicate microstructures on the scales of the fish Ctenopharyngodon idellus exhibit remarkable drag-reduction effect. In addition, the underlying drag-reduction mechanism was carefully investigated. First,exceptional morphologies and structures of the scales were observed and measured using a scanning electron microscope and3-dimensional(3D) microscope. Then, based on the acquired data, optimized 3D models were created. Next, the mechanism of the water-trapping effect of these structures was analyzed through numerical simulations and theoretical calculations. It was determined that there are many microcrescent units with certain distributions on its surface. In fact, these crescents are effective in generating the "water-trapping" effect and forming a fluid-lubrication film, thus reducing the skin friction drag effectively.Contrasting to a smooth surface, the dynamics finite-element analysis indicated that the maximum drag-reduction rate of a bionic surface is 3.014% at 0.66 m/s flow rate. This study can be used as a reference for an in-depth analysis on the bionic drag reduction of boats, underwater vehicles, and so forth.展开更多
We theoretically propose blue-detuned optical trapping for neutral atoms via strong near-field interfacing in a plasmonic nanohole array. The optical field at resonance forms a nanoscale-trap potential with an FWHM of...We theoretically propose blue-detuned optical trapping for neutral atoms via strong near-field interfacing in a plasmonic nanohole array. The optical field at resonance forms a nanoscale-trap potential with an FWHM of 200 nm and about ~370 nm away from the nanohole; thus, a stable 3 D atom trapping independent of the surface potential is demonstrated. The effective trap depth is more than 1 m K when the optical power of trapping light is only about 0.5 m W, while the atom scattering rate is merely about 3.31 s^(-1), and the trap lifetime is about 800 s.This compact plasmonic structure provides high uniformity of trap depths and a two-layer array of atom nanotraps, which should have important applications in the manipulation of cold atoms and collective resonance fluorescence.展开更多
Located in east part of Yingxiongling structural belt in the Qaidam Basin,the Yingdong oilfield has a extremely complicated ground condition.Due to no significant discovery,this oilfield was considered to have no favo...Located in east part of Yingxiongling structural belt in the Qaidam Basin,the Yingdong oilfield has a extremely complicated ground condition.Due to no significant discovery,this oilfield was considered to have no favorable geologic conditions for formation of oil or gas reservoir.In the past few years,with continuous improvement in the mountain 3D seismic surveys and logging data interpretation,some breakthroughs were obtained in 2010,and the Yingdong oilfield,the largest-scale reserves of a single reservoir with highest organic matter abundance,most favorable physical property and optimal development efficiencies in the Qaidam Basin,had been discovered,the production capacity was up to 0.55×10^(6) t.Through detailed analyses of the Yingdong oilfield,some studies,such as hydrocarbon accumulation conditions and technical challenges,are carried out,and following conclusions can be achieved.The Yingxiongling area is located in Mangya hydrocarbon-generation sag in the west part of the Qaidam Basin,its oil sources are rich;the Neogene Xiayoushashan Formation and Shangyoushashan Formation are dominated by wide and gentle delta frontdshore-shallow lacustrine sediments with interbeds of sandstone and mudstone,the sandbodies are widely distributed with favorable physical condition,and the mudstone is the key caprock,combined with high-quality Paleogene hydrocarbon source rocks,a complete source-reservoir-cap assemblage can be formed.Large-scale detachment faults of the Yingdong area connect high-quality Paleogene hydrocarbon source rocks with middle-shallow buried structural traps,thus,reservoirs formed in the early stage are modified,and at the same time,hydrocarbons formed in the later stage continue to migrate and accumulate;in this way,the deep and shallow faults form a relay-style hydrocarbon transport system,and hydrocarbons are accumulated in the shallow structural traps in the later stage;in this area,the middle-shallow faults have good lateral plugging performance which is favorable for preservation of oil and gas.For complex landforms and reservoir features in the Yingdong area,the integral 3D seismic acquisition,processing and interpretation technology is developed for complex mountain areas to provide a reliable foundation for hydrocarbon exploration.For some problems in the Yingdong oilfield like long oil/gas-bearing intervals,great diffi-culty in identification of fluids,the development mode of multiple oil/gas/water systems in the long intervals is established,and the geologic modeling technology with constraint of multiple conditions on complex fault blocks is also developed.Thus,hydrocarbon accumulation mechanism in the Yingdong oilfield is clear,and some complex key technology of engineering are well solved,providing necessary geologic theories and technical supports for high-efficiency development and rapid production construction in the Yingdong oilfield.展开更多
In order to uncover the real origin of red luminescence from Sr_3Al_2O_6:Eu and the physical mechanisms that were involved in the dynamical process of luminescence, variant amount of Eu and Dy activated Sr_3Al_2O_6 p...In order to uncover the real origin of red luminescence from Sr_3Al_2O_6:Eu and the physical mechanisms that were involved in the dynamical process of luminescence, variant amount of Eu and Dy activated Sr_3Al_2O_6 phosphors were synthesized with the solid-state reaction and the combustion-assisted solid-state reaction, respectively, using the fine graphite powder or the mixed H^2+N_2gases as a reducing agent. The phase was examined with XRD analysis and the photoluminescence properties were characterized by a fluorescence spectrometer. Although the phosphors possessed the same Sr_3Al_2O_6 phase, different emission colors(red or green) were obtained, relying on synthesis conditions. The simultaneous existence of Eu^2+ and Eu^3+ was not only observed in the emission and excitation spectra, but also identified with the near edge X-ray absorption fine structure spectroscopy(NEXAFS).The mixed valence(higher than +2 and less than +3) of Eu may be related with the six different sites of Sr, whose effective valence ranged from +1.5058 to +2.2698, in the crystal lattice of Sr_3Al_2O_6 that could accommodate Eu. Moreover, the reduction of Eu^3+ to forming Eu^2+ depended on the amount of Eu^3+ or Dy^3+ doped, due to the different energy barrier in each site of Sr that Eu had to overcome. The residual Eu^3+, similar to the doped Dy^3+, played an important role in supplying the hole for Eu^2+ to form a bound trap(Eu^2+)* after excitation. During electron returning to the 4f^7 ground state of Eu^2+, the red luminescence was radiated. Therefore, the synergetic effects of Eu^2+ and Eu^3+(Dy^3+) produce red luminescence.展开更多
基金the National Natural Science Foundation of China (Project No.40372072)
文摘The Putaohua Oilfield is a fault-prolific area and the faults have close relation with structural traps. The genetic models of the structural traps in the Putaohua Oilfield can be divided into two types: individual fault model and multi-fault interaction model. This is based on the description of displacement distribution of typical individual normal faults, the geometry of the footwall and hanging wall, and the analysis of the interaction between faults and the corresponding change in geometry when the faults grow. The individual fault model is that the displacement reaches a maximum at or near the center of fault and decreases toward the fault tips, so a half-graben is formed on the hanging wall of the fault and a half- anticline is formed on the footwall because of the isostatic process. The multi-fault interaction model is that during the growth of faults, they overlap and interact with each other, and accommodation zones are formed in the overlapping segments. The accommodation zones are favorable targets for hydrocarbon exploration, and the trap characteristics are dependent The multi-fault interaction model can be subdivided on the extent of overlap and occurrence of faults. into three types: synthetic accommodation zone, convergent accommodation zone and divergent accommodation zone. Hydrocarbon migration and accumulation models of each type have been developed. The hydrocarbon migration and accumulation models of the traps with different genetic models have their own characteristics in the different stages of fault growth.
基金funded by the Science and Technology Research and Development Program of the China Petroleum & Chemical Corporation(No.P06088)the Nonprofit Special Research Program(No.200811015)the Land Resource Survey Project of the Ministry of Land and Natural Resources,China(No.1212010782003)
文摘Detachment structures occur widely in the crust, and it is the commonest and most important deformation type developed in the region between orogenic belts and basins. The 'comb-like' and 'toughlike' fold belts in eastern Sichuan are caused by multi-layer detachment. The duplex structure is the most important deformation style in the region, exhibiting different characteristics from typical detachment structures. Different deformation styles, scales, and shortenings resulting from independent deformations of various detachment systems would lead to the phenomenon whereby most of the topographical heights in the region do not correspond to the structural heights in depth. Based on systematic structural analysis and combined with practical oil/gas prospecting, four types of structural traps are described from eastern Sichuan Province, which are: detachment and thrust trap; detachment folding trap; fault-flat blocking trap; and detachment layer trap. Meticulous studies on the deformation and distribution of detachment layers in the eastern Sichuan Province will contribute to oil/gas prospecting and selection of potential regions of marine-origin oil/gas prospecting in South China.
文摘The precise seismic substructural interpretation of the Turkwal oil field in the Central Potwar region of district Chakwal of Pakistan has been carried out. The research work was confined to the large fore-thrust that serves as an anticlinal structural trap through ten 2 D seismic lines. A precise seismic substructural model of the Eocene Chorgali Limestone with precise orientation of thrust and oblique slip faults shows the presence of a huge fracture, which made this deposit a good reservoir. The abrupt surface changes in dip azimuth for the Eocene Chorgali Limestone verifies the structural trends and also the presence of structural traps in the Turkwal field. The logs of three wells(Turkwal deep X-2, Turkwal-01 and Fimkassar-01) were analyzed for petrophysical studies, well synthetic results and generation of an Amplitude Versus Offset(AVO) model for the area. The AVO model of Turkwal deep X-2 shows abrupt changes in amplitude, which depicts the presence of hydrocarbon content. Well correlation technique was used to define the overall stratigraphic setting and the thickness of the reservoir formation in two wells, Turkwal-01 and Turkwal deep X-2. The Eocene Chorgali Limestone in Turkwal-01 is an upward thrusted anticlinal structure and because of the close position of both wells to the faulted anticlinal structure, its lesser thickness differs compared to Turkwal deep X-2. The overall results confirm that the Turkwal field is comparable to several similar thrust-bound oil-bearing structures in the Potwar basin.
文摘The 3-D seismic dataset is a key tool to analyze and understand the mechanism of structural and stratigraphic hydrocarbon(HC)trapping in the subsurface.Conventionally used subsurface seismic characterization methods for fractures are based on the theory of effective anisotropy medium.The aim of this work is to improve the structural images with dense sampling of 3-D survey to evaluate structural and stratigraphic models for reservoir development to predict reservoir quality.The present study of the Gullfaks Field,located in the Norwegian North Sea Gullfaks sector,identifies the shallowest structural elements.The steepness of westward structural dip decreases eastward during the Upper Jurassic to Lower Cretaceous deposition.Reservoir sands consist of the Middle Jurassic deltaic deposits and Lower Jurassic fluvial channel and delta plain deposits.Sediment supply steadily prevails on sea-level rise and the succession displays a regressive trend indicated by a good continuous stacking pattern.The key factor for the development of reservoirs in the Gullfaks Field is fault transmissibility with spatially distributed pressure.The majority of mapped faults with sand-to-sand contacts are non-sealing,which provide restriction for the HC flow between the fault blocks.The traps for HC accumulation occur between the post-rift and syn-rift strata,i.e.antiform set by extensional system,unconformity trap at the top of syndeposition,and structural trap due to normal faults.Overall reservoir quality in the studied area is generally excellent with average 35%porosity and permeability in the Darcy range.Our findings are useful to better understand the development of siliciclastic reservoirs in similar geological settings worldwide.
基金funded by National Natural Science Foundation of China (Grant Nos. 42125204, 92155305, 42103068, 42372114, 42372115)。
文摘Mississippi Valley-type(MVT) Zn-Pb deposits predominantly form within both orogenic forelands and fold-andthrust belts, yet the mineralization process within the latter tectonic setting remains inadequately understood. This study, through a comprehensive review of MVT deposits across global fold-and-thrust belts, introduces a novel model elucidating the mineralization process in the context of tectonic belt evolution. It is demonstrated that during the stage Ⅰ, regional compression is introduced by early stages of plate convergence, causing the folding and thrusting and creating structural or lithological traps such as evaporite diapirs and unconformity-related carbonate dissolution-collapse structures. Thereafter, in stage Ⅱ, hydrocarbons begin to migrate and accumulate within these traps, where reduced sulfur is generated through thermochemical or bacterial sulfate reduction concurrent with or preceding Zn-Pb mineralization. In the subsequent stage Ⅲ, as plate convergence persists, the regional stress transitions from compression to transpression or extension. Under these conditions, steeply-dipping extensional faults are generated, facilitating the ascent of metalliferous brines into early-formed structural or lithological traps. Precipitation of Zn and Pb sulfides occurs through the mixing of Zn-Pb-transporting fluids with pre-existing reduced sulfur or by interaction with hydrocarbons.
基金Supported by the China Geological Survey Project (DD20190106,DD20190090)。
文摘The Silurian hydrocarbon exploration in the northwest Tarim Basin had long been fruitless, till Well XSD1 drilled in 2018 in the Shajingzi structural belt, northwest Tarim Basin tapped industrial gas flow from the Silurian for the first time. The reservoir-forming model and resource extent need to be made clear urgently. Based on the comprehensive research of drilling,formation testing, geochemical data, and sedimentary and accumulation history, in combination with field surveys, experiments, structure interpretation and reconstruction of structure evolution, it is found that:(1) The northwest Tarim Basin had widespread tidal deltaic deposits in the Silurian period, which contain good reservoir-cap combinations;(2) the Shajingzi fault and associated faults connected the Cambrian-Ordovician source rocks in the Awati sag, and controlled the formation of Silurian structural traps, hence, the traps turned up along the structural belt in an orderly pattern and came together into contiguous tracts;(3) the Silurian petroleum in Shajingzi structural belt was dominated by gas, and the major accumulation period was the Himalayan period when the traps fixed in shape;(4) the Silurian gas resources in the Shajingzi belt were estimated at around 2.018×10^(11)m^(3), and Silurian gas resources of the northwest Tarim Basin were estimated at 2.03×10^(12)m^(3), implying huge exploration potential, so this area will become a major area for reserve and production increase from clastic strata in the basin;(5) with the Shajingzi fault of large scale and long active time connecting deep source rock layers, multiple formations in Lower Paleozoic of Shajingzi structural belt may have breakthroughs in hydrocarbon exploration.
文摘Tancbeng-Lujiang fault system is one of the largest strike-slip fault systems in eastern Asia.It extends southward to Beibuwan Bay to the west of Hainan Island and northward through Lujiang of Anhui Province, Tancheng of Shandong Province and Luobei of Heilongjiang Province in China to the territory of Russia. Its formation is related to the subduction of Kula-Pacific plate to the Asian continent. It is oriented approximately parallel to the eastern edge of Asia. It is dominated by the sinistral translation from Jurassic to Eocene and then by dextrose strike-slip. It has the following characters: (1)clear linear character; (2)sharp dip angle, usually changing between normal and reverse faults; (3)showing braided structure on the plan and flower structure in section;(4)alternated by uplifts and sags along the fault belt; (5)many stages of the eruptions of alkaline to calc-alkaline basalt magma along the fault belt; and (6) frequent activities of earthquakes along the fault belt. Its control over the oil-gas distribution is shown by the following racts: (1) the formation of many oil-bearing fault depressions; (2) the increase of the basin area it has passed through, thus increasing the basin's subsiding quantity and the oil reservoirs; and (3)the formation of many kinds of oil-gas trap structures.
基金Acknowledgments This work was supported by the National Natural Science Foundation of China (Nos. 51175220, and 51290292), the National Basic Research of China (No. 2007CB616913), the Science and Technology Development Project of Jilin Province (No. 20111808), and the Graduate Innovation Fund of Jilin University (No. 20121085).
文摘Broadband light trapping effect and arrays of sub-wavelength textured structures based on the butterfly wing scales are applicable to solar cells and stealth technologies. In this paper, the fine optical structures in wing scales of butterfly Papilio peranthus, exhibiting efficient light trapping effect, were carefully examined. First, the reflectivity was measured by reflectance spectrum. Field Emission Scanning Electronic Microscope (FESEM) and Transmission Electron Microscope (TEM) were used to observe the coupling morphologies and structures of the scales. Then, the optimized 3D model of the coupling structure was created combining Scanning Electron Microscope (SEM) and TEM data. Afterwards, the mechanism of the light trapping effect of these structures was analyzed by simulation and theoretical calculations. A multilayer nano-structure of chitin and air was found. These structures are effective in increasing optical path, resulting in that most of the incident light can be trapped and adsorbed within the structure at last. Furthermore, the simulated optical results are consistent with the experimental and calculated ones. This result reliably confirms that these structures induce an efficient light trapping effect. This work can be used as a reference for in-depth study on the fabrication of highly efficient bionic optical devices, such as solar cells, photo detectors, high-contrast, antiglare, and so forth.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61006050 and 51072051)the Natural Science Foundation of Beijing,China (Grant No. 2102042)+2 种基金the Fundamental Research Funds for the Central Universities (Grant No. 10QG24)the National High Technology Research and Development Program ("863" Project)(Grant No. 2011AA050507)the National Basic Research Program of China("973" Project)(Grant No. 2010CB93380)
文摘Ag nanoparticles were fabricated on Si substrates by radio-frequency magnetron sputtering and thermal annealing treatments.It was found that Ag nanoparticles are ellipsoid at low annealing temperature,but the axis ratio decreases with the increase of annealing temperature,and a shape transformation from ellipsoid to sphere occurs when the temperature increases to a critical point.The experimental results showed that the surface plasmon resonances depend greatly on the nanoparticles'shape and size,which is in accordance with the theoretical calculation based on discrete dipole approximation.The results of forward-scattering efficiency(FSE) and light trapping spectrum(LTS) showed that Ag nanoparticles annealed at 400°C could strongly enhance the light harvest than those annealed at 300 and 500°C,and that the LTS peak intensity of the former is 1.7 and 1.5 times stronger than those of the later two samples,respectively.The conclusions obtained in this paper showed that Ag ellipsoid nanoparticles with appropriate size is more favorable for enhancing the light trapping.
基金supported by the National Natural Science Foundation of China(Grant Nos.51305282,51505183&51325501)Program for Excellent Talents of Liaoning Provincial Committee of Education(Grant No.LJQ2014071)
文摘In the last decades, surface drag reduction has been re-emphasized because of its practical values in engineering applications,including vehicles, aircrafts, ships, and fuel pipelines. The bionic study of drag reduction has been attracting scholars' attentions. Here, it was determined that the delicate microstructures on the scales of the fish Ctenopharyngodon idellus exhibit remarkable drag-reduction effect. In addition, the underlying drag-reduction mechanism was carefully investigated. First,exceptional morphologies and structures of the scales were observed and measured using a scanning electron microscope and3-dimensional(3D) microscope. Then, based on the acquired data, optimized 3D models were created. Next, the mechanism of the water-trapping effect of these structures was analyzed through numerical simulations and theoretical calculations. It was determined that there are many microcrescent units with certain distributions on its surface. In fact, these crescents are effective in generating the "water-trapping" effect and forming a fluid-lubrication film, thus reducing the skin friction drag effectively.Contrasting to a smooth surface, the dynamics finite-element analysis indicated that the maximum drag-reduction rate of a bionic surface is 3.014% at 0.66 m/s flow rate. This study can be used as a reference for an in-depth analysis on the bionic drag reduction of boats, underwater vehicles, and so forth.
基金National Key Basic Research Program(2013CB328700)National Natural Science Foundation of China(NSFC)(11525414,11374025,91221304)
文摘We theoretically propose blue-detuned optical trapping for neutral atoms via strong near-field interfacing in a plasmonic nanohole array. The optical field at resonance forms a nanoscale-trap potential with an FWHM of 200 nm and about ~370 nm away from the nanohole; thus, a stable 3 D atom trapping independent of the surface potential is demonstrated. The effective trap depth is more than 1 m K when the optical power of trapping light is only about 0.5 m W, while the atom scattering rate is merely about 3.31 s^(-1), and the trap lifetime is about 800 s.This compact plasmonic structure provides high uniformity of trap depths and a two-layer array of atom nanotraps, which should have important applications in the manipulation of cold atoms and collective resonance fluorescence.
基金The work was supported by the National Science and Technology Major Project(2016ZX05046)CNPC Science and Technology Major Project(2016E-01).
文摘Located in east part of Yingxiongling structural belt in the Qaidam Basin,the Yingdong oilfield has a extremely complicated ground condition.Due to no significant discovery,this oilfield was considered to have no favorable geologic conditions for formation of oil or gas reservoir.In the past few years,with continuous improvement in the mountain 3D seismic surveys and logging data interpretation,some breakthroughs were obtained in 2010,and the Yingdong oilfield,the largest-scale reserves of a single reservoir with highest organic matter abundance,most favorable physical property and optimal development efficiencies in the Qaidam Basin,had been discovered,the production capacity was up to 0.55×10^(6) t.Through detailed analyses of the Yingdong oilfield,some studies,such as hydrocarbon accumulation conditions and technical challenges,are carried out,and following conclusions can be achieved.The Yingxiongling area is located in Mangya hydrocarbon-generation sag in the west part of the Qaidam Basin,its oil sources are rich;the Neogene Xiayoushashan Formation and Shangyoushashan Formation are dominated by wide and gentle delta frontdshore-shallow lacustrine sediments with interbeds of sandstone and mudstone,the sandbodies are widely distributed with favorable physical condition,and the mudstone is the key caprock,combined with high-quality Paleogene hydrocarbon source rocks,a complete source-reservoir-cap assemblage can be formed.Large-scale detachment faults of the Yingdong area connect high-quality Paleogene hydrocarbon source rocks with middle-shallow buried structural traps,thus,reservoirs formed in the early stage are modified,and at the same time,hydrocarbons formed in the later stage continue to migrate and accumulate;in this way,the deep and shallow faults form a relay-style hydrocarbon transport system,and hydrocarbons are accumulated in the shallow structural traps in the later stage;in this area,the middle-shallow faults have good lateral plugging performance which is favorable for preservation of oil and gas.For complex landforms and reservoir features in the Yingdong area,the integral 3D seismic acquisition,processing and interpretation technology is developed for complex mountain areas to provide a reliable foundation for hydrocarbon exploration.For some problems in the Yingdong oilfield like long oil/gas-bearing intervals,great diffi-culty in identification of fluids,the development mode of multiple oil/gas/water systems in the long intervals is established,and the geologic modeling technology with constraint of multiple conditions on complex fault blocks is also developed.Thus,hydrocarbon accumulation mechanism in the Yingdong oilfield is clear,and some complex key technology of engineering are well solved,providing necessary geologic theories and technical supports for high-efficiency development and rapid production construction in the Yingdong oilfield.
基金Project supported by the National High-Tech R&D Program(863 program)(2013AA03A114)the joint funding of National Natural Science Foundation of China and the Chinese Academy of Sciences(U1332133)+3 种基金the Science and Technology Program of Anhui Province of China(1301022062,1301022067)the Special Fund for Research and Development of the Hefei Institute(IMICZ2015112)the Fund of Beijing National Laboratory for Molecular Sciences(20140143)and the Key Discipline of Information and Communication Engineering of University of Science and Technology of Anhui(AKZDXK2015C02)
文摘In order to uncover the real origin of red luminescence from Sr_3Al_2O_6:Eu and the physical mechanisms that were involved in the dynamical process of luminescence, variant amount of Eu and Dy activated Sr_3Al_2O_6 phosphors were synthesized with the solid-state reaction and the combustion-assisted solid-state reaction, respectively, using the fine graphite powder or the mixed H^2+N_2gases as a reducing agent. The phase was examined with XRD analysis and the photoluminescence properties were characterized by a fluorescence spectrometer. Although the phosphors possessed the same Sr_3Al_2O_6 phase, different emission colors(red or green) were obtained, relying on synthesis conditions. The simultaneous existence of Eu^2+ and Eu^3+ was not only observed in the emission and excitation spectra, but also identified with the near edge X-ray absorption fine structure spectroscopy(NEXAFS).The mixed valence(higher than +2 and less than +3) of Eu may be related with the six different sites of Sr, whose effective valence ranged from +1.5058 to +2.2698, in the crystal lattice of Sr_3Al_2O_6 that could accommodate Eu. Moreover, the reduction of Eu^3+ to forming Eu^2+ depended on the amount of Eu^3+ or Dy^3+ doped, due to the different energy barrier in each site of Sr that Eu had to overcome. The residual Eu^3+, similar to the doped Dy^3+, played an important role in supplying the hole for Eu^2+ to form a bound trap(Eu^2+)* after excitation. During electron returning to the 4f^7 ground state of Eu^2+, the red luminescence was radiated. Therefore, the synergetic effects of Eu^2+ and Eu^3+(Dy^3+) produce red luminescence.