A novel analytical model to determine the heat flux of subcooled pool boiling in fractal nanofluids is developed. The model considers the fractal character of nanofluids in terms of the fractal dimension of nanopartic...A novel analytical model to determine the heat flux of subcooled pool boiling in fractal nanofluids is developed. The model considers the fractal character of nanofluids in terms of the fractal dimension of nanoparticles and the fractal dimen- sion of active cavities on the heated surfaces; it also takes into account the effect of the Brownian motion of nanoparticles, which has no empirical constant but has parameters with physical meanings. The proposed model is expressed as a function of the subcooling of fluids and the wall superheat. The fractal analytical model is verified by a reasonable agreement with the experimental data and the results obtained from existing models.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.11102100)the Natural Science Foundation of Fujian Province,China (Grant No.2012J01017)the Scientific Research Special Foundation for Provincial University of Education Department of Fujian Province,China (Grant No.JK2011056)
文摘A novel analytical model to determine the heat flux of subcooled pool boiling in fractal nanofluids is developed. The model considers the fractal character of nanofluids in terms of the fractal dimension of nanoparticles and the fractal dimen- sion of active cavities on the heated surfaces; it also takes into account the effect of the Brownian motion of nanoparticles, which has no empirical constant but has parameters with physical meanings. The proposed model is expressed as a function of the subcooling of fluids and the wall superheat. The fractal analytical model is verified by a reasonable agreement with the experimental data and the results obtained from existing models.