A dynamic impedance-based structural health monitoring technique isintroduced. According to the direct and the converse piezoelectric property of piezoelectricmaterials, the piezoceramic (PZT) can be used as an actuat...A dynamic impedance-based structural health monitoring technique isintroduced. According to the direct and the converse piezoelectric property of piezoelectricmaterials, the piezoceramic (PZT) can be used as an actuator and a sensor synchronously. If damageslike cracks, holes, debonding or loose connections are presented in the structure, the physicalvariations of the structure will cause the mechanical impedance modified. On the basis ofintroducing the principle and the theory, the experiment and the analysis on some damages of thestructure are studied by means of the dynamic impedance technique. On the view of experiment, kindsof structural damages are evaluated by the information of dynamic impedance in order to validate thefeasibility of the method.展开更多
A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was s...A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was studied in detail.PTFE/Al/W RMPs with steel-like and aluminum-like densities were prepared by a pressing/sintering process.The projectiles impacted a liquid-filled steel tank with front aluminum panel at approximately 1250 m/s.The corresponding cavity evolution characteristics and HRAM pressure were recorded by high-speed camera and pressure acquisition system,and further compared to those of steel and aluminum projectiles.Significantly different from the conical cavity formed by the inert metal projectile,the cavity formed by the RMP appeared as an ellipsoid with a conical front.The RMPs were demonstrated to enhance the radial growth velocity of cavity,the global HRAM pressure amplitude and the front panel damage,indicating the enhanced HRAM and structural damage behavior.Furthermore,combining the impact-induced fragmentation and deflagration characteristics,the cavity evolution of RMPs under the combined effect of kinetic energy impact and chemical energy release was analyzed.The mechanism of enhanced HRAM pressure induced by the RMPs was further revealed based on the theoretical model of the initial impact wave and the impulse analysis.Finally,the linear correlation between the deformation-thickness ratio and the non-dimensional impulse for the front panel was obtained and analyzed.It was determined that the enhanced near-field impulse induced by the RMPs was the dominant reason for the enhanced structural damage behavior.展开更多
This article is to review results from scientific drilling and fault-zone trapped waves (FZTWs) at the south Longman-Shan fault (LSF) zone that ruptured in the 2008 May 12 M8 Wenchuan earthquake in Sichuan,China.I...This article is to review results from scientific drilling and fault-zone trapped waves (FZTWs) at the south Longman-Shan fault (LSF) zone that ruptured in the 2008 May 12 M8 Wenchuan earthquake in Sichuan,China.Immediately after the mainshock,two Wenchuan Fault Scientific Drilling (WFSD) boreholes were drilled at WFSD-1 and WFSD-2 sites approximately 400 m and 1 km west of the surface rupture along the Yinxiu-Beichuan fault (YBF),the middle fault strand of the south LSF zone.Two boreholes met the principal slip of Wenchuan earthquake along the YBF at depths of 589-m and 1230-m,respectively.The slip is accompanied with a 100-200-m-wide zone consisting of fault gouge,breccia,cataclasite and fractures.Close to WFSD-1 site,the nearly-vertical slip of ~4.3-m with a 190-m wide zone of highly fractured rocks restricted to the hanging wall of the YBF was found at the ground surface after the Wenchuan earthquake.A dense linear seismic array was deployed across the surface rupture at this venue to record FZTWs generated by aftershocks.Observations and 3-D finite-difference simulations of FZTWs recorded at this cross-fault array and network stations close to the YBF show a distinct low-velocity zone composed by severely damaged rocks along the south LSF at seismogenic depths.The zone is several hundred meters wide along the principal slip,within which seismic velocities are reduced by ~30-55% from wall-rock velocities and with the maximum velocity reduction in the ~200-m-wide rupture core zone at shallow depth.The FZTW-inferred geometry and physical properties of the south LSF rupture zone at shallow depth are in general consistent with the results from petrological and structural analyses of cores and well log at WFSD boreholes.We interpret this remarkable low-velocity zone as being a break-down zone during dynamic rupture in the 2008 M8 earthquake.We examined the FZTWS generated by similar earthquakes before and after the 2008 mainshock and observed that seismic velocities within fault core zone was reduced by ~10% due to severe damage of fault rocks during the M8 mainshock.Scientific drilling and locations of aftershocks generating prominent FZTWs also indicate rupture bifurcation along the YBF and the Anxian-Guangxian fault (AGF),two strands of the south LSF at shallow depth.A combination of seismic,petrologic and geologic study at the south LSF leads to further understand the relationship between the fault-zone structure and rupture dynamics,and the amplification of ground shaking strength along the low-velocity fault zone due to its waveguide effect.展开更多
Due to the developments of computer science and technology in recent years,computer models and numerical simulations for large and complicated structures can be done.Among the vast information and results obtained fro...Due to the developments of computer science and technology in recent years,computer models and numerical simulations for large and complicated structures can be done.Among the vast information and results obtained from the analysis and simulations,the damage performance is of great importance since this damage might cause enormous losses for society and humanity,notably in cases of severe damage occurring.One of the most effective tools to handle the results about the damage performance of the structure is the damage index(DI)together with the damage states,which are used to correlate the damage indices with the damage that occurred in the actual structures.Numbers of damage indices proposed and developed rely on the fact that the damage causes noticeable changes in the structural and dynamic properties of the structural components or the whole structure.Therefore,this study presents a comprehensive review of the damage assessment of Reinforced Concrete(RC)structures.It presents step by step the development of the damage indices that are most widely used to estimate the performance of structural components in the structure and subsequently assess the damage degree of such these structures either based on the structural properties or dynamic properties of the structure.Also,several damage states have been introduced to estimate the performance level of the structure.Finally,case studies,methodologies,and applications on the damage assessment of RC structures are reviewed and presented.展开更多
Structural damage from sample preparation processes such as cutting and polishing may change the pore structure of rocks.However,changes in pore structure caused by this structural damage from crushing and its effect ...Structural damage from sample preparation processes such as cutting and polishing may change the pore structure of rocks.However,changes in pore structure caused by this structural damage from crushing and its effect on marine continental transitional shale have not been well documented.The changes of microscopic pore structure in marine continental transitional shale during the sample preparation have important research value for subsequent exploration and development of shale gas.In this study,the pore structures of transitional shale samples from the Shanxi-Taiyuan Formation of the Southern North China Basin under different degrees of damage were analyzed through low-temperature N;adsorption experiments,combined with X-ray diffraction,total organic carbon,vitrinite reflectance analysis,and scanning electron microscopy.The results showed that(1)With increasing structural damage,the specific surface area(SSA)changed within relatively tight bounds,while the pore volume(PV)varied significantly,and the growth rate(maximum)exhibited a certain critical value with the crushing mesh number increasing from 20 to 200.(2)The ratio of SSA to PV can be used as a potential proxy for evaluating the influence of changes in the pore structure.(3)Correlation analysis revealed that the microscopic pore structure of marine continental transitional shale from the Shanxi-Taiyuan Formations is mainly controlled by organic matter and clay minerals.Clay minerals play a leading role in the development of microscopic pores and changes in pore structure.展开更多
A two-stage damage detection approach is proposed and experimentally demonstrated on a complicated spatial model structure with a limited number of measurements. In the experiment,five known damage patterns,including ...A two-stage damage detection approach is proposed and experimentally demonstrated on a complicated spatial model structure with a limited number of measurements. In the experiment,five known damage patterns,including 3 brace damage cases and 2 joint damage cases,were simulated by removing braces and weakening beam鈥揷olumn connections in the structure. The limited acceleration response data generated by hammer impact were used for system identification,and modal parameters were extracted by using the eigensystem realization algorithm. In the first stage,the possible damaged locations are determined by using the damage index and the characteristics of the analytical model itself,and the extent of damage for those substructures identified at stage I is estimated in the second stage by using a second-order eigen-sensitivity approximation method. The main contribution of this paper is to test the two-stage method by using the real dynamic data of a complicated spatial model structure with limited sensors. The analysis results indicate that the two-stage approach is ableto detect the location of both damage cases,only the severity of brace damage cases can be assessed,and the reasonable analytical model is critical for successful damage detection.展开更多
This paper work aims to contribute to active participation of professional authorities into the updating process of education, law and standardization when the preparation of a catastrophic risk plan, in particular fi...This paper work aims to contribute to active participation of professional authorities into the updating process of education, law and standardization when the preparation of a catastrophic risk plan, in particular fire and safety of buildings. Thus will encourage responsibility of Kosovo Government and society to look after the catastrophic events in a structured way, while this approach will enhance effectively and efficiently the level of FP e the buildings, emphasize buildings of cultural heritage of Kosova.展开更多
The central nervous system (CNS) contains the two most important organs, the brain and spinal cord, for the orchestration of the mental and physical activities of life. Because of its importance, the human body has ...The central nervous system (CNS) contains the two most important organs, the brain and spinal cord, for the orchestration of the mental and physical activities of life. Because of its importance, the human body has evolved barrier systems to protect CNS tissue from the external environment. This barrier is a membrane composed of tightly apposed cells and is selectively permeable to specific molecules by way of membrane transporters.展开更多
Offshore wind turbines(OWTs) suffer wind, wave and earthquake loads. The investigation of OWTs' dynamic response under environmental loads is essential for structural safety assessment. The soil-structure interact...Offshore wind turbines(OWTs) suffer wind, wave and earthquake loads. The investigation of OWTs' dynamic response under environmental loads is essential for structural safety assessment. The soil-structure interaction(SSI)significantly affects the responses of OWT under environmental loads. However, there is few systematic research about the difference in the dynamic response of different SSI models under environmental loads. In order to solve the problem, the OWT is modeled by shell element, and several SSI models are built. The wind, wave and earthquake loads are taken into account. Moreover, the dynamic response, fatigue and buckling analysis are performed by ANSYS. The results indicate that SSI cannot be ignored in the dynamic response of the OWT under wind and wave loads. The SSI can decrease the displacement response of the OWT by 19% under wind and wave loads and reduce the fatigue damage of the pile. Multi-layer SSI can strongly influence the OWT's dynamic response under wind and wave loads or earthquake-only load. The vertical earthquake load increases the dynamic response in three directions.Besides, in order to simulate real environment, multi-layer SSI, soil damping and vertical SSI must be considered to evaluate the displacement response of the OWT under wind, wave and earthquake loads. The earthquake and gravity loads can cause more obvious response of the OWT than that of only wind and wave loads. The top and bottom of the tower are prone to occur buckling.展开更多
The existing strategy for evaluating the damage condition of structures mostly focuses on feedback supplied by traditional visualmethods,which may result in an unreliable damage characterization due to inspector subje...The existing strategy for evaluating the damage condition of structures mostly focuses on feedback supplied by traditional visualmethods,which may result in an unreliable damage characterization due to inspector subjectivity or insufficient level of expertise.As a result,a robust,reliable,and repeatable method of damage identification is required.Ensemble learning algorithms for identifying structural damage are evaluated in this article,which use deep convolutional neural networks,including simple averaging,integrated stacking,separate stacking,and hybridweighted averaging ensemble and differential evolution(WAE-DE)ensemblemodels.Damage identification is carried out on three types of damage.The proposed algorithms are used to analyze the damage of 4585 structural images.The effectiveness of the ensemble learning techniques is evaluated using the confusion matrix.For the testing dataset,the confusion matrix achieved an accuracy of 94 percent and a minimum recall of 92 percent for the best model(WAE-DE)in distinguishing damage types as flexural,shear,combined,or undamaged.展开更多
A novel approach employs the principles of medical image analysis using Wavelet Transform (WT) and Difference Peak Signal-to-Noise Ratio (ΔPSNR). Both techniques are combined as a function of different decomposing le...A novel approach employs the principles of medical image analysis using Wavelet Transform (WT) and Difference Peak Signal-to-Noise Ratio (ΔPSNR). Both techniques are combined as a function of different decomposing levels of wavelets and various image search through and slicing levels, which is implemented under MATLAB environment. In this new approach, the structural change due to damage in the component or the presence of foreign bodies appearing in an image taken for a specific structure is uncovered with its extent determined after applying the search through algorithm. Such alteration of the composite structure, which could be masked by the presence of noise, is accounted for using combined WT and PSNR. Effect of Artifacts and Blurring caused by different wavelet types is investigated before choosing an appropriate wavelet, namely Sym8. This new approach, which also reduces the required layers of search within an image, produces a pattern matrix per damaged area and is an excellent way in tracing and modeling damage in structures with ability to predict effects of further damage on components and further application to artificial limbs that could suffer damage and affect users mobility.展开更多
Damage assessment of the wing under blast wave is essential to the vulnerability reduction design of aircraft. This paper introduces a critical relative distance prediction method of aircraft wing damage based on the ...Damage assessment of the wing under blast wave is essential to the vulnerability reduction design of aircraft. This paper introduces a critical relative distance prediction method of aircraft wing damage based on the back-propagation artificial neural network(BP-ANN), which is trained by finite element simulation results. Moreover, the finite element method(FEM) for wing blast damage simulation has been validated by ground explosion tests and further used for damage mode determination and damage characteristics analysis. The analysis results indicate that the wing is more likely to be damaged when the root is struck from vertical directions than others for a small charge. With the increase of TNT equivalent charge, the main damage mode of the wing gradually changes from the local skin tearing to overall structural deformation and the overpressure threshold of wing damage decreases rapidly. Compared to the FEM-based damage assessment, the BP-ANN-based method can predict the wing damage under a random blast wave with an average relative error of 4.78%. The proposed method and conclusions can be used as a reference for damage assessment under blast wave and low-vulnerability design of aircraft structures.展开更多
This paper established the axle load distribution model of overload axes by practical axle-meter investigations. To study the effects of overload axes on pavement distress, deflection and deflection basin tests with a...This paper established the axle load distribution model of overload axes by practical axle-meter investigations. To study the effects of overload axes on pavement distress, deflection and deflection basin tests with axle load from 60kN to 190kN were conducted on different pavement structures. The relationship between axle load and its deflection as well as its deflection basin curvature was obtained by statistical analyses. A methodology for deriving the equivalent conversion factors of overload axes to equivalent standard axle loads (ESAL) of 100kN is developed, obtaining the relationship between the equivalent conversion factors and the axle loads. Comparing the calculated defiections with the measured deflections, that elastic layered system theory is suitable for analyzing overload vehicles was verified. Consequently, the stresses and strains caused by overload axes were calculated by elastic layered system theory. The results showed that overload axes led to greater stresses and strains causing premature pavement fatigue distress. To guarantee the expected performance in overload axes pavement, the structure thickness needed increasing was obtained. The results are of referential values in the control of semi-rigid pavement overloadings.展开更多
The state equation and observation equation of the structural dynamic systems under various analysis scales are derived based on wavelet packet analysis. The time-frequency properties of structural dynamic response un...The state equation and observation equation of the structural dynamic systems under various analysis scales are derived based on wavelet packet analysis. The time-frequency properties of structural dynamic response under various scales are further formulated. The theoretical analysis results reveal that the wavelet packet energy spectrum (WPES) obtained from wavelet packet decomposition of structural dynamic response will detect the presence of structural damage. The sensitivity analysis of the WPES to structural damage and measurement noise is also performed. The transfer properties of the structural system matrix and the observation noise under various analysis scales are formulated, which verify the damage alarming reliability using the proposed WPES with preferable damage sensitivity and noise robusticity.展开更多
This paper aims at successive structural damage detection of long-span bridges under changing temperature conditions.First,the frequency-temperature correlation models of bridges are formulated by means of artificial ...This paper aims at successive structural damage detection of long-span bridges under changing temperature conditions.First,the frequency-temperature correlation models of bridges are formulated by means of artificial neural network techniques to eliminate the temperature effects on the measured modal frequencies.Then,the measured modal frequencies under various temperatures are normalized to a reference temperature,based on which the auto-associative network is trained to monitor signal damage occurrences by means of neural-network-based novelty detection techniques.The effectiveness of the proposed approach is examined in the Runyang Suspension Bridge using 236-day health monitoring data.The results reveal that the seasonal change of environmental temperature accounts for variations in the measured modal frequencies with averaged variances of 2.0%.And the approach exhibits good capability for detecting the damage-induced 0.1% variance of modal frequencies and it is suitable for online condition monitoring of suspension bridges.展开更多
Multi-source information fusion (MSIF) is imported into structural damage diagnosis methods to improve the validity of damage detection. After the introduction of the basic theory, the function model, classification...Multi-source information fusion (MSIF) is imported into structural damage diagnosis methods to improve the validity of damage detection. After the introduction of the basic theory, the function model, classifications and mathematical methods of MSIF, a structural damage detection method based on MSIF is presented, which is to fuse two or more damage character vectors from different structural damage diagnosis methods on the character-level. In an experiment of concrete plates, modal information is measured and analyzed. The structural damage detection method based on MSIF is taken to localize cracks of concrete plates and it is proved to be effective. Results of damage detection by the method based on MSIF are compared with those from the modal strain energy method and the flexibility method. Damage, which can hardly be detected by using the single damage identification method, can be diagnosed by the damage detection method based on the character-level MSIF technique. Meanwhile multi-location damage can be identified by the method based on MSIF. This method is sensitive to structural damage and different mathematical methods for MSIF have different preconditions and applicabilities for diversified structures. How to choose mathematical methods for MSIF should be discussed in detail in health monitoring systems of actual structures.展开更多
Based on dynamic response signals a damage detection algorithm is developed for marine risers. Damage detection methods based on numerous modal properties have encountered issues in the researches in offshore oil comm...Based on dynamic response signals a damage detection algorithm is developed for marine risers. Damage detection methods based on numerous modal properties have encountered issues in the researches in offshore oil community. For example, significant increase in structure mass due to marine plant/animal growth and changes in modal properties by equipment noise are not the result of damage for riser structures. In an attempt to eliminate the need to determine modal parameters, a data-based method is developed. The implementation of the method requires that vibration data are first standardized to remove the influence of different loading conditions and the autoregressive moving average(ARMA) model is used to fit vibration response signals. In addition, a damage feature factor is introduced based on the autoregressive(AR) parameters. After that, the Euclidean distance between ARMA models is subtracted as a damage indicator for damage detection and localization and a top tensioned riser simulation model with different damage scenarios is analyzed using the proposed method with dynamic acceleration responses of a marine riser as sensor data. Finally, the influence of measured noise is analyzed. According to the damage localization results, the proposed method provides accurate damage locations of risers and is robust to overcome noise effect.展开更多
Segmentally assembled bridges are increasinglyfinding engineering applications in recent years due to their unique advantages,especially as urban viaducts.Vehicle loads are one of the most important variable loads acti...Segmentally assembled bridges are increasinglyfinding engineering applications in recent years due to their unique advantages,especially as urban viaducts.Vehicle loads are one of the most important variable loads acting on bridge structures.Accordingly,the influence of overloaded vehicles on existing assembled bridge structures is an urgent concern at present.This paper establishes thefinite element model of the segmentally assembled bridge based on ABAQUS software and analyzes the influence of vehicle overload on an assembled girder bridge struc-ture.First,afinite element model corresponding to the target bridge is established based on ABAQUS software,and the load is controlled to simulate vehicle movement in each area of the traveling zone at different times.Sec-ond,the key cross-sections of segmental girder bridges are monitored in real time based on the force character-istics of continuous girder bridges,and they are compared with the simulation results.Finally,a material damage ontology model is introduced,and the structural damage caused by different overloading rates is compared and analyzed.Results show that thefinite element modeling method is accurate by comparing with on-site measured data,and it is suitable for the numerical simulation of segmental girder bridges;Dynamic sensors installed at 1/4L,1/2L,and 3/4L of the segmental girder main beams could be used to identify the dynamic response of segmental girder bridges;The bottom plate of the segmental girder bridge is mostly damaged at the position where the length of the precast beam section changes and the midspan position.With the increase in load,damage in the direction of the bridge develops faster than that in the direction of the transverse bridge.Thefindings of this study can guide maintenance departments in the management and maintenance of bridges and vehicles.展开更多
In this paper the method of damage measurement of metal structure at the creep is proposed.In contrast to other methods,it allows the measurement of this damage to be carried out in the process of creep test without u...In this paper the method of damage measurement of metal structure at the creep is proposed.In contrast to other methods,it allows the measurement of this damage to be carried out in the process of creep test without unloading and cooling of specimens.Experimental damage curves during creep are obtained as a result of test data processing by the suggested method.The analysis of these curves leads to a conclusion that the material damage at repture is monotonically decreasing function of the applied stress.This conclusion is an experimental verification of the theoretical result,obtained earlier.展开更多
To improve the accuracy and anti-noise ability of the structural damage identification method,a bridge damage identification method is proposed based on a deep belief network(DBN).The output vector is used to establis...To improve the accuracy and anti-noise ability of the structural damage identification method,a bridge damage identification method is proposed based on a deep belief network(DBN).The output vector is used to establish the nonlinear mapping relationship between the mode shape and structural damage.The hidden layer of the DBN is trained through a layer-by-layer pre-training.Finally,the backpropagation algorithm is used to fine-tune the entire network.The method is validated using a numerical model of a steel truss bridge.The results show that under the influence of noise and modeling uncertainty,the damage identification method based on the DBN can identify the accurate damage location and degree identification compared with the traditional damage identification method based on an artificial neural network.展开更多
基金This project is supported by Foundation of Study Abroad Returnee,Ministry of Education of China(No.2000-367)and Open Foundation of the State Key Laboratory of VSN,Shanghai Jiaotong University,China(No.VSN-2001-03).
文摘A dynamic impedance-based structural health monitoring technique isintroduced. According to the direct and the converse piezoelectric property of piezoelectricmaterials, the piezoceramic (PZT) can be used as an actuator and a sensor synchronously. If damageslike cracks, holes, debonding or loose connections are presented in the structure, the physicalvariations of the structure will cause the mechanical impedance modified. On the basis ofintroducing the principle and the theory, the experiment and the analysis on some damages of thestructure are studied by means of the dynamic impedance technique. On the view of experiment, kindsof structural damages are evaluated by the information of dynamic impedance in order to validate thefeasibility of the method.
基金supported by the Youth Foundation of State Key Laboratory of Explosion Science and Technology (Grant No.QNKT22-12)the State Key Program of National Natural Science Foundation of China (Grant No.12132003)。
文摘A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was studied in detail.PTFE/Al/W RMPs with steel-like and aluminum-like densities were prepared by a pressing/sintering process.The projectiles impacted a liquid-filled steel tank with front aluminum panel at approximately 1250 m/s.The corresponding cavity evolution characteristics and HRAM pressure were recorded by high-speed camera and pressure acquisition system,and further compared to those of steel and aluminum projectiles.Significantly different from the conical cavity formed by the inert metal projectile,the cavity formed by the RMP appeared as an ellipsoid with a conical front.The RMPs were demonstrated to enhance the radial growth velocity of cavity,the global HRAM pressure amplitude and the front panel damage,indicating the enhanced HRAM and structural damage behavior.Furthermore,combining the impact-induced fragmentation and deflagration characteristics,the cavity evolution of RMPs under the combined effect of kinetic energy impact and chemical energy release was analyzed.The mechanism of enhanced HRAM pressure induced by the RMPs was further revealed based on the theoretical model of the initial impact wave and the impulse analysis.Finally,the linear correlation between the deformation-thickness ratio and the non-dimensional impulse for the front panel was obtained and analyzed.It was determined that the enhanced near-field impulse induced by the RMPs was the dominant reason for the enhanced structural damage behavior.
基金supported by the "Wenchuan Earthquake Fault Scientific Drilling" of the National Science Foundation of China
文摘This article is to review results from scientific drilling and fault-zone trapped waves (FZTWs) at the south Longman-Shan fault (LSF) zone that ruptured in the 2008 May 12 M8 Wenchuan earthquake in Sichuan,China.Immediately after the mainshock,two Wenchuan Fault Scientific Drilling (WFSD) boreholes were drilled at WFSD-1 and WFSD-2 sites approximately 400 m and 1 km west of the surface rupture along the Yinxiu-Beichuan fault (YBF),the middle fault strand of the south LSF zone.Two boreholes met the principal slip of Wenchuan earthquake along the YBF at depths of 589-m and 1230-m,respectively.The slip is accompanied with a 100-200-m-wide zone consisting of fault gouge,breccia,cataclasite and fractures.Close to WFSD-1 site,the nearly-vertical slip of ~4.3-m with a 190-m wide zone of highly fractured rocks restricted to the hanging wall of the YBF was found at the ground surface after the Wenchuan earthquake.A dense linear seismic array was deployed across the surface rupture at this venue to record FZTWs generated by aftershocks.Observations and 3-D finite-difference simulations of FZTWs recorded at this cross-fault array and network stations close to the YBF show a distinct low-velocity zone composed by severely damaged rocks along the south LSF at seismogenic depths.The zone is several hundred meters wide along the principal slip,within which seismic velocities are reduced by ~30-55% from wall-rock velocities and with the maximum velocity reduction in the ~200-m-wide rupture core zone at shallow depth.The FZTW-inferred geometry and physical properties of the south LSF rupture zone at shallow depth are in general consistent with the results from petrological and structural analyses of cores and well log at WFSD boreholes.We interpret this remarkable low-velocity zone as being a break-down zone during dynamic rupture in the 2008 M8 earthquake.We examined the FZTWS generated by similar earthquakes before and after the 2008 mainshock and observed that seismic velocities within fault core zone was reduced by ~10% due to severe damage of fault rocks during the M8 mainshock.Scientific drilling and locations of aftershocks generating prominent FZTWs also indicate rupture bifurcation along the YBF and the Anxian-Guangxian fault (AGF),two strands of the south LSF at shallow depth.A combination of seismic,petrologic and geologic study at the south LSF leads to further understand the relationship between the fault-zone structure and rupture dynamics,and the amplification of ground shaking strength along the low-velocity fault zone due to its waveguide effect.
基金This work was supported by the National Natural Science Foundation of China(Grant No.52078361)the Innovation Program of the Shanghai Municipal Education Commission(Grant No.2017-01-07-00-07-E00006).
文摘Due to the developments of computer science and technology in recent years,computer models and numerical simulations for large and complicated structures can be done.Among the vast information and results obtained from the analysis and simulations,the damage performance is of great importance since this damage might cause enormous losses for society and humanity,notably in cases of severe damage occurring.One of the most effective tools to handle the results about the damage performance of the structure is the damage index(DI)together with the damage states,which are used to correlate the damage indices with the damage that occurred in the actual structures.Numbers of damage indices proposed and developed rely on the fact that the damage causes noticeable changes in the structural and dynamic properties of the structural components or the whole structure.Therefore,this study presents a comprehensive review of the damage assessment of Reinforced Concrete(RC)structures.It presents step by step the development of the damage indices that are most widely used to estimate the performance of structural components in the structure and subsequently assess the damage degree of such these structures either based on the structural properties or dynamic properties of the structure.Also,several damage states have been introduced to estimate the performance level of the structure.Finally,case studies,methodologies,and applications on the damage assessment of RC structures are reviewed and presented.
基金the financial support by the National Natural Science Foundation of China(Grant No.41927801)。
文摘Structural damage from sample preparation processes such as cutting and polishing may change the pore structure of rocks.However,changes in pore structure caused by this structural damage from crushing and its effect on marine continental transitional shale have not been well documented.The changes of microscopic pore structure in marine continental transitional shale during the sample preparation have important research value for subsequent exploration and development of shale gas.In this study,the pore structures of transitional shale samples from the Shanxi-Taiyuan Formation of the Southern North China Basin under different degrees of damage were analyzed through low-temperature N;adsorption experiments,combined with X-ray diffraction,total organic carbon,vitrinite reflectance analysis,and scanning electron microscopy.The results showed that(1)With increasing structural damage,the specific surface area(SSA)changed within relatively tight bounds,while the pore volume(PV)varied significantly,and the growth rate(maximum)exhibited a certain critical value with the crushing mesh number increasing from 20 to 200.(2)The ratio of SSA to PV can be used as a potential proxy for evaluating the influence of changes in the pore structure.(3)Correlation analysis revealed that the microscopic pore structure of marine continental transitional shale from the Shanxi-Taiyuan Formations is mainly controlled by organic matter and clay minerals.Clay minerals play a leading role in the development of microscopic pores and changes in pore structure.
基金supported by the National Natural Science Foundation of China (90815025, 90715032 and 50808013)
文摘A two-stage damage detection approach is proposed and experimentally demonstrated on a complicated spatial model structure with a limited number of measurements. In the experiment,five known damage patterns,including 3 brace damage cases and 2 joint damage cases,were simulated by removing braces and weakening beam鈥揷olumn connections in the structure. The limited acceleration response data generated by hammer impact were used for system identification,and modal parameters were extracted by using the eigensystem realization algorithm. In the first stage,the possible damaged locations are determined by using the damage index and the characteristics of the analytical model itself,and the extent of damage for those substructures identified at stage I is estimated in the second stage by using a second-order eigen-sensitivity approximation method. The main contribution of this paper is to test the two-stage method by using the real dynamic data of a complicated spatial model structure with limited sensors. The analysis results indicate that the two-stage approach is ableto detect the location of both damage cases,only the severity of brace damage cases can be assessed,and the reasonable analytical model is critical for successful damage detection.
文摘This paper work aims to contribute to active participation of professional authorities into the updating process of education, law and standardization when the preparation of a catastrophic risk plan, in particular fire and safety of buildings. Thus will encourage responsibility of Kosovo Government and society to look after the catastrophic events in a structured way, while this approach will enhance effectively and efficiently the level of FP e the buildings, emphasize buildings of cultural heritage of Kosova.
基金supported by the Global Research Laboratory Program(2011-0021874)Brain Korea 21 Program,the Global Core Research Center(GCRC)Program(20110030001)through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT and Future Planning(MSIP)
文摘The central nervous system (CNS) contains the two most important organs, the brain and spinal cord, for the orchestration of the mental and physical activities of life. Because of its importance, the human body has evolved barrier systems to protect CNS tissue from the external environment. This barrier is a membrane composed of tightly apposed cells and is selectively permeable to specific molecules by way of membrane transporters.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51976131, 52006148, and 52106262)。
文摘Offshore wind turbines(OWTs) suffer wind, wave and earthquake loads. The investigation of OWTs' dynamic response under environmental loads is essential for structural safety assessment. The soil-structure interaction(SSI)significantly affects the responses of OWT under environmental loads. However, there is few systematic research about the difference in the dynamic response of different SSI models under environmental loads. In order to solve the problem, the OWT is modeled by shell element, and several SSI models are built. The wind, wave and earthquake loads are taken into account. Moreover, the dynamic response, fatigue and buckling analysis are performed by ANSYS. The results indicate that SSI cannot be ignored in the dynamic response of the OWT under wind and wave loads. The SSI can decrease the displacement response of the OWT by 19% under wind and wave loads and reduce the fatigue damage of the pile. Multi-layer SSI can strongly influence the OWT's dynamic response under wind and wave loads or earthquake-only load. The vertical earthquake load increases the dynamic response in three directions.Besides, in order to simulate real environment, multi-layer SSI, soil damping and vertical SSI must be considered to evaluate the displacement response of the OWT under wind, wave and earthquake loads. The earthquake and gravity loads can cause more obvious response of the OWT than that of only wind and wave loads. The top and bottom of the tower are prone to occur buckling.
文摘The existing strategy for evaluating the damage condition of structures mostly focuses on feedback supplied by traditional visualmethods,which may result in an unreliable damage characterization due to inspector subjectivity or insufficient level of expertise.As a result,a robust,reliable,and repeatable method of damage identification is required.Ensemble learning algorithms for identifying structural damage are evaluated in this article,which use deep convolutional neural networks,including simple averaging,integrated stacking,separate stacking,and hybridweighted averaging ensemble and differential evolution(WAE-DE)ensemblemodels.Damage identification is carried out on three types of damage.The proposed algorithms are used to analyze the damage of 4585 structural images.The effectiveness of the ensemble learning techniques is evaluated using the confusion matrix.For the testing dataset,the confusion matrix achieved an accuracy of 94 percent and a minimum recall of 92 percent for the best model(WAE-DE)in distinguishing damage types as flexural,shear,combined,or undamaged.
文摘A novel approach employs the principles of medical image analysis using Wavelet Transform (WT) and Difference Peak Signal-to-Noise Ratio (ΔPSNR). Both techniques are combined as a function of different decomposing levels of wavelets and various image search through and slicing levels, which is implemented under MATLAB environment. In this new approach, the structural change due to damage in the component or the presence of foreign bodies appearing in an image taken for a specific structure is uncovered with its extent determined after applying the search through algorithm. Such alteration of the composite structure, which could be masked by the presence of noise, is accounted for using combined WT and PSNR. Effect of Artifacts and Blurring caused by different wavelet types is investigated before choosing an appropriate wavelet, namely Sym8. This new approach, which also reduces the required layers of search within an image, produces a pattern matrix per damaged area and is an excellent way in tracing and modeling damage in structures with ability to predict effects of further damage on components and further application to artificial limbs that could suffer damage and affect users mobility.
基金supported by the Natural Science Foundation of Shaanxi Province (Grant No. 2020JQ-122)the Fund support of Science and Technology on Transient Impact Laboratory。
文摘Damage assessment of the wing under blast wave is essential to the vulnerability reduction design of aircraft. This paper introduces a critical relative distance prediction method of aircraft wing damage based on the back-propagation artificial neural network(BP-ANN), which is trained by finite element simulation results. Moreover, the finite element method(FEM) for wing blast damage simulation has been validated by ground explosion tests and further used for damage mode determination and damage characteristics analysis. The analysis results indicate that the wing is more likely to be damaged when the root is struck from vertical directions than others for a small charge. With the increase of TNT equivalent charge, the main damage mode of the wing gradually changes from the local skin tearing to overall structural deformation and the overpressure threshold of wing damage decreases rapidly. Compared to the FEM-based damage assessment, the BP-ANN-based method can predict the wing damage under a random blast wave with an average relative error of 4.78%. The proposed method and conclusions can be used as a reference for damage assessment under blast wave and low-vulnerability design of aircraft structures.
文摘This paper established the axle load distribution model of overload axes by practical axle-meter investigations. To study the effects of overload axes on pavement distress, deflection and deflection basin tests with axle load from 60kN to 190kN were conducted on different pavement structures. The relationship between axle load and its deflection as well as its deflection basin curvature was obtained by statistical analyses. A methodology for deriving the equivalent conversion factors of overload axes to equivalent standard axle loads (ESAL) of 100kN is developed, obtaining the relationship between the equivalent conversion factors and the axle loads. Comparing the calculated defiections with the measured deflections, that elastic layered system theory is suitable for analyzing overload vehicles was verified. Consequently, the stresses and strains caused by overload axes were calculated by elastic layered system theory. The results showed that overload axes led to greater stresses and strains causing premature pavement fatigue distress. To guarantee the expected performance in overload axes pavement, the structure thickness needed increasing was obtained. The results are of referential values in the control of semi-rigid pavement overloadings.
文摘The state equation and observation equation of the structural dynamic systems under various analysis scales are derived based on wavelet packet analysis. The time-frequency properties of structural dynamic response under various scales are further formulated. The theoretical analysis results reveal that the wavelet packet energy spectrum (WPES) obtained from wavelet packet decomposition of structural dynamic response will detect the presence of structural damage. The sensitivity analysis of the WPES to structural damage and measurement noise is also performed. The transfer properties of the structural system matrix and the observation noise under various analysis scales are formulated, which verify the damage alarming reliability using the proposed WPES with preferable damage sensitivity and noise robusticity.
基金The National Natural Science Foundation of China(No.50725828,50808041)the Natural Science Foundation of Jiangsu Province(No.BK2008312)the Ph.D.Programs Foundation of Ministry of Education of China(No.200802861011)
文摘This paper aims at successive structural damage detection of long-span bridges under changing temperature conditions.First,the frequency-temperature correlation models of bridges are formulated by means of artificial neural network techniques to eliminate the temperature effects on the measured modal frequencies.Then,the measured modal frequencies under various temperatures are normalized to a reference temperature,based on which the auto-associative network is trained to monitor signal damage occurrences by means of neural-network-based novelty detection techniques.The effectiveness of the proposed approach is examined in the Runyang Suspension Bridge using 236-day health monitoring data.The results reveal that the seasonal change of environmental temperature accounts for variations in the measured modal frequencies with averaged variances of 2.0%.And the approach exhibits good capability for detecting the damage-induced 0.1% variance of modal frequencies and it is suitable for online condition monitoring of suspension bridges.
基金The National High Technology Research and Develop-ment Program of China(863Program)(No.2006AA04Z416)the Na-tional Science Fund for Distinguished Young Scholars(No.50725828)the Excellent Dissertation Program for Doctoral Degree of Southeast University(No.0705)
文摘Multi-source information fusion (MSIF) is imported into structural damage diagnosis methods to improve the validity of damage detection. After the introduction of the basic theory, the function model, classifications and mathematical methods of MSIF, a structural damage detection method based on MSIF is presented, which is to fuse two or more damage character vectors from different structural damage diagnosis methods on the character-level. In an experiment of concrete plates, modal information is measured and analyzed. The structural damage detection method based on MSIF is taken to localize cracks of concrete plates and it is proved to be effective. Results of damage detection by the method based on MSIF are compared with those from the modal strain energy method and the flexibility method. Damage, which can hardly be detected by using the single damage identification method, can be diagnosed by the damage detection method based on the character-level MSIF technique. Meanwhile multi-location damage can be identified by the method based on MSIF. This method is sensitive to structural damage and different mathematical methods for MSIF have different preconditions and applicabilities for diversified structures. How to choose mathematical methods for MSIF should be discussed in detail in health monitoring systems of actual structures.
基金financially supported by the 973 Project (Grant No. 2011CB013704)by the National Natural Science Foundation of China (Grant Nos. 51379005, 51009093)
文摘Based on dynamic response signals a damage detection algorithm is developed for marine risers. Damage detection methods based on numerous modal properties have encountered issues in the researches in offshore oil community. For example, significant increase in structure mass due to marine plant/animal growth and changes in modal properties by equipment noise are not the result of damage for riser structures. In an attempt to eliminate the need to determine modal parameters, a data-based method is developed. The implementation of the method requires that vibration data are first standardized to remove the influence of different loading conditions and the autoregressive moving average(ARMA) model is used to fit vibration response signals. In addition, a damage feature factor is introduced based on the autoregressive(AR) parameters. After that, the Euclidean distance between ARMA models is subtracted as a damage indicator for damage detection and localization and a top tensioned riser simulation model with different damage scenarios is analyzed using the proposed method with dynamic acceleration responses of a marine riser as sensor data. Finally, the influence of measured noise is analyzed. According to the damage localization results, the proposed method provides accurate damage locations of risers and is robust to overcome noise effect.
基金supported in part by the Key Research Projects of Higher Education Institutions in Henan Province(Grant No.24A560021)in part by the Henan Postdoctoral Foundation(Grant No.202102015).
文摘Segmentally assembled bridges are increasinglyfinding engineering applications in recent years due to their unique advantages,especially as urban viaducts.Vehicle loads are one of the most important variable loads acting on bridge structures.Accordingly,the influence of overloaded vehicles on existing assembled bridge structures is an urgent concern at present.This paper establishes thefinite element model of the segmentally assembled bridge based on ABAQUS software and analyzes the influence of vehicle overload on an assembled girder bridge struc-ture.First,afinite element model corresponding to the target bridge is established based on ABAQUS software,and the load is controlled to simulate vehicle movement in each area of the traveling zone at different times.Sec-ond,the key cross-sections of segmental girder bridges are monitored in real time based on the force character-istics of continuous girder bridges,and they are compared with the simulation results.Finally,a material damage ontology model is introduced,and the structural damage caused by different overloading rates is compared and analyzed.Results show that thefinite element modeling method is accurate by comparing with on-site measured data,and it is suitable for the numerical simulation of segmental girder bridges;Dynamic sensors installed at 1/4L,1/2L,and 3/4L of the segmental girder main beams could be used to identify the dynamic response of segmental girder bridges;The bottom plate of the segmental girder bridge is mostly damaged at the position where the length of the precast beam section changes and the midspan position.With the increase in load,damage in the direction of the bridge develops faster than that in the direction of the transverse bridge.Thefindings of this study can guide maintenance departments in the management and maintenance of bridges and vehicles.
文摘In this paper the method of damage measurement of metal structure at the creep is proposed.In contrast to other methods,it allows the measurement of this damage to be carried out in the process of creep test without unloading and cooling of specimens.Experimental damage curves during creep are obtained as a result of test data processing by the suggested method.The analysis of these curves leads to a conclusion that the material damage at repture is monotonically decreasing function of the applied stress.This conclusion is an experimental verification of the theoretical result,obtained earlier.
基金The National Natural Science Foundation of China(No.51378104)。
文摘To improve the accuracy and anti-noise ability of the structural damage identification method,a bridge damage identification method is proposed based on a deep belief network(DBN).The output vector is used to establish the nonlinear mapping relationship between the mode shape and structural damage.The hidden layer of the DBN is trained through a layer-by-layer pre-training.Finally,the backpropagation algorithm is used to fine-tune the entire network.The method is validated using a numerical model of a steel truss bridge.The results show that under the influence of noise and modeling uncertainty,the damage identification method based on the DBN can identify the accurate damage location and degree identification compared with the traditional damage identification method based on an artificial neural network.