Both CT and Avizo software were used to explore the effect of particle gradation on the evolution characteristics of pore structure and seepage paths in weathered crust elution-deposited rare earth ores during leachin...Both CT and Avizo software were used to explore the effect of particle gradation on the evolution characteristics of pore structure and seepage paths in weathered crust elution-deposited rare earth ores during leaching.The results showed that the pore areas in four kinds of ore samples before leaching were mainly concentrated in 10^(4)–10^(7)μm^(2),whose pore quantities accounted for 96.89%,94.94%,90.48%,and 89.45%,respectively,while the corresponding pore volume only accounted for 30.74%,14.55%,7.58%,and 2.84%of the total pore volume.With the decrease of fractal dimension,the average pore throat length increased,but pore throat quantities,the average pore throat radius and coordination number decreased.Compared with that before leaching,the change degree of pore structure during leaching increased with the fractal dimension decreasing.For example,the reduction rate of the average coordination number of ore samples was 14.36%,21.30%,28.00%,and 32.90%,respectively.Seepage simulation results indicated that seepage paths were uniformly distributed before leaching while the streamline density and seepage velocity increased with the fractal dimension decreasing.Besides,the phenomenon of the streamline interruption gradually reduced during leaching while preferential seepage got more obvious with the decrease of the fractal dimension.展开更多
We determine the three-dimensional shear wave velocity structure of the crust and upper mantle in China using Green's functions obtained from seismic ambient noise cross-correlation. The data we use are from the Chin...We determine the three-dimensional shear wave velocity structure of the crust and upper mantle in China using Green's functions obtained from seismic ambient noise cross-correlation. The data we use are from the China National Seismic Network, global and regional networks and PASSCAL stations in the region. We first acquire cross-correlation seismograms between all possible station pairs. We then measure the Rayleigh wave group and phase dispersion curves using a frequency-time analysis method from 8 s to 60 s. After that, Rayleigh wave group and phase velocity dispersion maps on 1°by 1°spatial grids are obtained at different periods. Finally, we invert these maps for the 3-D shear wave velocity structure of the crust and upper mantle beneath China at each grid node. The inversion results show large-scale structures that correlate well with surface geology. Near the surface, velocities in major basins are anomalously slow, consistent with the thick sediments. East-west contrasts are striking in Moho depth. There is also a fast mid-to-lower crust and mantle lithosphere beneath the major basins surrounding the Tibetan plateau (TP) and Tianshan (Junggar, Tarim, Ordos, and Sichuan). These strong blocks, therefore, appear to play an important role in confining the deformation of the TP and constraining its geometry to form its current triangular shape. In northwest TP in Qiangtang, slow anomalies extend from the crust to the mantle lithosphere. Meanwhile, widespread, a prominent low-velocity zone is observed in the middle crust beneath most of the central, eastern and southeastern Tibetan plateau, consistent with a weak (and perhaps mobile) middle crust.展开更多
Based on the long period digital surface wave data recorded by 11 CDSN stations and 11 IRIS stations, the dispersion curves of the group velocities of fundamental mode Rayleigh waves along 647 paths, with the periods ...Based on the long period digital surface wave data recorded by 11 CDSN stations and 11 IRIS stations, the dispersion curves of the group velocities of fundamental mode Rayleigh waves along 647 paths, with the periods from 10 s to 92 s, were measured by multi-filter. Their distribution at 25 central periods within the region of 18~54N, 70~140E was inverted by Dimtar-Yanovskaya method. Within the period from 10 s to 15.9 s, the group velocity distribution is laterally inhomogeneous and is closely related to geotectonic units, with two low velocity zones located in the Tarim basin and the East China Sea and its north regions, respectively. From 21 s to 33 s, the framework of tectonic blocks is revealed. From 36.6 s to 40 s, the lithospheric subdivision of the Chinese mainland is obviously uncovered, with distinct boundaries among the South-North seismic belt, the Tibetan plateau, the North China, the South China and the Northeast China. Four cross-sections of group velocity distribution with period along 30N, 38N, 90E and 120E, are discussed, respectively, which display the basic features of the crust and upper mantle of the Chinese mainland and its neighboring regions. There are distinguished velocity differences among the different tectonic blocks. There are low-velocity-zones (LVZ) in the middle crust of the eastern Tibetan plateau, high velocity featured as stable platform in the Tarim basin and the Yangtze platform, shallow and thick low-velocity-zone in the upper mantle of the North China. The upper mantle LVZ in the East China Sea and the Japan Sea is related to the frictional heat from the subduction of the Philippine slab and the strong extension since the Himalayan orogenic period.展开更多
In order to investigate the interrelations of crust and upper mantle tectonics and its velocity distribution as well as seismicity in the Yanhuai basin and its surrounding area, a nearly EW trending Beijing Huailai ...In order to investigate the interrelations of crust and upper mantle tectonics and its velocity distribution as well as seismicity in the Yanhuai basin and its surrounding area, a nearly EW trending Beijing Huailai Fengzhen wide angle reflection/refraction profile, which obliquely passes through seismic zone of Zhangjiakou Bohai Sea and coincides with a deep reflection profile in the Yanhuai basin, was completed recently. The results show: The crust presents layered structures and its thickness gradually increases from 35.0 km in Shunyi to 42.0 km in the west end of the profile; the interior crustal interfaces appear approximately horizontal or slowly sloping down from east to west; In the Yanhuai basin, the crust presents the characteristics of higher velocities alternating with the lower ones and the low velocity bodies obviously exist in the lower part of upper crust. Moreover, there are two deep crustal fault zones which stretch to the Moho discontinuity, are closely related with the seismicity in the Yanhuai area.展开更多
Another comparative interpretation was conducted with respect to the data from 5 DSS profiles in the central and southern parts of Shanxi, leading to the conclusion that in Linxian, Linfen and Xingtai earthquake regio...Another comparative interpretation was conducted with respect to the data from 5 DSS profiles in the central and southern parts of Shanxi, leading to the conclusion that in Linxian, Linfen and Xingtai earthquake regions, through which the five profiles pass, there exist anomalous crust mantle structure and abyssal crustal faults extending to Moho, all being regarded as the deep indications for earthquake occurrence.展开更多
The magnetotelluric (MT) survey along the Zhada (札达)-Quanshui (泉水) Lake profile on the western margin of the Qinghai (青海)-Tibet plateau shows that the study area is divided into three tectonic provinces ...The magnetotelluric (MT) survey along the Zhada (札达)-Quanshui (泉水) Lake profile on the western margin of the Qinghai (青海)-Tibet plateau shows that the study area is divided into three tectonic provinces by the Yalung Tsangpo and Bangong (班公)-Nujiang (怒江) sutures. From south to north these are the Himalayan terrane, Gangdise terrane, and Qiangtang (羌塘) terrane. For the study area, there are widespread high-conductivity layers in the mid and lower crust, the top layers of which fluctuate intensively. The high-conductivity layer within the Gangdise terrane is deeper than those within the Qiangtang terrane and the Himalaya terrane, and the deepest high-conductivity layer is to the south of the Bangong-Nujiang suture. The top surface of the high-conductivity layer in the south of the Bangong-Nujiang suture is about 20 km lower than that in the north of it. The high-conductivity layer within the Gangdise terrane dips toward north and there are two high-conductivity layers within the crust of the southern Qiangtang terrane. In the upper crust along the profile, there are groups of lateral electrical gradient zones or distortion zones of different scales and occurrence indicating the distribution of faults and sutures along the profile. According to the electrical structure, the structural characteristics and space distribution of the Yalung Tsangpo suture, Bangong.Nujiang suture, and the major faults of Longmucuo (龙木错) and Geerzangbu are inferred.展开更多
The Himalayan-Tibetan orogen is the youngest and arguably most spectacular of all the continent-continent collisional belts on the Earth. There are not only north-south extrusions but also east-west extensions in the ...The Himalayan-Tibetan orogen is the youngest and arguably most spectacular of all the continent-continent collisional belts on the Earth. There are not only north-south extrusions but also east-west extensions in the Tibetan Plateau. All these phenomena are the results of the Indian plate subducting into the Eurasia plate about 70 Ma ago (Yin and Harrison, 2000), but the deep dynamics mechanism is still an enigma. Exploring the crust and upper mantle structure of Tibetan plateau and revealing the process and the effect of collision are crucial for solving the puzzle of the Tibet uplift and the continent-continent collision. This research is based on the data from the 360km-long Dagze-Deqen-Domar profile, which can be divided into two sections. The Dagze-Deqen section traverses the Nyainqntanglha Mountains and the Yadong-Gulu rift, the biggest rift in the Tibet. The Deqen-Domar section crosses Lhasa terrane and Qiangtang terrane. We study the transverse density structure of the crust and mantle beneath the Dagze-Deqen-Domar profile using a joint gravity-seismic inversion technique in order to obtain the Moho and the asthenospheric configuration beneath the profile and understand the deep dynamics mechanism of the Yadong-Gulu rift.展开更多
Chao Lake is a Geoheritage site on the active Tan-Lu Fault between the Yangtze craton,the North China craton,and the Dabie orogenic belt in the southeast.This segment of the fault is not well constrained at depth part...Chao Lake is a Geoheritage site on the active Tan-Lu Fault between the Yangtze craton,the North China craton,and the Dabie orogenic belt in the southeast.This segment of the fault is not well constrained at depth partly due to the overprinting of the fault zone by intrusive materials and its relatively low seismic activity and sparse seismic station coverage.This study took advantage of a dense seismic array deployed around Chao Lake to delineate the P-wave velocity variations in the crust and uppermost mantle using teleseismic earthquake arrival time tomography.The station-pair double-difference with waveform crosscorrelation technique was employed.We used a multiscale resolution 3-D initial model derived from the combination of highresolution 3-D v S models within the region of interest to account for the lateral heterogeneity in the upper crust.The results revealed that the velocity of the upper crust is segmented with structures trending in the direction of the strike of the fault.Sedimentary basins are delineated on both sides of the fault with slow velocities,while the fault zone is characterized by high velocity in the crust and uppermost mantle.The high-velocity structure in the fault zone shows characteristics of magma intrusion that may be connected to the Mesozoic magmatism in and around the Middle and Lower Yangtze River Metallogenic Belt(MLYMB),implying that the Tan-Lu fault might have formed a channel for magma intrusion.Magmatic material in Chao Lake is likely connected to the partial melting,assimilation,storage,and homogenization of the uppermost mantle and the lower crustal rocks.The intrusions,however,seem to have suffered severe regional extension along the Tan-Lu fault driven by the eastward Paleo-Pacific plate subduction,thereby losing its deep trail due to extensional erosion.展开更多
Using recent data of geoscience transaction in Northeast China, the author analyses and studies the crust-upper mantle structure feature of the North Tanlu fault zone. The result shows the crust-mantle structure are o...Using recent data of geoscience transaction in Northeast China, the author analyses and studies the crust-upper mantle structure feature of the North Tanlu fault zone. The result shows the crust-mantle structure are obvious difference at both sides of the North Tanlu fault zone. The fault activity and segmentation are closely related with abruptly change zone of the crust-upper mantle structure. There is a clear mirror image relationship between the big geomorphic shape and asthenosphere undulate, the former restricts tectonic stability and tectonic style of dif- ferent crustal units. The significantly strengthening seismicity of north set and south set in the North Tanlu fault zone just correspond to the low-velocity and high conductivity layer of crust-upper mantle. In the North Tanlu fault zone, the main controlling structure of the mid-strong seismic generally consists of the active fault sectors, whose crust-mantle structure is more complicated in rigidity massif.展开更多
The Jurassic oceanic crust is the oldest existing oceanic crust on earth,and although distributed sparsely,carries essential information about the earth's evolution.The area around the Pigafetta Basin in the west ...The Jurassic oceanic crust is the oldest existing oceanic crust on earth,and although distributed sparsely,carries essential information about the earth's evolution.The area around the Pigafetta Basin in the west Pacific Ocean(also known as the Jurassic Quiet Zone,JQZ)is one of a few areas where the Jurassic oceanic crust is present.This study takes full advantage of high-resolution multichannel seismic reflection profiles in combination with bathymetry,magnetic,and gravity data from the JQZ to examine the structure,deformation,and morphology of the Jurassic oceanic crust.Our results show the following insights:1)The Moho lies at 2–3 s in two-way travel time beneath the seafloor with the segmented feature.The gaps between the Moho segments well correspond to the seamounts on the seafloor,suggesting the upward migration of magma from the mantle has interrupted the pre-existing Moho.2)The oceanic crust is predominantly deformed by crustal-scale thrust faults,normal faults cutting through the top of basement,and vertical seismic disturbance zones in association with migration of thermal fluids.The thrust faults are locally found and interpreted as the results of tectonic inversion.3)Seafloor morphology in the JQZ is characterized by fault scarps,fold scarps,seamounts,and small hills,indicating the occurrence of active faults.4)The oceanic crust in the JQZ and East Pacific Rise has many structural and geometrical variations,such as the thickness of sediments,seafloor topography,basement morphology,fault size and type.展开更多
Two seismic refraction profiles which are perpendicular to each other, running through Xingtai earthquake region,reveal the anomalous variations of crust-mantle velocity structure and deep tectonics. Pg wave attenuate...Two seismic refraction profiles which are perpendicular to each other, running through Xingtai earthquake region,reveal the anomalous variations of crust-mantle velocity structure and deep tectonics. Pg wave attenuatesrapidly with distance in the earthquake region. A group of strong reflections from a depth of 21. 0 km can be identified along the section from Longyao to the piedmont of Taihang Mountain, but P. waves characterized generally by strong amplitude are not obvious. Under the earthquake region and its western neighboring region, thecrustal velocity structure features high and low velocities changed alternatively. From North China plain toShanxi plateau, the velocity at the top of the upper mantle decreases progressively, while crustal thickness increases by 11 km. Moho uplifts locally in the earthquake region. The crustal fault stretching deeply to Moho andthe discontinuous sections of Moho in the earthquake region are supposed to be the channels and zones for magmatic intrusion. The uplifting of upper mantle and magmatic intrusion are responsible for the formation ofanomalous crust-mantle structures and extending basins, and for the occurrence of Xingtai earthquake as well.展开更多
A method of three dimensional (3-D) model parameterization is presented that makes forward and inverse problems become easy. The velocity and interface structure of crust and upper mantle are described by a set of hig...A method of three dimensional (3-D) model parameterization is presented that makes forward and inverse problems become easy. The velocity and interface structure of crust and upper mantle are described by a set of highly smoothed functions. Shooting ray tracing method is chosen to calculate the ray paths for both forward and inverse problems. The partial derivatives of traveltime with respect to parameters of the model grids are calculated analytically while rays are being traced. Because velocity and interface functions have second-order continuous partial derivatives, the geometrical shadow zones at the surface caused by scattering and focusing of ray paths can be prevented. After ray tracing, an equation consisting of matrix and vectors for inverse problem is obtained. We use singular value decomposition method with damped factor to solve the equation. A synthetic data set which consists of several in-line profiles is used to test the methods. The results show that the methods are robust. Compared with the two dimensional method, the 3-D inversion method can give the right position of interfaces and the velocity structure when the crustal model is complicated.展开更多
Livestock grazing is the most extensive land use in global drylands and one of the most extensive stressors of biological soil crusts(biocrusts).Despite widespread concern about the importance of biocrusts for global ...Livestock grazing is the most extensive land use in global drylands and one of the most extensive stressors of biological soil crusts(biocrusts).Despite widespread concern about the importance of biocrusts for global carbon(C)cycling,little is known about whether and how long-term grazing alters soil organic carbon(SOC)stability and stock in the biocrust layer.To assess the responses of SOC stability and stock in the biocrust layer to grazing,from June to September 2020,we carried out a large scale field survey in the restored grasslands under long-term grazing with different grazing intensities(represented by the number of goat dung per square meter)and in the grasslands strictly excluded from grazing in four regions(Dingbian County,Shenmu City,Guyuan City and Ansai District)along precipitation gradient in the hilly Loess Plateau,China.In total,51 representative grassland sites were identified as the study sampling sites in this study,including 11 sites in Guyuan City,16 sites in Dingbian County,15 sites in Shenmu City and 9 sites in Ansai District.Combined with extensive laboratory analysis and statistical analysis,at each sampling site,we obtained data on biocrust attributes(cover,community structure,biomass and thickness),soil physical-chemical properties(soil porosity and soil carbon-to-nitrogen ratio(C/N ratio)),and environmental factors(mean annual precipitation,mean annual temperature,altitude,plant cover,litter cover,soil particle-size distribution(the ratio of soil clay and silt content to sand content)),SOC stability index(SI)and SOC stock(SOCS)in the biocrust layer,to conduct this study.Our results revealed that grazing did not change total biocrust cover but markedly altered biocrust community structure by reducing plant cover,with a considerable increase in the relative cover of cyanobacteria(23.1%)while a decrease in the relative cover of mosses(42.2%).Soil porosity and soil C/N ratio in the biocrust layer under grazing decreased significantly by 4.1%–7.2%and 7.2%–13.3%,respectively,compared with those under grazing exclusion.The shifted biocrust community structure ultimately resulted in an average reduction of 15.5%in SOCS in the biocrust layer under grazing.However,compared with higher grazing(intensity of more than 10.00 goat dung/m2),light grazing(intensity of 0.00–10.00 goat dung/m2 or approximately 1.20–2.60 goat/(hm2•a))had no adverse effect on SOCS.SOC stability in the biocrust layer remained unchanged under long-term grazing due to the offset between the positive effect of the decreased soil porosity and the negative effect of the decreased soil C/N ratio on the SOC resistance to decomposition.Mean annual precipitation and soil particle-size distribution also regulated SOC stability indirectly by influencing soil porosity through plant cover and biocrust community structure.These findings suggest that proper grazing might not increase the CO_(2) release potential or adversely affect SOCS in the biocrust layer.This research provides some guidance for proper grazing management in the sustainable utilization of grassland resources and C sequestration in biocrusts in the hilly regions of drylands.展开更多
Based on the long period surface wave data recorded by the China Digital Seismograph Network (CDSN), the Q R of fundamental mode Rayleigh wave with periods from 10 s to 146 s is determined for the eastern Sino ...Based on the long period surface wave data recorded by the China Digital Seismograph Network (CDSN), the Q R of fundamental mode Rayleigh wave with periods from 10 s to 146 s is determined for the eastern Sino Korean paraplatform in this paper. The Q β models of the crust and upper mantle are respectively obtained for the 4 paths, with the aid of stochastic inverse method. It shows that in the eastern Sino Korean paraplatform, the average crustal Q β is about 200, and that there exists a weak attenuation layer in the middle crust (about 10~20 km deep) which is possibly related to earthquake prone layer. A strong attenuation layer (low Q ) of 70 km thick extensively exists in the uppermost mantle, with the buried depth about 80 km. The average Q R of fundamental mode Rayleigh wave is between the value of stable tectonic region and that of active tectonic region, and much close to the latter.展开更多
The study of deep-seated structure in the Zhangbei-Shangyi earthquake area and its surroundings indicates that in comparison with the Shanxi rift system, the North China rifted basin, the Yanshanian fold belt on both ...The study of deep-seated structure in the Zhangbei-Shangyi earthquake area and its surroundings indicates that in comparison with the Shanxi rift system, the North China rifted basin, the Yanshanian fold belt on both sides, and the Zhangjiakou-Penglai tectonic belt have lower resistivity, and a distinctly different velocity interface in the crust and depth distribution of Moho discontinuity. The Yanqing- Huai’lai basin bisects the Zhangjiakou-Penglai tectonic belt into two segments, the northwestern and the southeastern segments. The latest magnetotelluric sounding and investigation indicate that the electrical structure within the Zhangbei-Shangyi earthquake area is different to a certain degree from that in its surroundings. There exists a nearly NNW-trending structure in the crust. The main shock and most aftershocks occurred above the low-resistivity zone in the crust.展开更多
The three dimensional S wave velocity structure of the crust and upper mantle of Chinese mainland and its neighboring region is obtained by genetic algorithm of surface wave tomography, with smoothness constraint, bas...The three dimensional S wave velocity structure of the crust and upper mantle of Chinese mainland and its neighboring region is obtained by genetic algorithm of surface wave tomography, with smoothness constraint, based on 25 wave group velocities for the periods from 10 s to 92 s, measured from long period Rayleigh waves recorded by 11 stations of CDSN and 12 digital seismometers surrounding China. The S wave velocity image is shown on two latitudinal sections along 30°N and 38°N, two longitudinal sections along 90°E and 120°E, and four horizontal slices at the different depths.展开更多
By analyzing the deep seismic sounding profiles across the Longmen Shan, this paper focuses on the study of the relationship between the upper crust structure of the Longmen Shan area and the Wenchuan earthquake. The ...By analyzing the deep seismic sounding profiles across the Longmen Shan, this paper focuses on the study of the relationship between the upper crust structure of the Longmen Shan area and the Wenchuan earthquake. The Longmen Shan thrust belt marks not only the topographical change, but also the lateral velocity variation between the eastern Tibetan Plateau and the Sichuan Basin. A low-velocity layer has consistently been found in the crust beneath the eastern edge of the Tibetan Plateau, and ends beneath the western Sichuan Basin. The low-velocity layer at a depth of -20 km beneath the eastern edge of the Tibetan Plateau has been considered as the deep condition for favoring energy accumulation that formed the great Wenchuan earthquake.展开更多
In our study we collected the teleseismic record of 31 broadband stations and 9 PASSCAL stations in West Yunnan, as well as extracted more than a million receiver functions. Using the waveform model and stacking techn...In our study we collected the teleseismic record of 31 broadband stations and 9 PASSCAL stations in West Yunnan, as well as extracted more than a million receiver functions. Using the waveform model and stacking techniques, we calculated the earth crust thicknesses and Vp/Vs ratios below the stations and obtained 35 valid data points. At the same time, we evenly stacked the receiver functions at the same station and superimposed the two profiles' cross sections of the main tectonic units. The results show a clear difference between the crust thicknesses of different tectonic units. Because of the magma underplatting and delimanition of the lower crust in the role of deep process, the West Yunnan's crust can be divided two kinds-mafic-ultramafic and feldspathic crusts. The research also shows that the mafic-ultramafic crust corresponds to a good background of mineralization. The delamination of the lower crust is one of the leading causes for moderate to strong earthquake prone in central Yunnan. The thinner crust and high velocity ratio as well as the multimodal structure of Ps in the Tengchong volcanic area confirms existence of a deep process of the strong magma underplating. Due to the basic crust structure and nature, it is believed that the Honghe fault is a main suture of the Gondwana and Eurasia continents.展开更多
The lower plate is the dominant agent in modern convergent margins characterized by active subduction,as negatively buoyant oceanic lithosphere sinks into the asthenosphere under its own weight.This is a strong plate-...The lower plate is the dominant agent in modern convergent margins characterized by active subduction,as negatively buoyant oceanic lithosphere sinks into the asthenosphere under its own weight.This is a strong plate-driving force because the slab-pull force is transmitted through the stiff sub-oceanic lithospheric mantle.As geological and geochemical data seem inconsistent with the existence of modernstyle ridges and arcs in the Archaean,a periodically-destabilized stagnant-lid crust system is proposed instead.Stagnant-lid intervals may correspond to periods of layered mantle convection where efficient cooling was restricted to the upper mantle,perturbing Earth's heat generation/loss balance,eventually triggering mantle overturns.Archaean basalts were derived from fertile mantle in overturn upwelling zones(OUZOs),which were larger and longer-lived than post-Archaean plumes.Early cratons/continents probably formed above OUZOs as large volumes of basalt and komatiite were delivered for protracted periods,allowing basal crustal cannibalism,garnetiferous crustal restite delamination,and coupled development of continental crust and sub-continental lithospheric mantle.Periodic mixing and rehomogenization during overturns retarded development of isotopically depleted MORB(mid-ocean ridge basalt)mantle.Only after the start of true subduction did sequestration of subducted slabs at the coremantle boundary lead to the development of the depleted MORB mantle source.During Archaean mantle overturns,pre-existing continents located above OUZOs would be strongly reworked;whereas OUZOdistal continents would drift in response to mantle currents.The leading edge of drifting Archaean continents would be convergent margins characterized by terrane accretion,imbrication,subcretion and anatexis of unsubductable oceanic lithosphere.As Earth cooled and the background oceanic lithosphere became denser and stiffer,there would be an increasing probability that oceanic crustal segments could founder in an organized way,producing a gradual evolution of pre-subduction convergent margins into modern-style active subduction systems around 2.5 Ga.Plate tectonics today is constituted of:(1)a continental drift system that started in the Early Archaean,driven by deep mantle currents pressing against the Archaean-age sub-continental lithospheric mantle keels that underlie Archaean cratons;(2)a subduction-driven system that started near the end of the Archaean.展开更多
Broad-band and long period magnetotelluric measurements made at 63 locations along -500 km long Chikmagalur-Kavali profile,that cut across the Dharwar craton (DC) and Eastern Ghat Mobile Belt (EGMB) in south India,is ...Broad-band and long period magnetotelluric measurements made at 63 locations along -500 km long Chikmagalur-Kavali profile,that cut across the Dharwar craton (DC) and Eastern Ghat Mobile Belt (EGMB) in south India,is modelled to examine the lithosphere architecture of the cratonic domain and define tectonic boundaries.The 2-D resistivity model shows moderately conductive features that intersperse a highly resistive background of crystalline rocks and spatially connect to the exposed schist belts or granitic intrusions in the DC.These features are therefore interpreted as images of fossil pathways of the volcanic emplacements associated with the greenstone belt and granite suite formation exposed in the region.A near vertical conductive feature in the upper mantle under the Chitradurga Shear Zone represents the Archean suture between the western and eastern blocks of DC.Although thick (-200 km) cratonic (highly resistive) lithosphere is preserved,significant part of the cratonic lithosphere below the western DC is modified due to plume-continental lithosphere interactions during the CretaceouseTertiary period.A west-verging moderately conductive feature imaged beneath EGMB lithosphere is interpreted as the remnant of the Proterozoic collision process between the Indian land mass and East Antarctica.Thin (-120 km) lithosphere is seen below the EGMB,which form the exterior margin of the India shield subsequent to its separation from East Antarctica through rifting and opening of the Indian Ocean in the Cretaceous.展开更多
基金the National Natural Science Foundation of China(Nos.52174258,92162109,52222405 and 52004184).
文摘Both CT and Avizo software were used to explore the effect of particle gradation on the evolution characteristics of pore structure and seepage paths in weathered crust elution-deposited rare earth ores during leaching.The results showed that the pore areas in four kinds of ore samples before leaching were mainly concentrated in 10^(4)–10^(7)μm^(2),whose pore quantities accounted for 96.89%,94.94%,90.48%,and 89.45%,respectively,while the corresponding pore volume only accounted for 30.74%,14.55%,7.58%,and 2.84%of the total pore volume.With the decrease of fractal dimension,the average pore throat length increased,but pore throat quantities,the average pore throat radius and coordination number decreased.Compared with that before leaching,the change degree of pore structure during leaching increased with the fractal dimension decreasing.For example,the reduction rate of the average coordination number of ore samples was 14.36%,21.30%,28.00%,and 32.90%,respectively.Seepage simulation results indicated that seepage paths were uniformly distributed before leaching while the streamline density and seepage velocity increased with the fractal dimension decreasing.Besides,the phenomenon of the streamline interruption gradually reduced during leaching while preferential seepage got more obvious with the decrease of the fractal dimension.
基金supported by National Science Foundation of United States (EAR-0838188) and Department of Geology, UIUCsupported by NSF-EAR award 0944022 and a sub-award from NSF-OISE 0730154
文摘We determine the three-dimensional shear wave velocity structure of the crust and upper mantle in China using Green's functions obtained from seismic ambient noise cross-correlation. The data we use are from the China National Seismic Network, global and regional networks and PASSCAL stations in the region. We first acquire cross-correlation seismograms between all possible station pairs. We then measure the Rayleigh wave group and phase dispersion curves using a frequency-time analysis method from 8 s to 60 s. After that, Rayleigh wave group and phase velocity dispersion maps on 1°by 1°spatial grids are obtained at different periods. Finally, we invert these maps for the 3-D shear wave velocity structure of the crust and upper mantle beneath China at each grid node. The inversion results show large-scale structures that correlate well with surface geology. Near the surface, velocities in major basins are anomalously slow, consistent with the thick sediments. East-west contrasts are striking in Moho depth. There is also a fast mid-to-lower crust and mantle lithosphere beneath the major basins surrounding the Tibetan plateau (TP) and Tianshan (Junggar, Tarim, Ordos, and Sichuan). These strong blocks, therefore, appear to play an important role in confining the deformation of the TP and constraining its geometry to form its current triangular shape. In northwest TP in Qiangtang, slow anomalies extend from the crust to the mantle lithosphere. Meanwhile, widespread, a prominent low-velocity zone is observed in the middle crust beneath most of the central, eastern and southeastern Tibetan plateau, consistent with a weak (and perhaps mobile) middle crust.
基金Climb Project Continental Dynamics of East Asia and Joint Seismological Science Foundation of China (9507413).
文摘Based on the long period digital surface wave data recorded by 11 CDSN stations and 11 IRIS stations, the dispersion curves of the group velocities of fundamental mode Rayleigh waves along 647 paths, with the periods from 10 s to 92 s, were measured by multi-filter. Their distribution at 25 central periods within the region of 18~54N, 70~140E was inverted by Dimtar-Yanovskaya method. Within the period from 10 s to 15.9 s, the group velocity distribution is laterally inhomogeneous and is closely related to geotectonic units, with two low velocity zones located in the Tarim basin and the East China Sea and its north regions, respectively. From 21 s to 33 s, the framework of tectonic blocks is revealed. From 36.6 s to 40 s, the lithospheric subdivision of the Chinese mainland is obviously uncovered, with distinct boundaries among the South-North seismic belt, the Tibetan plateau, the North China, the South China and the Northeast China. Four cross-sections of group velocity distribution with period along 30N, 38N, 90E and 120E, are discussed, respectively, which display the basic features of the crust and upper mantle of the Chinese mainland and its neighboring regions. There are distinguished velocity differences among the different tectonic blocks. There are low-velocity-zones (LVZ) in the middle crust of the eastern Tibetan plateau, high velocity featured as stable platform in the Tarim basin and the Yangtze platform, shallow and thick low-velocity-zone in the upper mantle of the North China. The upper mantle LVZ in the East China Sea and the Japan Sea is related to the frictional heat from the subduction of the Philippine slab and the strong extension since the Himalayan orogenic period.
文摘In order to investigate the interrelations of crust and upper mantle tectonics and its velocity distribution as well as seismicity in the Yanhuai basin and its surrounding area, a nearly EW trending Beijing Huailai Fengzhen wide angle reflection/refraction profile, which obliquely passes through seismic zone of Zhangjiakou Bohai Sea and coincides with a deep reflection profile in the Yanhuai basin, was completed recently. The results show: The crust presents layered structures and its thickness gradually increases from 35.0 km in Shunyi to 42.0 km in the west end of the profile; the interior crustal interfaces appear approximately horizontal or slowly sloping down from east to west; In the Yanhuai basin, the crust presents the characteristics of higher velocities alternating with the lower ones and the low velocity bodies obviously exist in the lower part of upper crust. Moreover, there are two deep crustal fault zones which stretch to the Moho discontinuity, are closely related with the seismicity in the Yanhuai area.
文摘Another comparative interpretation was conducted with respect to the data from 5 DSS profiles in the central and southern parts of Shanxi, leading to the conclusion that in Linxian, Linfen and Xingtai earthquake regions, through which the five profiles pass, there exist anomalous crust mantle structure and abyssal crustal faults extending to Moho, all being regarded as the deep indications for earthquake occurrence.
基金This paper is supported by the National Natural Science Foundation of China (No. 40404006)the Focused Subject Program of Beijing (No. XK104910598).
文摘The magnetotelluric (MT) survey along the Zhada (札达)-Quanshui (泉水) Lake profile on the western margin of the Qinghai (青海)-Tibet plateau shows that the study area is divided into three tectonic provinces by the Yalung Tsangpo and Bangong (班公)-Nujiang (怒江) sutures. From south to north these are the Himalayan terrane, Gangdise terrane, and Qiangtang (羌塘) terrane. For the study area, there are widespread high-conductivity layers in the mid and lower crust, the top layers of which fluctuate intensively. The high-conductivity layer within the Gangdise terrane is deeper than those within the Qiangtang terrane and the Himalaya terrane, and the deepest high-conductivity layer is to the south of the Bangong-Nujiang suture. The top surface of the high-conductivity layer in the south of the Bangong-Nujiang suture is about 20 km lower than that in the north of it. The high-conductivity layer within the Gangdise terrane dips toward north and there are two high-conductivity layers within the crust of the southern Qiangtang terrane. In the upper crust along the profile, there are groups of lateral electrical gradient zones or distortion zones of different scales and occurrence indicating the distribution of faults and sutures along the profile. According to the electrical structure, the structural characteristics and space distribution of the Yalung Tsangpo suture, Bangong.Nujiang suture, and the major faults of Longmucuo (龙木错) and Geerzangbu are inferred.
基金supported by National Natural Science Foundation of China (Nos.40404011 and 40774051)National Probing Project (SinoProbe-02)the Basic outlay of scientific research work from the Ministry of Science and Technology of the People’s Republic of China in 2007, 2008, 2009
文摘The Himalayan-Tibetan orogen is the youngest and arguably most spectacular of all the continent-continent collisional belts on the Earth. There are not only north-south extrusions but also east-west extensions in the Tibetan Plateau. All these phenomena are the results of the Indian plate subducting into the Eurasia plate about 70 Ma ago (Yin and Harrison, 2000), but the deep dynamics mechanism is still an enigma. Exploring the crust and upper mantle structure of Tibetan plateau and revealing the process and the effect of collision are crucial for solving the puzzle of the Tibet uplift and the continent-continent collision. This research is based on the data from the 360km-long Dagze-Deqen-Domar profile, which can be divided into two sections. The Dagze-Deqen section traverses the Nyainqntanglha Mountains and the Yadong-Gulu rift, the biggest rift in the Tibet. The Deqen-Domar section crosses Lhasa terrane and Qiangtang terrane. We study the transverse density structure of the crust and mantle beneath the Dagze-Deqen-Domar profile using a joint gravity-seismic inversion technique in order to obtain the Moho and the asthenospheric configuration beneath the profile and understand the deep dynamics mechanism of the Yadong-Gulu rift.
基金funded by China’s National Natural Science Foundation (Nos. 42125401 and 42004031)the Hefei Key Technology Research and Development Project (No. J2020J06)
文摘Chao Lake is a Geoheritage site on the active Tan-Lu Fault between the Yangtze craton,the North China craton,and the Dabie orogenic belt in the southeast.This segment of the fault is not well constrained at depth partly due to the overprinting of the fault zone by intrusive materials and its relatively low seismic activity and sparse seismic station coverage.This study took advantage of a dense seismic array deployed around Chao Lake to delineate the P-wave velocity variations in the crust and uppermost mantle using teleseismic earthquake arrival time tomography.The station-pair double-difference with waveform crosscorrelation technique was employed.We used a multiscale resolution 3-D initial model derived from the combination of highresolution 3-D v S models within the region of interest to account for the lateral heterogeneity in the upper crust.The results revealed that the velocity of the upper crust is segmented with structures trending in the direction of the strike of the fault.Sedimentary basins are delineated on both sides of the fault with slow velocities,while the fault zone is characterized by high velocity in the crust and uppermost mantle.The high-velocity structure in the fault zone shows characteristics of magma intrusion that may be connected to the Mesozoic magmatism in and around the Middle and Lower Yangtze River Metallogenic Belt(MLYMB),implying that the Tan-Lu fault might have formed a channel for magma intrusion.Magmatic material in Chao Lake is likely connected to the partial melting,assimilation,storage,and homogenization of the uppermost mantle and the lower crustal rocks.The intrusions,however,seem to have suffered severe regional extension along the Tan-Lu fault driven by the eastward Paleo-Pacific plate subduction,thereby losing its deep trail due to extensional erosion.
文摘Using recent data of geoscience transaction in Northeast China, the author analyses and studies the crust-upper mantle structure feature of the North Tanlu fault zone. The result shows the crust-mantle structure are obvious difference at both sides of the North Tanlu fault zone. The fault activity and segmentation are closely related with abruptly change zone of the crust-upper mantle structure. There is a clear mirror image relationship between the big geomorphic shape and asthenosphere undulate, the former restricts tectonic stability and tectonic style of dif- ferent crustal units. The significantly strengthening seismicity of north set and south set in the North Tanlu fault zone just correspond to the low-velocity and high conductivity layer of crust-upper mantle. In the North Tanlu fault zone, the main controlling structure of the mid-strong seismic generally consists of the active fault sectors, whose crust-mantle structure is more complicated in rigidity massif.
基金the Guangdong Basic and Applied Basic Research Foundation(No.2021B1515020098)the Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD 0205)+6 种基金the National Natural Science Foundation of China(Nos.41776058,41890813,42006056,42276222)the Chinese Academy of Sciences Project(Nos.133244KYSB20180029,131551KYSB20200021,Y4SL021001,QYZDYSSW-DQC005,ISEE2021PY03,E1SL3C02)the Development Fund of South China Sea Institute of Oceanology of the Chinese Academy of Sciences(No.SCSIO202207)Guangdong Provincial Research and Development Program in Key Areas(No.2020B1111520001)the Hainan Provincial Natural Science Foundation of China(No.421QN381)the Science and Technology Program of Guangzhou(No.202201010221)the China Postdoctoral Science Foundation(No.2022M711480)。
文摘The Jurassic oceanic crust is the oldest existing oceanic crust on earth,and although distributed sparsely,carries essential information about the earth's evolution.The area around the Pigafetta Basin in the west Pacific Ocean(also known as the Jurassic Quiet Zone,JQZ)is one of a few areas where the Jurassic oceanic crust is present.This study takes full advantage of high-resolution multichannel seismic reflection profiles in combination with bathymetry,magnetic,and gravity data from the JQZ to examine the structure,deformation,and morphology of the Jurassic oceanic crust.Our results show the following insights:1)The Moho lies at 2–3 s in two-way travel time beneath the seafloor with the segmented feature.The gaps between the Moho segments well correspond to the seamounts on the seafloor,suggesting the upward migration of magma from the mantle has interrupted the pre-existing Moho.2)The oceanic crust is predominantly deformed by crustal-scale thrust faults,normal faults cutting through the top of basement,and vertical seismic disturbance zones in association with migration of thermal fluids.The thrust faults are locally found and interpreted as the results of tectonic inversion.3)Seafloor morphology in the JQZ is characterized by fault scarps,fold scarps,seamounts,and small hills,indicating the occurrence of active faults.4)The oceanic crust in the JQZ and East Pacific Rise has many structural and geometrical variations,such as the thickness of sediments,seafloor topography,basement morphology,fault size and type.
文摘Two seismic refraction profiles which are perpendicular to each other, running through Xingtai earthquake region,reveal the anomalous variations of crust-mantle velocity structure and deep tectonics. Pg wave attenuatesrapidly with distance in the earthquake region. A group of strong reflections from a depth of 21. 0 km can be identified along the section from Longyao to the piedmont of Taihang Mountain, but P. waves characterized generally by strong amplitude are not obvious. Under the earthquake region and its western neighboring region, thecrustal velocity structure features high and low velocities changed alternatively. From North China plain toShanxi plateau, the velocity at the top of the upper mantle decreases progressively, while crustal thickness increases by 11 km. Moho uplifts locally in the earthquake region. The crustal fault stretching deeply to Moho andthe discontinuous sections of Moho in the earthquake region are supposed to be the channels and zones for magmatic intrusion. The uplifting of upper mantle and magmatic intrusion are responsible for the formation ofanomalous crust-mantle structures and extending basins, and for the occurrence of Xingtai earthquake as well.
文摘A method of three dimensional (3-D) model parameterization is presented that makes forward and inverse problems become easy. The velocity and interface structure of crust and upper mantle are described by a set of highly smoothed functions. Shooting ray tracing method is chosen to calculate the ray paths for both forward and inverse problems. The partial derivatives of traveltime with respect to parameters of the model grids are calculated analytically while rays are being traced. Because velocity and interface functions have second-order continuous partial derivatives, the geometrical shadow zones at the surface caused by scattering and focusing of ray paths can be prevented. After ray tracing, an equation consisting of matrix and vectors for inverse problem is obtained. We use singular value decomposition method with damped factor to solve the equation. A synthetic data set which consists of several in-line profiles is used to test the methods. The results show that the methods are robust. Compared with the two dimensional method, the 3-D inversion method can give the right position of interfaces and the velocity structure when the crustal model is complicated.
基金supported by the National Natural Science Foundation of China (41830758)the "Light of the West" Cross Team-Key Laboratory Cooperative Research Project of the Chinese Academy of Sciences
文摘Livestock grazing is the most extensive land use in global drylands and one of the most extensive stressors of biological soil crusts(biocrusts).Despite widespread concern about the importance of biocrusts for global carbon(C)cycling,little is known about whether and how long-term grazing alters soil organic carbon(SOC)stability and stock in the biocrust layer.To assess the responses of SOC stability and stock in the biocrust layer to grazing,from June to September 2020,we carried out a large scale field survey in the restored grasslands under long-term grazing with different grazing intensities(represented by the number of goat dung per square meter)and in the grasslands strictly excluded from grazing in four regions(Dingbian County,Shenmu City,Guyuan City and Ansai District)along precipitation gradient in the hilly Loess Plateau,China.In total,51 representative grassland sites were identified as the study sampling sites in this study,including 11 sites in Guyuan City,16 sites in Dingbian County,15 sites in Shenmu City and 9 sites in Ansai District.Combined with extensive laboratory analysis and statistical analysis,at each sampling site,we obtained data on biocrust attributes(cover,community structure,biomass and thickness),soil physical-chemical properties(soil porosity and soil carbon-to-nitrogen ratio(C/N ratio)),and environmental factors(mean annual precipitation,mean annual temperature,altitude,plant cover,litter cover,soil particle-size distribution(the ratio of soil clay and silt content to sand content)),SOC stability index(SI)and SOC stock(SOCS)in the biocrust layer,to conduct this study.Our results revealed that grazing did not change total biocrust cover but markedly altered biocrust community structure by reducing plant cover,with a considerable increase in the relative cover of cyanobacteria(23.1%)while a decrease in the relative cover of mosses(42.2%).Soil porosity and soil C/N ratio in the biocrust layer under grazing decreased significantly by 4.1%–7.2%and 7.2%–13.3%,respectively,compared with those under grazing exclusion.The shifted biocrust community structure ultimately resulted in an average reduction of 15.5%in SOCS in the biocrust layer under grazing.However,compared with higher grazing(intensity of more than 10.00 goat dung/m2),light grazing(intensity of 0.00–10.00 goat dung/m2 or approximately 1.20–2.60 goat/(hm2•a))had no adverse effect on SOCS.SOC stability in the biocrust layer remained unchanged under long-term grazing due to the offset between the positive effect of the decreased soil porosity and the negative effect of the decreased soil C/N ratio on the SOC resistance to decomposition.Mean annual precipitation and soil particle-size distribution also regulated SOC stability indirectly by influencing soil porosity through plant cover and biocrust community structure.These findings suggest that proper grazing might not increase the CO_(2) release potential or adversely affect SOCS in the biocrust layer.This research provides some guidance for proper grazing management in the sustainable utilization of grassland resources and C sequestration in biocrusts in the hilly regions of drylands.
文摘Based on the long period surface wave data recorded by the China Digital Seismograph Network (CDSN), the Q R of fundamental mode Rayleigh wave with periods from 10 s to 146 s is determined for the eastern Sino Korean paraplatform in this paper. The Q β models of the crust and upper mantle are respectively obtained for the 4 paths, with the aid of stochastic inverse method. It shows that in the eastern Sino Korean paraplatform, the average crustal Q β is about 200, and that there exists a weak attenuation layer in the middle crust (about 10~20 km deep) which is possibly related to earthquake prone layer. A strong attenuation layer (low Q ) of 70 km thick extensively exists in the uppermost mantle, with the buried depth about 80 km. The average Q R of fundamental mode Rayleigh wave is between the value of stable tectonic region and that of active tectonic region, and much close to the latter.
基金The research is supported by the China Seismological Bureau as a key project during the Eighth Five-Year Plan of NEC (859070203) and the National Natural Science Foundation grant No.49374205. Contribution No.98B0017, Institute of Geology, CSB.
文摘The study of deep-seated structure in the Zhangbei-Shangyi earthquake area and its surroundings indicates that in comparison with the Shanxi rift system, the North China rifted basin, the Yanshanian fold belt on both sides, and the Zhangjiakou-Penglai tectonic belt have lower resistivity, and a distinctly different velocity interface in the crust and depth distribution of Moho discontinuity. The Yanqing- Huai’lai basin bisects the Zhangjiakou-Penglai tectonic belt into two segments, the northwestern and the southeastern segments. The latest magnetotelluric sounding and investigation indicate that the electrical structure within the Zhangbei-Shangyi earthquake area is different to a certain degree from that in its surroundings. There exists a nearly NNW-trending structure in the crust. The main shock and most aftershocks occurred above the low-resistivity zone in the crust.
基金Chinese Joint Seismological Science Foundation (9507413) the Climbing Plan Project (95-S-05-01) from the State Department of Science and Technology China.
文摘The three dimensional S wave velocity structure of the crust and upper mantle of Chinese mainland and its neighboring region is obtained by genetic algorithm of surface wave tomography, with smoothness constraint, based on 25 wave group velocities for the periods from 10 s to 92 s, measured from long period Rayleigh waves recorded by 11 stations of CDSN and 12 digital seismometers surrounding China. The S wave velocity image is shown on two latitudinal sections along 30°N and 38°N, two longitudinal sections along 90°E and 120°E, and four horizontal slices at the different depths.
基金financed by International Sciences and Technology cooperation(2006DFA21340)the special funds for Sciences and technology research of public welfare trades(200811021)+2 种基金the key innovation project for sciences and technology of ministry of land and resources(1212010711813)the Basic outlay of scientific research work from Ministry of Science and Technology of the People's Republic of China(J0803)the National Natural Science Foundation of China(40830316 and 40874045)and SINOPPROBE-02
文摘By analyzing the deep seismic sounding profiles across the Longmen Shan, this paper focuses on the study of the relationship between the upper crust structure of the Longmen Shan area and the Wenchuan earthquake. The Longmen Shan thrust belt marks not only the topographical change, but also the lateral velocity variation between the eastern Tibetan Plateau and the Sichuan Basin. A low-velocity layer has consistently been found in the crust beneath the eastern edge of the Tibetan Plateau, and ends beneath the western Sichuan Basin. The low-velocity layer at a depth of -20 km beneath the eastern edge of the Tibetan Plateau has been considered as the deep condition for favoring energy accumulation that formed the great Wenchuan earthquake.
基金part of the National Key Technology R and D Program carried out in 2007-2008supported by the Ministry of Science and Technology
文摘In our study we collected the teleseismic record of 31 broadband stations and 9 PASSCAL stations in West Yunnan, as well as extracted more than a million receiver functions. Using the waveform model and stacking techniques, we calculated the earth crust thicknesses and Vp/Vs ratios below the stations and obtained 35 valid data points. At the same time, we evenly stacked the receiver functions at the same station and superimposed the two profiles' cross sections of the main tectonic units. The results show a clear difference between the crust thicknesses of different tectonic units. Because of the magma underplatting and delimanition of the lower crust in the role of deep process, the West Yunnan's crust can be divided two kinds-mafic-ultramafic and feldspathic crusts. The research also shows that the mafic-ultramafic crust corresponds to a good background of mineralization. The delamination of the lower crust is one of the leading causes for moderate to strong earthquake prone in central Yunnan. The thinner crust and high velocity ratio as well as the multimodal structure of Ps in the Tengchong volcanic area confirms existence of a deep process of the strong magma underplating. Due to the basic crust structure and nature, it is believed that the Honghe fault is a main suture of the Gondwana and Eurasia continents.
文摘The lower plate is the dominant agent in modern convergent margins characterized by active subduction,as negatively buoyant oceanic lithosphere sinks into the asthenosphere under its own weight.This is a strong plate-driving force because the slab-pull force is transmitted through the stiff sub-oceanic lithospheric mantle.As geological and geochemical data seem inconsistent with the existence of modernstyle ridges and arcs in the Archaean,a periodically-destabilized stagnant-lid crust system is proposed instead.Stagnant-lid intervals may correspond to periods of layered mantle convection where efficient cooling was restricted to the upper mantle,perturbing Earth's heat generation/loss balance,eventually triggering mantle overturns.Archaean basalts were derived from fertile mantle in overturn upwelling zones(OUZOs),which were larger and longer-lived than post-Archaean plumes.Early cratons/continents probably formed above OUZOs as large volumes of basalt and komatiite were delivered for protracted periods,allowing basal crustal cannibalism,garnetiferous crustal restite delamination,and coupled development of continental crust and sub-continental lithospheric mantle.Periodic mixing and rehomogenization during overturns retarded development of isotopically depleted MORB(mid-ocean ridge basalt)mantle.Only after the start of true subduction did sequestration of subducted slabs at the coremantle boundary lead to the development of the depleted MORB mantle source.During Archaean mantle overturns,pre-existing continents located above OUZOs would be strongly reworked;whereas OUZOdistal continents would drift in response to mantle currents.The leading edge of drifting Archaean continents would be convergent margins characterized by terrane accretion,imbrication,subcretion and anatexis of unsubductable oceanic lithosphere.As Earth cooled and the background oceanic lithosphere became denser and stiffer,there would be an increasing probability that oceanic crustal segments could founder in an organized way,producing a gradual evolution of pre-subduction convergent margins into modern-style active subduction systems around 2.5 Ga.Plate tectonics today is constituted of:(1)a continental drift system that started in the Early Archaean,driven by deep mantle currents pressing against the Archaean-age sub-continental lithospheric mantle keels that underlie Archaean cratons;(2)a subduction-driven system that started near the end of the Archaean.
基金under the Supra Institutional Project (SIP-0012)carried under INDEX (PSC0204) project,funded by Council of Scientific and Industrial Research (CSIR), New Delhi, India
文摘Broad-band and long period magnetotelluric measurements made at 63 locations along -500 km long Chikmagalur-Kavali profile,that cut across the Dharwar craton (DC) and Eastern Ghat Mobile Belt (EGMB) in south India,is modelled to examine the lithosphere architecture of the cratonic domain and define tectonic boundaries.The 2-D resistivity model shows moderately conductive features that intersperse a highly resistive background of crystalline rocks and spatially connect to the exposed schist belts or granitic intrusions in the DC.These features are therefore interpreted as images of fossil pathways of the volcanic emplacements associated with the greenstone belt and granite suite formation exposed in the region.A near vertical conductive feature in the upper mantle under the Chitradurga Shear Zone represents the Archean suture between the western and eastern blocks of DC.Although thick (-200 km) cratonic (highly resistive) lithosphere is preserved,significant part of the cratonic lithosphere below the western DC is modified due to plume-continental lithosphere interactions during the CretaceouseTertiary period.A west-verging moderately conductive feature imaged beneath EGMB lithosphere is interpreted as the remnant of the Proterozoic collision process between the Indian land mass and East Antarctica.Thin (-120 km) lithosphere is seen below the EGMB,which form the exterior margin of the India shield subsequent to its separation from East Antarctica through rifting and opening of the Indian Ocean in the Cretaceous.