Dynamic load on anchoring structures(AS)within deep roadways can result in cumulative damage and failure.This study develops an experimental device designed to test AS under triaxial loads.The device enables the inves...Dynamic load on anchoring structures(AS)within deep roadways can result in cumulative damage and failure.This study develops an experimental device designed to test AS under triaxial loads.The device enables the investigation of the mechanical response,failure mode,instability assessment criteria,and anchorage effect of AS subjected to combined cyclic dynamic-static triaxial stress paths.The results show that the peak bearing strength is positively correlated with the anchoring matrix strength,anchorage length,and edgewise compressive strength.The bearing capacity decreases significantly when the anchorage direction is severely inclined.The free face failure modes are typically transverse cracking,concave fracturing,V-shaped slipping and detachment,and spallation detachment.Besides,when the anchoring matrix strength and the anchorage length decrease while the edgewise compressive strength,loading rate,and anchorage inclination angle increase,the failure intensity rises.Instability is determined by a negative tangent modulus of the displacement-strength curve or the continued deformation increase against the general downward trend.Under cyclic loads,the driving force that breaks the rock mass along the normal vector and the rigidity of the AS are the two factors that determine roadway stability.Finally,a control measure for surrounding rock stability is proposed to reduce the internal driving force via a pressure relief method and improve the rigidity of the AS by full-length anchorage and grouting modification.展开更多
Based on a typical prototype of a soil slope in engineering practice, a numerical model of a three-stage soil slope supported by the anchor frame structure was established by means of FLAC3D code. The dynamic response...Based on a typical prototype of a soil slope in engineering practice, a numerical model of a three-stage soil slope supported by the anchor frame structure was established by means of FLAC3D code. The dynamic responses of three-stage soil slope and frame structure were studied by performing a series of bidirectional Wenchuan motions in terms of the failure mode of three-stage structure, the acceleration of soil slope, the displacement of frame structure, and the anchor stress of frame structure. The response accelerations in both horizontal and vertical directions are the most largely amplified at the slope top of each stage subjected to different shaking cases. The platforms among the stages reduce the amplification effect of response acceleration. The residual displacement of frame structure increases significantly as the intensity of shaking case increases. The frame structure at each stage presents a combined displacement mode consisting of a translation and a rotation around the vertex. The anchor stress of frame structure is mainly increased by the first intense pulse of Wenchuan seismic wave, and it is sensitive to the intensity of shaking case. The anchor stress of frame structure at the first stage is the most considerably enlarged by earthquake loading.展开更多
Full-length grouted bolts play a crucial role in geotechnical engineering thanks to their excellent stability.However,few studies have been concerned with the degrading performance of grouted rock bolts caused by exte...Full-length grouted bolts play a crucial role in geotechnical engineering thanks to their excellent stability.However,few studies have been concerned with the degrading performance of grouted rock bolts caused by extensive and continuous heat conduction from surrounding rocks in high-geothermal tunnels buried more than 100 m(temperature from 28C to 100C).To investigate the damage mechanism,we examined the time-varying behaviors of grouted rock bolts in both constant and variable temperature curing environments and their damage due to the coupling effects of high temperature and humidity through mechanical and micro-feature tests,including uniaxial compression test,pull-out test,computed tomography(CT)scans,X-ray diffraction(XRD)test,thermogravimetric analysis(TGA),etc.,and further analyzed the relationship between grout properties and anchorage capability.In order to facilitate a rapid assessment and control of the anchorage performance of anchors in different conditions,results of the interface bond degradation tests were correlated to environment parameters based on the damage model of interfacial bond stress proposed.Accordingly,a thermal hazard classification criterion for anchorage design in high-geothermal tunnels was suggested.Based on the reported results,although high temperature accelerated the early-stage hydration reaction of grouting materials,it affected the distribution and quantity of hydration products by inhibiting hydration degree,thus causing mechanical damage to the anchorage system.There was a significant positive correlation between the strength of the grouting material and the anchoring force.Influenced by the changes in grout properties,three failure patterns of rock bolts typically existed.Applying a hot-wet curing regime results in less reduction in anchorage force compared to the hot-dry curing conditions.The findings of this study would contribute to the design and investigations of grouted rock bolts in high-geothermal tunnels.展开更多
The organic carbon source coating LiFe_(x)Mn_(1-x)PO_(4)suffers from the problem of non-uniform carbon cladding.Too thick carbon cladding layer instead hinders the de-embedding of lithium ions.In this paper,we choose ...The organic carbon source coating LiFe_(x)Mn_(1-x)PO_(4)suffers from the problem of non-uniform carbon cladding.Too thick carbon cladding layer instead hinders the de-embedding of lithium ions.In this paper,we choose cornstalk as the carbon source,then LiFe_(0.5)Mn_(0.5)PO_(4)@cornstalk-C(LFMP@C-C)with 3D anchoring structure is prepared by the solvothermal method.The results show that the LFMP with cornstalk as the carbon source has better performance compared to the sucrose-coated LFMP material(LFMP@C).The discharge capacity of LFMP@C-C is 116 mAh/g for the first cycle at 1 C and the capacity retention rate is 94.0%after 500 cycles,and the discharge capacity of LFMP@C-C is more than 17.17%higher than that of LFMP@C.展开更多
基金This paper is financially supported by the National Natural Science Foundation of China(Grant Nos.52074263 and 52034007)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(Grant No.KYCX21_2332).
文摘Dynamic load on anchoring structures(AS)within deep roadways can result in cumulative damage and failure.This study develops an experimental device designed to test AS under triaxial loads.The device enables the investigation of the mechanical response,failure mode,instability assessment criteria,and anchorage effect of AS subjected to combined cyclic dynamic-static triaxial stress paths.The results show that the peak bearing strength is positively correlated with the anchoring matrix strength,anchorage length,and edgewise compressive strength.The bearing capacity decreases significantly when the anchorage direction is severely inclined.The free face failure modes are typically transverse cracking,concave fracturing,V-shaped slipping and detachment,and spallation detachment.Besides,when the anchoring matrix strength and the anchorage length decrease while the edgewise compressive strength,loading rate,and anchorage inclination angle increase,the failure intensity rises.Instability is determined by a negative tangent modulus of the displacement-strength curve or the continued deformation increase against the general downward trend.Under cyclic loads,the driving force that breaks the rock mass along the normal vector and the rigidity of the AS are the two factors that determine roadway stability.Finally,a control measure for surrounding rock stability is proposed to reduce the internal driving force via a pressure relief method and improve the rigidity of the AS by full-length anchorage and grouting modification.
基金Projects(51878667,51678571)supported by the National Natural Science Foundation of ChinaProject(2018zzts657)supported by the Central South University Postgraduates’Innovation,ChinaProject(2018JJ2517)supported by the Hunan Provincial Natural Science Foundation of China。
文摘Based on a typical prototype of a soil slope in engineering practice, a numerical model of a three-stage soil slope supported by the anchor frame structure was established by means of FLAC3D code. The dynamic responses of three-stage soil slope and frame structure were studied by performing a series of bidirectional Wenchuan motions in terms of the failure mode of three-stage structure, the acceleration of soil slope, the displacement of frame structure, and the anchor stress of frame structure. The response accelerations in both horizontal and vertical directions are the most largely amplified at the slope top of each stage subjected to different shaking cases. The platforms among the stages reduce the amplification effect of response acceleration. The residual displacement of frame structure increases significantly as the intensity of shaking case increases. The frame structure at each stage presents a combined displacement mode consisting of a translation and a rotation around the vertex. The anchor stress of frame structure is mainly increased by the first intense pulse of Wenchuan seismic wave, and it is sensitive to the intensity of shaking case. The anchor stress of frame structure at the first stage is the most considerably enlarged by earthquake loading.
基金support from the National Natural Science Foundation of China(Grant No.52208387)Open Fund of Key Laboratory of Geohazard Prevention of Hilly Mountains,Ministry of Land and Resources,China(Fujian Key Laboratory of Geohazard Prevention)(Grant No.FJKLGH2022K001).
文摘Full-length grouted bolts play a crucial role in geotechnical engineering thanks to their excellent stability.However,few studies have been concerned with the degrading performance of grouted rock bolts caused by extensive and continuous heat conduction from surrounding rocks in high-geothermal tunnels buried more than 100 m(temperature from 28C to 100C).To investigate the damage mechanism,we examined the time-varying behaviors of grouted rock bolts in both constant and variable temperature curing environments and their damage due to the coupling effects of high temperature and humidity through mechanical and micro-feature tests,including uniaxial compression test,pull-out test,computed tomography(CT)scans,X-ray diffraction(XRD)test,thermogravimetric analysis(TGA),etc.,and further analyzed the relationship between grout properties and anchorage capability.In order to facilitate a rapid assessment and control of the anchorage performance of anchors in different conditions,results of the interface bond degradation tests were correlated to environment parameters based on the damage model of interfacial bond stress proposed.Accordingly,a thermal hazard classification criterion for anchorage design in high-geothermal tunnels was suggested.Based on the reported results,although high temperature accelerated the early-stage hydration reaction of grouting materials,it affected the distribution and quantity of hydration products by inhibiting hydration degree,thus causing mechanical damage to the anchorage system.There was a significant positive correlation between the strength of the grouting material and the anchoring force.Influenced by the changes in grout properties,three failure patterns of rock bolts typically existed.Applying a hot-wet curing regime results in less reduction in anchorage force compared to the hot-dry curing conditions.The findings of this study would contribute to the design and investigations of grouted rock bolts in high-geothermal tunnels.
基金supported by CITIC Dameng Mining Industries Limited-Guangxi University Joint Research Institute of manganese resources utilization and advanced materials technology,Guangxi University-CITIC Dameng Mining Industries Limited Joint base of postgraduate cultivation,National Natural Science Foundation of China(No.11364003)Guangxi Innovation Driven Development Project(Nos.AA17204100,AA18118052)the Natural Science Foundation of Guangxi Province(No.2018GXNSFAA138186)。
文摘The organic carbon source coating LiFe_(x)Mn_(1-x)PO_(4)suffers from the problem of non-uniform carbon cladding.Too thick carbon cladding layer instead hinders the de-embedding of lithium ions.In this paper,we choose cornstalk as the carbon source,then LiFe_(0.5)Mn_(0.5)PO_(4)@cornstalk-C(LFMP@C-C)with 3D anchoring structure is prepared by the solvothermal method.The results show that the LFMP with cornstalk as the carbon source has better performance compared to the sucrose-coated LFMP material(LFMP@C).The discharge capacity of LFMP@C-C is 116 mAh/g for the first cycle at 1 C and the capacity retention rate is 94.0%after 500 cycles,and the discharge capacity of LFMP@C-C is more than 17.17%higher than that of LFMP@C.