期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于极限学习机的XML文档分类
被引量:
13
1
作者
陈盛双
《计算机工程》
CAS
CSCD
北大核心
2011年第19期177-178,182,共3页
研究基于极限学习机(ELM)的XML文档分类方法。为优化文档的相似性计算,在结构链接向量模型的基础上,提出一种改进的特征向量模型RS-VSM,将有效的结构化信息合并到向量模型中。应用ELM对XML文档进行分类,为提高ELM分类的准确率,提出一种...
研究基于极限学习机(ELM)的XML文档分类方法。为优化文档的相似性计算,在结构链接向量模型的基础上,提出一种改进的特征向量模型RS-VSM,将有效的结构化信息合并到向量模型中。应用ELM对XML文档进行分类,为提高ELM分类的准确率,提出一种基于投票机制的Voting-ELM算法。实验结果证明,该算法的分类效果较优。
展开更多
关键词
可扩展标记语言
分类
极限学习机
结构链接向量模型
投票机制
下载PDF
职称材料
题名
基于极限学习机的XML文档分类
被引量:
13
1
作者
陈盛双
机构
武汉理工大学理学院
出处
《计算机工程》
CAS
CSCD
北大核心
2011年第19期177-178,182,共3页
文摘
研究基于极限学习机(ELM)的XML文档分类方法。为优化文档的相似性计算,在结构链接向量模型的基础上,提出一种改进的特征向量模型RS-VSM,将有效的结构化信息合并到向量模型中。应用ELM对XML文档进行分类,为提高ELM分类的准确率,提出一种基于投票机制的Voting-ELM算法。实验结果证明,该算法的分类效果较优。
关键词
可扩展标记语言
分类
极限学习机
结构链接向量模型
投票机制
Keywords
eXtensible Markup Language(XML)
classification
Extreme Learning Machine(ELM)
structured link vector model(slvm)
voting mechanism
分类号
TP18 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于极限学习机的XML文档分类
陈盛双
《计算机工程》
CAS
CSCD
北大核心
2011
13
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部