In this study, we sought to elucidate the effects of melatonin on learning and memory as well as apoptosis and expression of the Bax or Bcl-2 proteins in the subgranular zone of the dentate gyrus in pinealectomized ra...In this study, we sought to elucidate the effects of melatonin on learning and memory as well as apoptosis and expression of the Bax or Bcl-2 proteins in the subgranular zone of the dentate gyrus in pinealectomized rats. Using the Morris water maze and the olfactory memory tests, we found that the average escape latency in pinealectomized rats was clearly increased compared with sham-operated rats. Moreover, the average escape latency in the melatonin-treated and pinealectomized rats was longer than that in the sham-operated rats and shorter than that in the pinealectomized and untreated rats. Immunohistochemistry and terminal-deoxynucleoitidyl transferase mediated nick end labeling (TUNEL) showed that there were fewer Bax immunoreactive cells and TUNEL-positive (apoptotic) cells but more Bcl-2 immunoreactive cells in the melatonin-treated rats compared with the pinealectomized rats. The sham-operated rats showed numbers of these cells similar to the melatonin-treated rats. These experimental findings demonstrate that melatonin treatment may reduce abnormal apoptosis by promoting gene expression of Bax and suppressing gene expression of Bcl-2 in the subgranular zone of the dentate gyrus in pinealectomized rats. These effects appear to result in the inhibition of cellular apoptosis and the improvement of spatial learning and memory in pinealectomized rats.展开更多
Adult neurogenesis,the process of creating new neurons,involves the coordinated division,migration,and differentiation of neural stem cells.This process is restricted to neurogenic niches located in two distinct areas...Adult neurogenesis,the process of creating new neurons,involves the coordinated division,migration,and differentiation of neural stem cells.This process is restricted to neurogenic niches located in two distinct areas of the brain:the subgranular zone of the dentate gyrus of the hippocampus and the subventricular zone of the lateral ventricle,where new neurons are generated and then migrate to the olfactory bulb.Neurogenesis has been thought to occur only during the embryonic and early postnatal stages and to decline with age due to a continuous depletion of neural stem cells.Interestingly,recent years have seen tremendous progress in our understanding of adult brain neurogenesis,bridging the knowledge gap between embryonic and adult neurogenesis.Here,we discuss the current status of adult brain neurogenesis in light of what we know about neural stem cells.In this notion,we talk about the importance of intra cellular signaling molecules in mobilizing endogenous neural stem cell prolife ration.Based on the current understanding,we can declare that these molecules play a role in targeting neurogenesis in the mature brain.However,to achieve this goal,we need to avoid the undesired proliferation of neural stem cells by controlling the necessary checkpoints,which can lead to tumorigenesis and prove to be a curse instead of a blessing or hope.展开更多
Adult hippocampal neurogenesis is a finely tuned process regulated by extrinsic factors. Neuroinflammation is a hallmark of several pathological conditions underlying dysregulation of neurogenesis. In animal models, l...Adult hippocampal neurogenesis is a finely tuned process regulated by extrinsic factors. Neuroinflammation is a hallmark of several pathological conditions underlying dysregulation of neurogenesis. In animal models, lipopolysaccharide(LPS)-induced neuroinflammation leads to a neurogenic decrease mainly associated to the early inflammatory response. However, it is not well understood how the neuroinflammatory response progresses over time and if neurogenesis continues to be diminished during the late neuroinflammatory response. Moreover, it is unknown if repeated intermittent administration of LPS along time induces a greater reduction in neurogenesis. We administered one single intraperitoneal injection of LPS or saline or four repeated injections(one per week) of LPS or saline to young-adult mice. A cohort of new cells was labeled with three 5-bromo-2-deoxyuridine injections(one per day) 4 days after the last LPS injection. We evaluated systemic and neuroinflammation-associated parameters and compared the effects of the late neuroinflammatory response on neurogenesis induced by each protocol. Our results show that 1) a single LPS injection leads to a late pro-inflammatory response characterized by microglial activation, moderate astrocytic reaction and increased interleukin-6 levels. This response correlates in time with decreased neurogenesis and 2) a repeated intermittent injection of LPS does not elicit a late pro-inflammatory response although activated microglia persists. The latter profile is not accompanied by a continued longterm hippocampal neurogenic decrease. Hereby, we provide evidence that the neuroinflammatory response is a dynamic process that progresses in a milieu-dependent manner and does not necessarily lead to a neurogenic decrease, highlighting the complex interaction between the immune system and neurogenesis.展开更多
Status epilepticus has been shown to activate the proliferation of neural stem cells in the hippocampus of the brain, while also causing a large amount of neuronal death, especially in the subgranular zone of the dent...Status epilepticus has been shown to activate the proliferation of neural stem cells in the hippocampus of the brain, while also causing a large amount of neuronal death, especially in the subgranular zone of the dentate gyrus and the subventricular zone. Simultaneously, proliferating stem cells tend to migrate to areas with obvious damage. Our previous studies have clearly confirmed the effect of sodium valproate on cognitive function in rats with convulsive status epilepticus. However, whether neurogenesis can play a role in the antiepileptic effect of sodium valproate remains unknown. A model of convulsive status epilepticus was established in Wistar rats by intraperitoneal injection of 3 mEq/kg lithium chloride, and intraperitoneal injection of pilocarpine 40 mg/kg after 18–20 hours. Sodium valproate(100, 200, 300, 400, 500, or 600 mg/kg) was intragastrically administered six times every day(4-hour intervals) for 5 days. To determine the best dosage, sodium valproate concentration was measured from the plasma. The effective concentration of sodium valproate in the plasma of the rats that received the 300-mg/kg intervention was 82.26 ± 11.23 μg/mL. Thus, 300 mg/kg was subsequently used as the intervention concentration of sodium valproate. The following changes were seen: Recording excitatory postsynaptic potentials in the CA1 region revealed high-frequency stimulation-induced long-term potentiation. Immunohistochemical staining for BrdU-positive cells in the brain revealed that sodium valproate intervention markedly increased the success rate and the duration of induced long-term potentiation in rats with convulsive status epilepticus. The intervention also reduced the number of newborn neurons in the subgranular area of the hippocampus and subventricular zone and inhibited the migration of newborn neurons to the dentate gyrus. These results indicate that sodium valproate can effectively inhibit the abnormal proliferation and migration of neural stem cells and newborn neurons after convulsive status epilepticus, and improve learning and memory ability.展开更多
Understanding the role of adult neural stem cells in maintaining specific brain function is a rapidly expanding research field. Recent technological advances to culture and trace neural stem cells, such as stem cell i...Understanding the role of adult neural stem cells in maintaining specific brain function is a rapidly expanding research field. Recent technological advances to culture and trace neural stem cells, such as stem cell isolation and expansion and inducible transgenic lineage tracing mouse models, have enabled more in-depth studies into the mechanisms governing neural stem cell homeostasis and pathophysiology in the adult brain. In this review we will briefly discuss the types and locations of adult neural stem cells in the mammalian brain, recent developments in tools used to study these cells, and the translational implications.展开更多
文摘In this study, we sought to elucidate the effects of melatonin on learning and memory as well as apoptosis and expression of the Bax or Bcl-2 proteins in the subgranular zone of the dentate gyrus in pinealectomized rats. Using the Morris water maze and the olfactory memory tests, we found that the average escape latency in pinealectomized rats was clearly increased compared with sham-operated rats. Moreover, the average escape latency in the melatonin-treated and pinealectomized rats was longer than that in the sham-operated rats and shorter than that in the pinealectomized and untreated rats. Immunohistochemistry and terminal-deoxynucleoitidyl transferase mediated nick end labeling (TUNEL) showed that there were fewer Bax immunoreactive cells and TUNEL-positive (apoptotic) cells but more Bcl-2 immunoreactive cells in the melatonin-treated rats compared with the pinealectomized rats. The sham-operated rats showed numbers of these cells similar to the melatonin-treated rats. These experimental findings demonstrate that melatonin treatment may reduce abnormal apoptosis by promoting gene expression of Bax and suppressing gene expression of Bcl-2 in the subgranular zone of the dentate gyrus in pinealectomized rats. These effects appear to result in the inhibition of cellular apoptosis and the improvement of spatial learning and memory in pinealectomized rats.
文摘Adult neurogenesis,the process of creating new neurons,involves the coordinated division,migration,and differentiation of neural stem cells.This process is restricted to neurogenic niches located in two distinct areas of the brain:the subgranular zone of the dentate gyrus of the hippocampus and the subventricular zone of the lateral ventricle,where new neurons are generated and then migrate to the olfactory bulb.Neurogenesis has been thought to occur only during the embryonic and early postnatal stages and to decline with age due to a continuous depletion of neural stem cells.Interestingly,recent years have seen tremendous progress in our understanding of adult brain neurogenesis,bridging the knowledge gap between embryonic and adult neurogenesis.Here,we discuss the current status of adult brain neurogenesis in light of what we know about neural stem cells.In this notion,we talk about the importance of intra cellular signaling molecules in mobilizing endogenous neural stem cell prolife ration.Based on the current understanding,we can declare that these molecules play a role in targeting neurogenesis in the mature brain.However,to achieve this goal,we need to avoid the undesired proliferation of neural stem cells by controlling the necessary checkpoints,which can lead to tumorigenesis and prove to be a curse instead of a blessing or hope.
基金supported by grants from Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica(PAPIIT):203015,208518Consejo Nacional de Ciencia y Tecnología(CONACyT):282470(all to AZ)
文摘Adult hippocampal neurogenesis is a finely tuned process regulated by extrinsic factors. Neuroinflammation is a hallmark of several pathological conditions underlying dysregulation of neurogenesis. In animal models, lipopolysaccharide(LPS)-induced neuroinflammation leads to a neurogenic decrease mainly associated to the early inflammatory response. However, it is not well understood how the neuroinflammatory response progresses over time and if neurogenesis continues to be diminished during the late neuroinflammatory response. Moreover, it is unknown if repeated intermittent administration of LPS along time induces a greater reduction in neurogenesis. We administered one single intraperitoneal injection of LPS or saline or four repeated injections(one per week) of LPS or saline to young-adult mice. A cohort of new cells was labeled with three 5-bromo-2-deoxyuridine injections(one per day) 4 days after the last LPS injection. We evaluated systemic and neuroinflammation-associated parameters and compared the effects of the late neuroinflammatory response on neurogenesis induced by each protocol. Our results show that 1) a single LPS injection leads to a late pro-inflammatory response characterized by microglial activation, moderate astrocytic reaction and increased interleukin-6 levels. This response correlates in time with decreased neurogenesis and 2) a repeated intermittent injection of LPS does not elicit a late pro-inflammatory response although activated microglia persists. The latter profile is not accompanied by a continued longterm hippocampal neurogenic decrease. Hereby, we provide evidence that the neuroinflammatory response is a dynamic process that progresses in a milieu-dependent manner and does not necessarily lead to a neurogenic decrease, highlighting the complex interaction between the immune system and neurogenesis.
基金supported by the National Natural Science Foundation of China for Youth Science Project,No.81201507(to PW)
文摘Status epilepticus has been shown to activate the proliferation of neural stem cells in the hippocampus of the brain, while also causing a large amount of neuronal death, especially in the subgranular zone of the dentate gyrus and the subventricular zone. Simultaneously, proliferating stem cells tend to migrate to areas with obvious damage. Our previous studies have clearly confirmed the effect of sodium valproate on cognitive function in rats with convulsive status epilepticus. However, whether neurogenesis can play a role in the antiepileptic effect of sodium valproate remains unknown. A model of convulsive status epilepticus was established in Wistar rats by intraperitoneal injection of 3 mEq/kg lithium chloride, and intraperitoneal injection of pilocarpine 40 mg/kg after 18–20 hours. Sodium valproate(100, 200, 300, 400, 500, or 600 mg/kg) was intragastrically administered six times every day(4-hour intervals) for 5 days. To determine the best dosage, sodium valproate concentration was measured from the plasma. The effective concentration of sodium valproate in the plasma of the rats that received the 300-mg/kg intervention was 82.26 ± 11.23 μg/mL. Thus, 300 mg/kg was subsequently used as the intervention concentration of sodium valproate. The following changes were seen: Recording excitatory postsynaptic potentials in the CA1 region revealed high-frequency stimulation-induced long-term potentiation. Immunohistochemical staining for BrdU-positive cells in the brain revealed that sodium valproate intervention markedly increased the success rate and the duration of induced long-term potentiation in rats with convulsive status epilepticus. The intervention also reduced the number of newborn neurons in the subgranular area of the hippocampus and subventricular zone and inhibited the migration of newborn neurons to the dentate gyrus. These results indicate that sodium valproate can effectively inhibit the abnormal proliferation and migration of neural stem cells and newborn neurons after convulsive status epilepticus, and improve learning and memory ability.
文摘Understanding the role of adult neural stem cells in maintaining specific brain function is a rapidly expanding research field. Recent technological advances to culture and trace neural stem cells, such as stem cell isolation and expansion and inducible transgenic lineage tracing mouse models, have enabled more in-depth studies into the mechanisms governing neural stem cell homeostasis and pathophysiology in the adult brain. In this review we will briefly discuss the types and locations of adult neural stem cells in the mammalian brain, recent developments in tools used to study these cells, and the translational implications.