In the deep Earth, hydrogen mainly occurs as structural hydroxyl and molecular water in minerals and melts, constituting mobile and immobile aqueous components. Hydrous minerals contain hydrogen which occupies a speci...In the deep Earth, hydrogen mainly occurs as structural hydroxyl and molecular water in minerals and melts, constituting mobile and immobile aqueous components. Hydrous minerals contain hydrogen which occupies a specific structural position and constitutes an indispensable component of chemical formulae. On the other hand, nominally anhydrous minerals do not contain hydrogen in their chemical formulae, but can host trace amounts of water in structural position and lattice defect. The molecular water may occur in the lattice defect as fluid/melt inclusions in minerals. Even though the water content of nominally anhydrous minerals is very limited generally in the order of ppm(parts per million), they may play a significant role in influencing the physicochemical properties of mineral and rock systems. With the continuous improvement of modern instrumentations, the analytical methodology exhibits trends for higher spatial resolution, lower detection limit and integral multiple methods on the water amount and its isotopic ratio. Among these methods, Fourier transform infrared spectrometry remains the most widely used, while secondary ion mass spectrometry, continuous flow mass spectrometry, elastic recoil detection analysis and Raman spectrometry are promising. This paper provides a brief review on the methodological progress and their applications to the analysis of structural water in nominally anhydrous minerals.展开更多
The size of pores or the grille spacing of water–sediment separation structures directly affects their regulation effect on the debris flow performance.A suitable pore size or grille spacing can effectively improve t...The size of pores or the grille spacing of water–sediment separation structures directly affects their regulation effect on the debris flow performance.A suitable pore size or grille spacing can effectively improve the water–sediment separation ability of the structure.The new funnel-type grating water–sediment separation structure(FGWSS)combines vertical and horizontal structures and provides a satisfactory water–sediment separation effect.However,the regulation effect of the grille spacing of the structure on the debris flow performance has not been studied.The regulation effect of the structure grille spacing on the debris flow performance is studied through a flume test,and the optimal structure grille spacing is obtained.An empirical equation of the relationship between the relative grille spacing of the structure and the sediment separation rate is established.Finally,the influence of the water–sediment separation structure on the regulation effect of debris flows is examined from two aspects:external factors(properties of debris flows)and internal factors(structural factors).The experimental results show that the gradation characteristics of solid particles in debris flows constitute a key factor affecting the regulation effect of the structure on the debris flow performance.The optimum grille spacing of the FGWSS matches the particle size corresponding to the material distribution curves d85~d90 of the debris flow.The total separation rate of debris flow particles is related to the grille spacing of the structure and the content of coarse and fine particles in the debris flow.展开更多
Recent discoveries have revealed a groundbreaking phenomenon where light alone, without any thermal input, can induce water evaporation, termed the “photomolecular effect”. This study explores a novel hypothesis tha...Recent discoveries have revealed a groundbreaking phenomenon where light alone, without any thermal input, can induce water evaporation, termed the “photomolecular effect”. This study explores a novel hypothesis that this effect can be explained by ortho-para magnetic spin interactions in water molecules within the water-air interface layer. Water molecules, consisting of hydrogen and oxygen, exhibit different nuclear spin states: ortho-(triplet) and para-(singlet). The interaction of polarized light with these spin states may induce transitions between the rotational levels of ortho- and para-forms due to catalysts like triplet oxygen (O2) in its inhomogeneous magnetic field. Resonance pumping at 532 nm (~18,797 cm−1) due to the transition v1-v2-v3 ~ 0-8-2 (~18,796 cm−1) results in an increase in molecular energy sufficient to overcome intermolecular forces at the water surface, thereby causing evaporation. The proposed ortho-para conversion mechanism involves spin-orbit coupling and specific resonance conditions. This theory provides a quantum mechanical perspective on the photomolecular effect, potentially offering insights into natural processes such as cloud formation and climate modeling, as well as practical applications in solar desalination and industrial drying. Further experimental validation is required to confirm the role of spin interactions in light-induced water evaporation.展开更多
Water is a key restricting factor of the economic development and eco-environmental protection in arid inland river basins of Northwest China. Although water supplies are short, the water utilization structure and the...Water is a key restricting factor of the economic development and eco-environmental protection in arid inland river basins of Northwest China. Although water supplies are short, the water utilization structure and the corresponding industrial structure are unbalanced. We constructed a System Dynamic Model for mutual optimization based on the mechanism of their interaction. This model is applied to the Heihe River Basin where the share of limited water resources among ecosystem, production and human living is optimized. Results show that, by mutual optimization, the water utilization structure and the industrial structures fit in with each other. And the relationships between the upper, middle and lower reaches of the Heihe River Basin can be harmonized. Mutual benefits of ecology, society and economy can be reached, and a sustainable ecology-production-living system can be obtained. This study gives a new insight and method for the sustainable utilization of water resources in arid inland river basins.展开更多
The infiltration of water into soil is one of the most important soil physical properties that affect soil erosion and the eco-environment, especially in the Pisha sandstone area on the Chinese Loess Plateau. We studi...The infiltration of water into soil is one of the most important soil physical properties that affect soil erosion and the eco-environment, especially in the Pisha sandstone area on the Chinese Loess Plateau. We studied the one-dimensional vertical infiltration of water in three experimental soils, created by mixing Pisha sandstone with sandy soil, irrigation-silted soil, and loessial soil, at mass ratios of 1:1, 1:2, 1:3, 1:4, and 1:5. Our objective was to compare water infiltration in the experimental soils and to evaluate the effect of Pisha sandstone on water infiltration. We assessed the effect by measuring soil bulk density(BD), porosity, cumulative infiltration, infiltration rate and saturated hydraulic conductivity(Ks). The results showed that Pisha sandstone decreased the infiltration rate and saturated hydraulic conductivity in the three experimental soils. Cumulative infiltration over time was well described by the Philip equation. Sandy soil mixed with the Pisha sandstone at a ratio of 1:3 had the best water-holding capacity. The results provided experimental evidence for the movement of soil water and a technical support for the reconstruction and reclamation of mining soils in the Pisha sandstone area.展开更多
Based on the mechanism of the effect of hydration on the heat stability of lysozyme and the theory of water molecule clusters, the effect of structure-changed water on heat stability of lysozyme has been studied. The ...Based on the mechanism of the effect of hydration on the heat stability of lysozyme and the theory of water molecule clusters, the effect of structure-changed water on heat stability of lysozyme has been studied. The results obtained by differential scanning calorimetry (DSC) showed that the thermal denaturation temperature of lysozyme had been elevated 8.47 K through hydration of lysozyme with processed water whose structure had been changed so it was called "structured water" compared to ordinary water. The reason is that structured water changed the dipole moment of water molecules and easily formed cyclic water hexamer or cage-like water hexamer, so that the interacting force of maintaining three-dimensional conformation of lysozyme could be reinforced.展开更多
A fouling study was conducted in coastal waters southwest of the East China Sea between December 2013 and November 2014. A total of 84 species of fouling organisms belonging to 69 genera, 49 families, and 10 phyla wer...A fouling study was conducted in coastal waters southwest of the East China Sea between December 2013 and November 2014. A total of 84 species of fouling organisms belonging to 69 genera, 49 families, and 10 phyla were recorded over the entire year. The community composition was dominated by coastal warm-water species belonging to typical subtropical inner bay communities. The prosperous stage of settlement lasted from April to September, and the adhesion strength of the fouling organisms was the highest in summer. Sessile suspension feeders constituted the main core of settlement for the fouling community. Amphibalanus reticulatus was the most dominant and representative species of fouling organism, and other dominant species included Caprella equilibra, Ectopleura crocea, Anthopleura nigrescens, Stylochus ijimai, Spirobranchus kraussii, Crassostrea angulata, Perna viridis, Jassa falcata, Stenothoe valida, Sphaerozius nitidus, and Biflustra grandicella. The individuals in the fouling community showed a mutual dependence or constraint relationship due to competition for settlement space and food, and they exhibited a particular spatiotemporal distribution in accordance with adaptation to environmental factors. Temperature was the most important environmental factor determining the geographic distribution of fouling organisms. The temperature characteristics of species essentially reflect the differences in the fouling community composition in various climate zones. The species number, settlement stage, and settlement rate of fouling organisms are closely related to water temperature. Local natural environmental conditions(salinity, water currents, light, etc.) as well as human activity(such as aquaculture production) are all important factors affecting the settlement of fouling organisms.展开更多
Aiming at soft rock ground support issues under conditions of high stress and long-term water immersion, the ground failure mechanism is revealed by taking the deep-water sumps of Jiulong Mine as the engineering backg...Aiming at soft rock ground support issues under conditions of high stress and long-term water immersion, the ground failure mechanism is revealed by taking the deep-water sumps of Jiulong Mine as the engineering background and employing field investigation, tests of rock structure, mechanical properties and mineral composition. The main factors leading to the surrounding rock failure include the high and complex stress state of the water sumps, high-clay content and water-weakened rock, and the unreasonable support design. In this paper, the broken and fractured rock mass near roadway opening is considered as ground small-structure, and deep stable rock mass as ground large-structure. A support technology focusing on cutting off the water, strengthening the small structure of the rock and transferring the large structure of the rock is proposed. The proposed support technology of interconnecting the large and small structures, based on high-strength bolts, high-stiffness shotcrete layer plugging water,strengthening the small structure with deep-hole grouting and shallow-hole grouting, highpretensioned cables tensioned twice to make the large and small structures bearing the pressure evenly,channel-steel and high-pretensioned cables are used to control floor heave. The numerical simulation and field test show that this support system can control the rock deformation of the water sumps and provide technical support to similar roadway support designs.展开更多
The influence of air-cooled blast furnace slag aggregates as replacement of natural aggregates on the water absorption of concrete and mortar was studied, and the mechanism was analyzed. The interface between aggregat...The influence of air-cooled blast furnace slag aggregates as replacement of natural aggregates on the water absorption of concrete and mortar was studied, and the mechanism was analyzed. The interface between aggregate and matrix in concrete was analyzed by using a micro-hardness tester, a laser confocal microscope and a scanning electron microscope with backscattered electron image mode. The pore structure of mortar matrixes under different curing conditions was investigated by mercury intrusion porosimetry. The results showed that when natural aggregates were replaced with air-cooled blast furnace slag aggregates in mortar or concrete, the content of the capillary pore in the mortar matrix was reduced and the interfacial structure between aggregate and matrix was improved, resulting in the lower water absorption of mortar or concrete. Compared to the concrete made with crushed limestone and natural river sand, the initial absorption coefficient, the secondary absorption coefficient and the water absorption capacity through the surface for 7 d of the concrete made from crushed air-cooled blast furnace slag and air-cooled blast furnace slag sand were reduced by 48.9%, 52.8%, and 46.5%, respectively.展开更多
The researches on the structure of water and its changes induced by solutes are of enduring interests. The changes of the local structure of liquid water induced by NaCl solute under ambient conditions are studied and...The researches on the structure of water and its changes induced by solutes are of enduring interests. The changes of the local structure of liquid water induced by NaCl solute under ambient conditions are studied and presented quantitatively with some order parameters and visualized with 2-body and 3-body correlation functions. The results show that, after the NaCl are solvated, the translational order t of water is decreased for the suppression of the second hydration shells around H20 molecules; the tetrahedral order (q) of water is also decreased and its favorite distribution peak moves from 0.76 to 0.5. In addition, the orientational freedom k and the diffusion coefficient D of water molecules are reduced because of new formed hydrogen-bonding structures between water and solvated ions.展开更多
Over-exploitation of groundwater for irrigation can result in drastic reduction in groundwater level in Jodhpur district of western Rajasthan, India. In this study, we used the long-term trend analysis of seasonal gro...Over-exploitation of groundwater for irrigation can result in drastic reduction in groundwater level in Jodhpur district of western Rajasthan, India. In this study, we used the long-term trend analysis of seasonal groundwater level data to predict the future groundwater scenario in 33 villages of Jodhpur district, assessed the impact of water harvesting structures on groundwater recharge and explored the non-equilibrium between groundwater recharge and irrigation draft in the study area. Analysis of groundwater level data from 26 observation wells in 33 villages in the pre-monsoon period showed that groundwater level decreased continuously at the rate of 2.07 m/a. With this declining rate, most of the tube wells (including the well with the maximum depth of 193 m) are predicted to become completely dry by 2050. Behavior of temporal groundwater level data in the study period (from 2004 to 2012) can be explained by different geospatial maps, prepared using ArcGIS software. Statistical analysis of the interpolated maps showed that the area with the maximum positive groundwater recharge occupied 63.14% of the total area during 2010-2011 and the area with the maximum irrigation draft accounted for 56.21% of the total area during 2011-2012. Higher groundwater recharge is attributed to the increase in rainfall and the better aquifer condition. Spatial distribution for the changes of average groundwater recharge and draft (2008-2009 and 2011-2012) showed that 68.50% recharge area was in positive change and 45.75% draft area was in negative change. It was observed that the area of the irrigation draft exceeded that of the groundwater recharge in most of the years. In spite of the construction of several shallow water harvesting structures in 2009-2010, sandstone aquifer zones showed meager impact on groundwater recharge. The best-fit line for the deviation between average groundwater fluctuation due to recharge and irrigation draft with time can be represented by the polynomial curve. Thus, over-exploitation of groundwater for agricultural crops has result in non-equilibrium between groundwater recharge and irrigation draft.展开更多
Development and judicious management of available water resources play a key role for economic upliftment of any region. The agricultural pattern and social and demographic status in the upper basin of the Dulung Nala...Development and judicious management of available water resources play a key role for economic upliftment of any region. The agricultural pattern and social and demographic status in the upper basin of the Dulung Nala Stream (a tributary of the Subarnarekha River) in the western part of the State of West Bengal, India, reveals growing demand of water in the basin. The paper reports different management plans involving different types of water harvesting structures (and associated different types of water distribution systems) and different crop combinations and with benefit/cost ratios varying from 1.3 to 11.2 for the basin. The study points out that the judicious choice of both the water harvesting structure as well as the water distribution system is important. Proper planning of crop pattern is also to be emphasized for reaping maximum benefit. It further emphasizes that cost- benefit ratio cannot solely govern the choice of structure and that maximum utilization of catchmental water and thus enhancement of agricultural output (and also economic return from the catchment) i.e. quantum of benefit is also important. The water harvesting structures proposed in this study can be implemented in other semi-arid regions of India having almost the same climatic and socio-economic conditions.展开更多
A new Monte Carlo simulation of the track structure of low-energy electrons (〈10keV) in liquid water is presented. The feature of the simulation is taken into consideration of the condensed-phase effect of liquid w...A new Monte Carlo simulation of the track structure of low-energy electrons (〈10keV) in liquid water is presented. The feature of the simulation is taken into consideration of the condensed-phase effect of liquid water on electron elastic scattering with the use of the Champion model, while the dielectric response formalism incorporating the optical-data model developed by Emfietzoglou et al. is applied for calculating the electron inelastic scattering. The spatial distributions of energy deposition and inelastic scattering events of low-energy electrons with different primary energies in liquid water are calculated and compared with other theoretical evaluations. The present work shows that the condensed-phase effect of liquid water on electron elastic scattering may be of the influence on the fraction of absorbed energy and distribution of inelastic scattering events at lower primary energies, which also indicate potential effects on the DNA damage induced by low-energy electrons.展开更多
Based on comparison and analysis on structural cations of montmorillonite in bentonite samples collected from several typical areas in Jilin Province, relationships among type and quantity of interlayer/tetrahedral/oc...Based on comparison and analysis on structural cations of montmorillonite in bentonite samples collected from several typical areas in Jilin Province, relationships among type and quantity of interlayer/tetrahedral/octahedral cations and temperature and activation energy of removal of bound and hydroxyl water were investigated. The results show that the interlayer cations not only play decisive roles on removal temperature of bound water, but also influence dehydroxylation temperature and activation energy of montmorillonite. Type of octahedral cations also has an effect on dehydroxylation process.展开更多
Based on the transmitting theory of "smoke ring effect", the transient electromagnetism technique was used in coal mines to detect abnormal areas of aquiferous structures in both roofs and floors of coal sea...Based on the transmitting theory of "smoke ring effect", the transient electromagnetism technique was used in coal mines to detect abnormal areas of aquiferous structures in both roofs and floors of coal seams and in front of excavated roadways. Survey devices, working methods and techniques as well as data processing and interpretation are discussed systematically. In addition, the direction of mini-wireframe emission electromagnetic wave of the full space transient electromagnetism technique was verified by an underground borehole for water detection and drainage. The result indicates that this technique can detect both horizontal and vertical development rules of abnormal water bodies to a certain depth below the floor of coal seams and can also detect the abnormal, low resistance water bodies within a certain distance of roofs. Furthermore, it can detect such abnormal bodies in ahead of the excavated roadway front. Limited by the underground environment, the full space transient electromagnetism technique can detect to a depth of only 120 m or so.展开更多
A novel Dy^(3+) coordination compound,(H_2pipz)(H_3O)[Dy(pydc)_3]·11H_2O(1,pipz = piperazine and H_2pydc = pyridine-2,6-dicarboxylic acid),has been hydrothermally synthesized and characterized by X-ray...A novel Dy^(3+) coordination compound,(H_2pipz)(H_3O)[Dy(pydc)_3]·11H_2O(1,pipz = piperazine and H_2pydc = pyridine-2,6-dicarboxylic acid),has been hydrothermally synthesized and characterized by X-ray single-crystal diffraction,elemental analysis. It is interesting that the packing structure of compound 1 contains 22-core water clusters. Compound 1 is extended into a threedimensional supramolecular structure via O···H···O hydrogen bonding interactions. Furthermore,the luminescent property of compound 1 was also investigated.展开更多
<div style="text-align:justify;"> Proton exchange membrane fuel cell (PEMFC) reaction byproduct water is eventually discharged from the cathode channel through the surface of the diffusion layer (GDL)....<div style="text-align:justify;"> Proton exchange membrane fuel cell (PEMFC) reaction byproduct water is eventually discharged from the cathode channel through the surface of the diffusion layer (GDL). Although there are many studies on the kinetic behavior of liquid water in the cathode flow channel, there is still a lack of literature on water transport behavior in the flow channel considering the pore structure distribution on the GDL surface. In this paper, the effect of different size liquid water inlet arrangements on the GDL surface on the water management performance of the cathode runner is investigated. The volume of fluid (VOF) model is used to simulate the gas-liquid two-phase flow phenomenon in the channel. The results show that the droplet size discharged from the cathode flow channel is basically the uniformity when the liquid water inlet is distributed in gas flow from the largest to the smallest in size. At the same time, the maximum total liquid water content achievable in the flow channel, the maximum GDL surface coverage is the smallest, and the cathode flow channel has the best water management performance. The effect of pore structure distribution on the surface of GDL should be considered when conducting the study of water transport behavior in the cathode flow channel to reveal further the transport process of liquid water in the cathode channel and the removal mechanism. </div>展开更多
The ability of water to dissolve biomolecules is crucial for our life.It has been shown that protein has a profound effect on the behavior of water in its hydration shell,which in turn affects the structure and functi...The ability of water to dissolve biomolecules is crucial for our life.It has been shown that protein has a profound effect on the behavior of water in its hydration shell,which in turn affects the structure and function of the protein.However,there is still no consensus on whether protein promotes or destroys the structural order of water in its hydration shell until today,because of the lack of proper structural descriptor incorporating hydrogen-bond(H-bond)information for water at the protein/water interface.Here we performed all-atom molecular dynamics simulations of lysozyme protein in water and analyzed the H-bond structure of protein hydration water by using a newly developed structural descriptor.We find that the protein promotes local structural ordering of the hydration water while having a negligible effect on the strength of individual H-bonds.These findings are fundamental to the structure and function of biomolecules and provide new insights into the hydration of protein in water.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 41373010 & 41590624)
文摘In the deep Earth, hydrogen mainly occurs as structural hydroxyl and molecular water in minerals and melts, constituting mobile and immobile aqueous components. Hydrous minerals contain hydrogen which occupies a specific structural position and constitutes an indispensable component of chemical formulae. On the other hand, nominally anhydrous minerals do not contain hydrogen in their chemical formulae, but can host trace amounts of water in structural position and lattice defect. The molecular water may occur in the lattice defect as fluid/melt inclusions in minerals. Even though the water content of nominally anhydrous minerals is very limited generally in the order of ppm(parts per million), they may play a significant role in influencing the physicochemical properties of mineral and rock systems. With the continuous improvement of modern instrumentations, the analytical methodology exhibits trends for higher spatial resolution, lower detection limit and integral multiple methods on the water amount and its isotopic ratio. Among these methods, Fourier transform infrared spectrometry remains the most widely used, while secondary ion mass spectrometry, continuous flow mass spectrometry, elastic recoil detection analysis and Raman spectrometry are promising. This paper provides a brief review on the methodological progress and their applications to the analysis of structural water in nominally anhydrous minerals.
基金supported by the National Natural Science Foundation of China(Grant Nos.42027806 and 42041006)。
文摘The size of pores or the grille spacing of water–sediment separation structures directly affects their regulation effect on the debris flow performance.A suitable pore size or grille spacing can effectively improve the water–sediment separation ability of the structure.The new funnel-type grating water–sediment separation structure(FGWSS)combines vertical and horizontal structures and provides a satisfactory water–sediment separation effect.However,the regulation effect of the grille spacing of the structure on the debris flow performance has not been studied.The regulation effect of the structure grille spacing on the debris flow performance is studied through a flume test,and the optimal structure grille spacing is obtained.An empirical equation of the relationship between the relative grille spacing of the structure and the sediment separation rate is established.Finally,the influence of the water–sediment separation structure on the regulation effect of debris flows is examined from two aspects:external factors(properties of debris flows)and internal factors(structural factors).The experimental results show that the gradation characteristics of solid particles in debris flows constitute a key factor affecting the regulation effect of the structure on the debris flow performance.The optimum grille spacing of the FGWSS matches the particle size corresponding to the material distribution curves d85~d90 of the debris flow.The total separation rate of debris flow particles is related to the grille spacing of the structure and the content of coarse and fine particles in the debris flow.
文摘Recent discoveries have revealed a groundbreaking phenomenon where light alone, without any thermal input, can induce water evaporation, termed the “photomolecular effect”. This study explores a novel hypothesis that this effect can be explained by ortho-para magnetic spin interactions in water molecules within the water-air interface layer. Water molecules, consisting of hydrogen and oxygen, exhibit different nuclear spin states: ortho-(triplet) and para-(singlet). The interaction of polarized light with these spin states may induce transitions between the rotational levels of ortho- and para-forms due to catalysts like triplet oxygen (O2) in its inhomogeneous magnetic field. Resonance pumping at 532 nm (~18,797 cm−1) due to the transition v1-v2-v3 ~ 0-8-2 (~18,796 cm−1) results in an increase in molecular energy sufficient to overcome intermolecular forces at the water surface, thereby causing evaporation. The proposed ortho-para conversion mechanism involves spin-orbit coupling and specific resonance conditions. This theory provides a quantum mechanical perspective on the photomolecular effect, potentially offering insights into natural processes such as cloud formation and climate modeling, as well as practical applications in solar desalination and industrial drying. Further experimental validation is required to confirm the role of spin interactions in light-induced water evaporation.
基金Key Project of National Natural Science Foundation of China, No.40335049 National Natural Science Foundation of China, No.40471059
文摘Water is a key restricting factor of the economic development and eco-environmental protection in arid inland river basins of Northwest China. Although water supplies are short, the water utilization structure and the corresponding industrial structure are unbalanced. We constructed a System Dynamic Model for mutual optimization based on the mechanism of their interaction. This model is applied to the Heihe River Basin where the share of limited water resources among ecosystem, production and human living is optimized. Results show that, by mutual optimization, the water utilization structure and the industrial structures fit in with each other. And the relationships between the upper, middle and lower reaches of the Heihe River Basin can be harmonized. Mutual benefits of ecology, society and economy can be reached, and a sustainable ecology-production-living system can be obtained. This study gives a new insight and method for the sustainable utilization of water resources in arid inland river basins.
基金supported by the Key Technology and Demonstration of Damaged Ecosystem Restoration and Reconstruction in Shanxi–Shaanxi–Inner Mongolia Energy Base Location (KZCX2-XB3-13-02)
文摘The infiltration of water into soil is one of the most important soil physical properties that affect soil erosion and the eco-environment, especially in the Pisha sandstone area on the Chinese Loess Plateau. We studied the one-dimensional vertical infiltration of water in three experimental soils, created by mixing Pisha sandstone with sandy soil, irrigation-silted soil, and loessial soil, at mass ratios of 1:1, 1:2, 1:3, 1:4, and 1:5. Our objective was to compare water infiltration in the experimental soils and to evaluate the effect of Pisha sandstone on water infiltration. We assessed the effect by measuring soil bulk density(BD), porosity, cumulative infiltration, infiltration rate and saturated hydraulic conductivity(Ks). The results showed that Pisha sandstone decreased the infiltration rate and saturated hydraulic conductivity in the three experimental soils. Cumulative infiltration over time was well described by the Philip equation. Sandy soil mixed with the Pisha sandstone at a ratio of 1:3 had the best water-holding capacity. The results provided experimental evidence for the movement of soil water and a technical support for the reconstruction and reclamation of mining soils in the Pisha sandstone area.
文摘Based on the mechanism of the effect of hydration on the heat stability of lysozyme and the theory of water molecule clusters, the effect of structure-changed water on heat stability of lysozyme has been studied. The results obtained by differential scanning calorimetry (DSC) showed that the thermal denaturation temperature of lysozyme had been elevated 8.47 K through hydration of lysozyme with processed water whose structure had been changed so it was called "structured water" compared to ordinary water. The reason is that structured water changed the dipole moment of water molecules and easily formed cyclic water hexamer or cage-like water hexamer, so that the interacting force of maintaining three-dimensional conformation of lysozyme could be reinforced.
基金The National Natural Science Foundation of China under contract Nos 41176102 and 41306116
文摘A fouling study was conducted in coastal waters southwest of the East China Sea between December 2013 and November 2014. A total of 84 species of fouling organisms belonging to 69 genera, 49 families, and 10 phyla were recorded over the entire year. The community composition was dominated by coastal warm-water species belonging to typical subtropical inner bay communities. The prosperous stage of settlement lasted from April to September, and the adhesion strength of the fouling organisms was the highest in summer. Sessile suspension feeders constituted the main core of settlement for the fouling community. Amphibalanus reticulatus was the most dominant and representative species of fouling organism, and other dominant species included Caprella equilibra, Ectopleura crocea, Anthopleura nigrescens, Stylochus ijimai, Spirobranchus kraussii, Crassostrea angulata, Perna viridis, Jassa falcata, Stenothoe valida, Sphaerozius nitidus, and Biflustra grandicella. The individuals in the fouling community showed a mutual dependence or constraint relationship due to competition for settlement space and food, and they exhibited a particular spatiotemporal distribution in accordance with adaptation to environmental factors. Temperature was the most important environmental factor determining the geographic distribution of fouling organisms. The temperature characteristics of species essentially reflect the differences in the fouling community composition in various climate zones. The species number, settlement stage, and settlement rate of fouling organisms are closely related to water temperature. Local natural environmental conditions(salinity, water currents, light, etc.) as well as human activity(such as aquaculture production) are all important factors affecting the settlement of fouling organisms.
基金sponsored by the National Natural Science Foundation of China(Nos.51134025 and 51274204)the New Century Excellent Talents in University(No.NCET-12-0965)
文摘Aiming at soft rock ground support issues under conditions of high stress and long-term water immersion, the ground failure mechanism is revealed by taking the deep-water sumps of Jiulong Mine as the engineering background and employing field investigation, tests of rock structure, mechanical properties and mineral composition. The main factors leading to the surrounding rock failure include the high and complex stress state of the water sumps, high-clay content and water-weakened rock, and the unreasonable support design. In this paper, the broken and fractured rock mass near roadway opening is considered as ground small-structure, and deep stable rock mass as ground large-structure. A support technology focusing on cutting off the water, strengthening the small structure of the rock and transferring the large structure of the rock is proposed. The proposed support technology of interconnecting the large and small structures, based on high-strength bolts, high-stiffness shotcrete layer plugging water,strengthening the small structure with deep-hole grouting and shallow-hole grouting, highpretensioned cables tensioned twice to make the large and small structures bearing the pressure evenly,channel-steel and high-pretensioned cables are used to control floor heave. The numerical simulation and field test show that this support system can control the rock deformation of the water sumps and provide technical support to similar roadway support designs.
基金Funded by the National Natural Science Foundation of China(Nos.51778003 and 51308004)the Project of Anhui Provincial Education Department for Sending Visiting Scholars to Research Abroad(No.gxfx ZD2016134)+1 种基金the Anhui Province Higher Education Revitalization Program Talent Project([2014]No.11)the National Key Research and Development Plan(No.2017YFB0310001)
文摘The influence of air-cooled blast furnace slag aggregates as replacement of natural aggregates on the water absorption of concrete and mortar was studied, and the mechanism was analyzed. The interface between aggregate and matrix in concrete was analyzed by using a micro-hardness tester, a laser confocal microscope and a scanning electron microscope with backscattered electron image mode. The pore structure of mortar matrixes under different curing conditions was investigated by mercury intrusion porosimetry. The results showed that when natural aggregates were replaced with air-cooled blast furnace slag aggregates in mortar or concrete, the content of the capillary pore in the mortar matrix was reduced and the interfacial structure between aggregate and matrix was improved, resulting in the lower water absorption of mortar or concrete. Compared to the concrete made with crushed limestone and natural river sand, the initial absorption coefficient, the secondary absorption coefficient and the water absorption capacity through the surface for 7 d of the concrete made from crushed air-cooled blast furnace slag and air-cooled blast furnace slag sand were reduced by 48.9%, 52.8%, and 46.5%, respectively.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10847147)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 200800270017)the research foundation of NUIST (Grant No. 20080279)
文摘The researches on the structure of water and its changes induced by solutes are of enduring interests. The changes of the local structure of liquid water induced by NaCl solute under ambient conditions are studied and presented quantitatively with some order parameters and visualized with 2-body and 3-body correlation functions. The results show that, after the NaCl are solvated, the translational order t of water is decreased for the suppression of the second hydration shells around H20 molecules; the tetrahedral order (q) of water is also decreased and its favorite distribution peak moves from 0.76 to 0.5. In addition, the orientational freedom k and the diffusion coefficient D of water molecules are reduced because of new formed hydrogen-bonding structures between water and solvated ions.
文摘Over-exploitation of groundwater for irrigation can result in drastic reduction in groundwater level in Jodhpur district of western Rajasthan, India. In this study, we used the long-term trend analysis of seasonal groundwater level data to predict the future groundwater scenario in 33 villages of Jodhpur district, assessed the impact of water harvesting structures on groundwater recharge and explored the non-equilibrium between groundwater recharge and irrigation draft in the study area. Analysis of groundwater level data from 26 observation wells in 33 villages in the pre-monsoon period showed that groundwater level decreased continuously at the rate of 2.07 m/a. With this declining rate, most of the tube wells (including the well with the maximum depth of 193 m) are predicted to become completely dry by 2050. Behavior of temporal groundwater level data in the study period (from 2004 to 2012) can be explained by different geospatial maps, prepared using ArcGIS software. Statistical analysis of the interpolated maps showed that the area with the maximum positive groundwater recharge occupied 63.14% of the total area during 2010-2011 and the area with the maximum irrigation draft accounted for 56.21% of the total area during 2011-2012. Higher groundwater recharge is attributed to the increase in rainfall and the better aquifer condition. Spatial distribution for the changes of average groundwater recharge and draft (2008-2009 and 2011-2012) showed that 68.50% recharge area was in positive change and 45.75% draft area was in negative change. It was observed that the area of the irrigation draft exceeded that of the groundwater recharge in most of the years. In spite of the construction of several shallow water harvesting structures in 2009-2010, sandstone aquifer zones showed meager impact on groundwater recharge. The best-fit line for the deviation between average groundwater fluctuation due to recharge and irrigation draft with time can be represented by the polynomial curve. Thus, over-exploitation of groundwater for agricultural crops has result in non-equilibrium between groundwater recharge and irrigation draft.
文摘Development and judicious management of available water resources play a key role for economic upliftment of any region. The agricultural pattern and social and demographic status in the upper basin of the Dulung Nala Stream (a tributary of the Subarnarekha River) in the western part of the State of West Bengal, India, reveals growing demand of water in the basin. The paper reports different management plans involving different types of water harvesting structures (and associated different types of water distribution systems) and different crop combinations and with benefit/cost ratios varying from 1.3 to 11.2 for the basin. The study points out that the judicious choice of both the water harvesting structure as well as the water distribution system is important. Proper planning of crop pattern is also to be emphasized for reaping maximum benefit. It further emphasizes that cost- benefit ratio cannot solely govern the choice of structure and that maximum utilization of catchmental water and thus enhancement of agricultural output (and also economic return from the catchment) i.e. quantum of benefit is also important. The water harvesting structures proposed in this study can be implemented in other semi-arid regions of India having almost the same climatic and socio-economic conditions.
文摘A new Monte Carlo simulation of the track structure of low-energy electrons (〈10keV) in liquid water is presented. The feature of the simulation is taken into consideration of the condensed-phase effect of liquid water on electron elastic scattering with the use of the Champion model, while the dielectric response formalism incorporating the optical-data model developed by Emfietzoglou et al. is applied for calculating the electron inelastic scattering. The spatial distributions of energy deposition and inelastic scattering events of low-energy electrons with different primary energies in liquid water are calculated and compared with other theoretical evaluations. The present work shows that the condensed-phase effect of liquid water on electron elastic scattering may be of the influence on the fraction of absorbed energy and distribution of inelastic scattering events at lower primary energies, which also indicate potential effects on the DNA damage induced by low-energy electrons.
文摘Based on comparison and analysis on structural cations of montmorillonite in bentonite samples collected from several typical areas in Jilin Province, relationships among type and quantity of interlayer/tetrahedral/octahedral cations and temperature and activation energy of removal of bound and hydroxyl water were investigated. The results show that the interlayer cations not only play decisive roles on removal temperature of bound water, but also influence dehydroxylation temperature and activation energy of montmorillonite. Type of octahedral cations also has an effect on dehydroxylation process.
文摘Based on the transmitting theory of "smoke ring effect", the transient electromagnetism technique was used in coal mines to detect abnormal areas of aquiferous structures in both roofs and floors of coal seams and in front of excavated roadways. Survey devices, working methods and techniques as well as data processing and interpretation are discussed systematically. In addition, the direction of mini-wireframe emission electromagnetic wave of the full space transient electromagnetism technique was verified by an underground borehole for water detection and drainage. The result indicates that this technique can detect both horizontal and vertical development rules of abnormal water bodies to a certain depth below the floor of coal seams and can also detect the abnormal, low resistance water bodies within a certain distance of roofs. Furthermore, it can detect such abnormal bodies in ahead of the excavated roadway front. Limited by the underground environment, the full space transient electromagnetism technique can detect to a depth of only 120 m or so.
基金financially supported by the Foundation of Fujian Educational Committee(JA14348)
文摘A novel Dy^(3+) coordination compound,(H_2pipz)(H_3O)[Dy(pydc)_3]·11H_2O(1,pipz = piperazine and H_2pydc = pyridine-2,6-dicarboxylic acid),has been hydrothermally synthesized and characterized by X-ray single-crystal diffraction,elemental analysis. It is interesting that the packing structure of compound 1 contains 22-core water clusters. Compound 1 is extended into a threedimensional supramolecular structure via O···H···O hydrogen bonding interactions. Furthermore,the luminescent property of compound 1 was also investigated.
文摘<div style="text-align:justify;"> Proton exchange membrane fuel cell (PEMFC) reaction byproduct water is eventually discharged from the cathode channel through the surface of the diffusion layer (GDL). Although there are many studies on the kinetic behavior of liquid water in the cathode flow channel, there is still a lack of literature on water transport behavior in the flow channel considering the pore structure distribution on the GDL surface. In this paper, the effect of different size liquid water inlet arrangements on the GDL surface on the water management performance of the cathode runner is investigated. The volume of fluid (VOF) model is used to simulate the gas-liquid two-phase flow phenomenon in the channel. The results show that the droplet size discharged from the cathode flow channel is basically the uniformity when the liquid water inlet is distributed in gas flow from the largest to the smallest in size. At the same time, the maximum total liquid water content achievable in the flow channel, the maximum GDL surface coverage is the smallest, and the cathode flow channel has the best water management performance. The effect of pore structure distribution on the surface of GDL should be considered when conducting the study of water transport behavior in the cathode flow channel to reveal further the transport process of liquid water in the cathode channel and the removal mechanism. </div>
基金supported by the National Natural Science Foundation of China(Grant No.12175196)
文摘The ability of water to dissolve biomolecules is crucial for our life.It has been shown that protein has a profound effect on the behavior of water in its hydration shell,which in turn affects the structure and function of the protein.However,there is still no consensus on whether protein promotes or destroys the structural order of water in its hydration shell until today,because of the lack of proper structural descriptor incorporating hydrogen-bond(H-bond)information for water at the protein/water interface.Here we performed all-atom molecular dynamics simulations of lysozyme protein in water and analyzed the H-bond structure of protein hydration water by using a newly developed structural descriptor.We find that the protein promotes local structural ordering of the hydration water while having a negligible effect on the strength of individual H-bonds.These findings are fundamental to the structure and function of biomolecules and provide new insights into the hydration of protein in water.