Previously, Polyvinyl Alcohol (PVA) and phenolic resin were used for resin impregnated bamboo fiber reinforced PP composites which was manufactures for resin impregnated bamboo fiber with polypropylene (PP). Resin imp...Previously, Polyvinyl Alcohol (PVA) and phenolic resin were used for resin impregnated bamboo fiber reinforced PP composites which was manufactures for resin impregnated bamboo fiber with polypropylene (PP). Resin impregnation method can show improvement on tensile strength of fiber. However, to reduce the contact surface area and low inter-facial shear strength (IFSS) between impregnated resin and matrix, using 40% weight fraction of bamboo fiber in PP matrix, PVA impregnated composites with mean flexural and tensile strength 10% higher than untreated composites were produced butphenolic resin impregnated fiber reinforced composition’s mechanical properties were decreased. In this study maleic anhydride grafted polypropylene (MAPP) was used to increase interfacial shear strength between resin impregnated fiber and PP. With 10% MAPP, IFSS between resin impregnated fiber and PP increased more than 100% and reinforced composites. MAPP with untreated, phenolic resin and PVA impregnated cases showed similar mechanical properties. Yet in water absorption test, the PVA treatment with bamboo/PP composites increased water absorption ratio. But with 10% MAPP, matrix PP water absorption ratio decreased like phenolic resin impregnated fiber reinforced composites. 10% MAPP with resin impregnated bamboo fiber reinforced PP composites can improve IFSS, mechanical properties of composite and can decrease water absorption PVA resin impregnated bamboo fiber reinforced composites.展开更多
Waste tire powder, as waste rubber WR was subjected to grafting with styrene (St) and maleic anhydride (MA). Hydrogen peroxide H2O2 was used to initiate the free radical copolymerization of St onto WR. A thermal initi...Waste tire powder, as waste rubber WR was subjected to grafting with styrene (St) and maleic anhydride (MA). Hydrogen peroxide H2O2 was used to initiate the free radical copolymerization of St onto WR. A thermal initiation was used in case of grafting of MA onto WR. Effect of initiator and monomer concentrations together with the influence of reaction temperature and reaction time were investigated. The grafting was estimated by weight, and the grafted copolymers were characterized by FT/IR, DSC and SEM to prove the grafting. It has found that the grafting increases with increase monomer and initiator concentrations. The increase in the reaction temperature and time also causes increasing levels of the grafted St and MA.展开更多
Spherical polyethylene/polypropylene (PE/PP) in-reactor blend granules with various ethylene/propylene molar ratios and high porosity were synthesized using a high yield TiCVMgCl2 supported catalyst. A solution of ben...Spherical polyethylene/polypropylene (PE/PP) in-reactor blend granules with various ethylene/propylene molar ratios and high porosity were synthesized using a high yield TiCVMgCl2 supported catalyst. A solution of benzoyl peroxide (BPO)/maleic anhydride (MAH)/xylene (interfacial reagent) or BPO/MAH/St (comonomer) was absorbed onto the PE/PP in- reactor blend granules, and solid phase graft polymerization of MAH on PE/PP was conducted. The amount of grafted MAH on PE/PP was measured through chemical titration. The results showed that solid phase graft polymerization of MAH in PE/PP in-reactor blend granules produced graft copolymer with high amount of grafted MAH, and the amount of grafted MAH was raised slightly when St was introduced as comonomer. The graft in-reactor blend was fractionated into five fractions through temperature-gradient extraction fractionation (TGEF), and the fractions were analyzed by FTIR. The results revealed that MAH is mainly grafted on the PE segments, whereas MAH was predominantly grafted on the PP segments when St was present in the graft polymerization system. In addition, the final product is still in the form of regular spherical granules, which is beneficial for industrial processing.展开更多
By combining the strong and light carbon fibers (CFs) with polymers, composite materials with extraordinary mechanical properties are achieved. However, the mechanical properties of the as-prepared CF-reinforced pol...By combining the strong and light carbon fibers (CFs) with polymers, composite materials with extraordinary mechanical properties are achieved. However, the mechanical properties of the as-prepared CF-reinforced polymer composites can not satisfy the applications in certain fields, especially for the poor interactions between CFs and the polymers. To enhance the mechanical properties of composite materials, a solid phase grafting method has been developed to improve the adhesion forces between CFs and the polymer, by modifying the surfaces of CFs. The effects of the reaction temperature, reaction time, as well as the dosage of the initiator and maleic anhydride (MAH) on the grafting efficiency have been investigated systematically. The structure and the surface chemistry of functionalized CFs have been characterized by Fourier Transform Infrared (FT-IR), Scanning Electron Microscope (SEM), X-ray Photoelectron Spectroscopy (XPS), Thermogravimetric (TG), and contact angle test. All of these results demonstrate that MAH is grafted onto the surface of CFs successfully by the solid phase grafting method. The MAH grafted CFs significantly improve its wettability, which further improves the interfacial adhesion between CFs and the polymeric matrix. The optimal reaction conditions are determined, such as the MAH/CF molar ratio, the dosage of initiator, the reaction temperature and the reaction time to be 3/1, 2%, 90℃ and 4 h, respectively. These attractive interracial characteristics of modified CFs suggest that the method proposed herein is a novel and efficient approach to develop CF-reinforced polymer composites with outstanding mechanical properties for cutting-edge industrial applications.展开更多
The mechanical, morphological and thermo-oxidative aging properties of the glass fiber reinforced polypropylene (RGF-PP) were studied based on four different maleic anhydride grafted polypropylene (PP-g-MAH) compatibi...The mechanical, morphological and thermo-oxidative aging properties of the glass fiber reinforced polypropylene (RGF-PP) were studied based on four different maleic anhydride grafted polypropylene (PP-g-MAH) compatibilizers with different content of residual maleic anhydride (MAH). It was shown that PP-g-MAH compatibilizer could significantly improve the mechanical properties of RGF-PP, while from thermal and morphological analysis results, the content of residual MAH had negative influence on long term thermo- oxidative aging properties of RGF-PP with adding PP-g-MAH compatibilizer;the lower the residual content of MAH is, the better the thermo stability of the PP-g-MAH is, and also the better the thermo-oxidative aging properties was obtained.展开更多
An effective procedure has been developed to synthesize the functionalized graphene oxide grafted by maleic anhydride grafted liquid polybutadiene(MLPB-GO). Fourier transform spectroscopy and X-ray photoelectron spe...An effective procedure has been developed to synthesize the functionalized graphene oxide grafted by maleic anhydride grafted liquid polybutadiene(MLPB-GO). Fourier transform spectroscopy and X-ray photoelectron spectroscopy indicate the successful functionalization of GO. The NR/MLPB-GO composites were then prepared by the co-coagulation process. The results show that the mechanical properties of NR/MLPB-GO composites are obviously superior to those of NR/GO composites and neat NR. Compared with neat NR, the tensile strength, modulus at 300% strain and tear strength of NR composite containing 2.12 phr MLPB-GO are significantly increased by 40.5%, 109.1% and 85.0%, respectively. Dynamic mechanical analysis results show that 84% increase in storage modulus and 2.9 K enhancement in the glass transition temperature of the composite have been achieved with the incorporation of 2.12 phr MLPB-GO into NR. The good dispersion of GO and the strong interface interaction in the composites are responsible for the unprecedented reinforcing efficiency of MLPB-GO towards NR.展开更多
文摘Previously, Polyvinyl Alcohol (PVA) and phenolic resin were used for resin impregnated bamboo fiber reinforced PP composites which was manufactures for resin impregnated bamboo fiber with polypropylene (PP). Resin impregnation method can show improvement on tensile strength of fiber. However, to reduce the contact surface area and low inter-facial shear strength (IFSS) between impregnated resin and matrix, using 40% weight fraction of bamboo fiber in PP matrix, PVA impregnated composites with mean flexural and tensile strength 10% higher than untreated composites were produced butphenolic resin impregnated fiber reinforced composition’s mechanical properties were decreased. In this study maleic anhydride grafted polypropylene (MAPP) was used to increase interfacial shear strength between resin impregnated fiber and PP. With 10% MAPP, IFSS between resin impregnated fiber and PP increased more than 100% and reinforced composites. MAPP with untreated, phenolic resin and PVA impregnated cases showed similar mechanical properties. Yet in water absorption test, the PVA treatment with bamboo/PP composites increased water absorption ratio. But with 10% MAPP, matrix PP water absorption ratio decreased like phenolic resin impregnated fiber reinforced composites. 10% MAPP with resin impregnated bamboo fiber reinforced PP composites can improve IFSS, mechanical properties of composite and can decrease water absorption PVA resin impregnated bamboo fiber reinforced composites.
文摘Waste tire powder, as waste rubber WR was subjected to grafting with styrene (St) and maleic anhydride (MA). Hydrogen peroxide H2O2 was used to initiate the free radical copolymerization of St onto WR. A thermal initiation was used in case of grafting of MA onto WR. Effect of initiator and monomer concentrations together with the influence of reaction temperature and reaction time were investigated. The grafting was estimated by weight, and the grafted copolymers were characterized by FT/IR, DSC and SEM to prove the grafting. It has found that the grafting increases with increase monomer and initiator concentrations. The increase in the reaction temperature and time also causes increasing levels of the grafted St and MA.
基金This work was supported by the Special Fund for Major State Basic Research Projects (Grant no. G1999064803).
文摘Spherical polyethylene/polypropylene (PE/PP) in-reactor blend granules with various ethylene/propylene molar ratios and high porosity were synthesized using a high yield TiCVMgCl2 supported catalyst. A solution of benzoyl peroxide (BPO)/maleic anhydride (MAH)/xylene (interfacial reagent) or BPO/MAH/St (comonomer) was absorbed onto the PE/PP in- reactor blend granules, and solid phase graft polymerization of MAH on PE/PP was conducted. The amount of grafted MAH on PE/PP was measured through chemical titration. The results showed that solid phase graft polymerization of MAH in PE/PP in-reactor blend granules produced graft copolymer with high amount of grafted MAH, and the amount of grafted MAH was raised slightly when St was introduced as comonomer. The graft in-reactor blend was fractionated into five fractions through temperature-gradient extraction fractionation (TGEF), and the fractions were analyzed by FTIR. The results revealed that MAH is mainly grafted on the PE segments, whereas MAH was predominantly grafted on the PP segments when St was present in the graft polymerization system. In addition, the final product is still in the form of regular spherical granules, which is beneficial for industrial processing.
基金Supported by the Science and Technology Plan Projects of Fujian Province(No.2012H6008)
文摘By combining the strong and light carbon fibers (CFs) with polymers, composite materials with extraordinary mechanical properties are achieved. However, the mechanical properties of the as-prepared CF-reinforced polymer composites can not satisfy the applications in certain fields, especially for the poor interactions between CFs and the polymers. To enhance the mechanical properties of composite materials, a solid phase grafting method has been developed to improve the adhesion forces between CFs and the polymer, by modifying the surfaces of CFs. The effects of the reaction temperature, reaction time, as well as the dosage of the initiator and maleic anhydride (MAH) on the grafting efficiency have been investigated systematically. The structure and the surface chemistry of functionalized CFs have been characterized by Fourier Transform Infrared (FT-IR), Scanning Electron Microscope (SEM), X-ray Photoelectron Spectroscopy (XPS), Thermogravimetric (TG), and contact angle test. All of these results demonstrate that MAH is grafted onto the surface of CFs successfully by the solid phase grafting method. The MAH grafted CFs significantly improve its wettability, which further improves the interfacial adhesion between CFs and the polymeric matrix. The optimal reaction conditions are determined, such as the MAH/CF molar ratio, the dosage of initiator, the reaction temperature and the reaction time to be 3/1, 2%, 90℃ and 4 h, respectively. These attractive interracial characteristics of modified CFs suggest that the method proposed herein is a novel and efficient approach to develop CF-reinforced polymer composites with outstanding mechanical properties for cutting-edge industrial applications.
文摘The mechanical, morphological and thermo-oxidative aging properties of the glass fiber reinforced polypropylene (RGF-PP) were studied based on four different maleic anhydride grafted polypropylene (PP-g-MAH) compatibilizers with different content of residual maleic anhydride (MAH). It was shown that PP-g-MAH compatibilizer could significantly improve the mechanical properties of RGF-PP, while from thermal and morphological analysis results, the content of residual MAH had negative influence on long term thermo- oxidative aging properties of RGF-PP with adding PP-g-MAH compatibilizer;the lower the residual content of MAH is, the better the thermo stability of the PP-g-MAH is, and also the better the thermo-oxidative aging properties was obtained.
基金financially supported by the National Natural Science Foundation of China(No.51363006)Science and Technology innovation key project of Hainan province(No.ZDXM20120090)National Science and Technology support project(No.2013BAF08B02)
文摘An effective procedure has been developed to synthesize the functionalized graphene oxide grafted by maleic anhydride grafted liquid polybutadiene(MLPB-GO). Fourier transform spectroscopy and X-ray photoelectron spectroscopy indicate the successful functionalization of GO. The NR/MLPB-GO composites were then prepared by the co-coagulation process. The results show that the mechanical properties of NR/MLPB-GO composites are obviously superior to those of NR/GO composites and neat NR. Compared with neat NR, the tensile strength, modulus at 300% strain and tear strength of NR composite containing 2.12 phr MLPB-GO are significantly increased by 40.5%, 109.1% and 85.0%, respectively. Dynamic mechanical analysis results show that 84% increase in storage modulus and 2.9 K enhancement in the glass transition temperature of the composite have been achieved with the incorporation of 2.12 phr MLPB-GO into NR. The good dispersion of GO and the strong interface interaction in the composites are responsible for the unprecedented reinforcing efficiency of MLPB-GO towards NR.