Several methods for evaluating the sublayer suspension beneath old pavement with falling weight deflectormeter(FWD), were summarized and the respective advantages and disadvantages were analyzed. Based on these method...Several methods for evaluating the sublayer suspension beneath old pavement with falling weight deflectormeter(FWD), were summarized and the respective advantages and disadvantages were analyzed. Based on these methods, the evaluation principles were improved and a new type of the neural network, functional-link neural network was proposed to evaluate the sublayer suspension with FWD test results. The concept of function link, learning method of functional-link neural network and the establishment process of neural network model were studied in detail. Based on the old pavement over-repairing engineering of Kaiping section, Guangdong Province in G325 National Highway, the application of functional-link neural network in evaluation of sublayer suspension beneath old pavement based on FWD test data on the spot was investigated. When learning rate is 0.1 and training cycles are 405, the functional-link network error is less than 0.000 1, while the optimum chosen 4-8-1 BP needs over 10 000 training cycles to reach the same accuracy with less precise evaluation results. Therefore, in contrast to common BP neural network,the functional-link neural network adopts single layer structure to learn and calculate, which simplifies the network, accelerates the convergence speed and improves the accuracy. Moreover the trained functional-link neural network can be (adopted) to directly evaluate the sublayer suspension based on FWD test data on the site. Engineering practice indicates that the functional-link neural model gains very excellent results and effectively guides the pavement over-repairing construction.展开更多
Multiple-seam gas coproduction is a technology with potential to achieve economic targets.Physical experiments could replicate gas flow dynamics in two seams.In this study,numerical simulation was conducted based on p...Multiple-seam gas coproduction is a technology with potential to achieve economic targets.Physical experiments could replicate gas flow dynamics in two seams.In this study,numerical simulation was conducted based on physical experiments.Through calibration,the simulated results agreed with the experimental results.Three findings were obtained.First,the pressure distribution intrinsically depends on the depressurization effectiveness in each coal seam.The gas pressure difference and interval distance influence the pressure distribution by inhibiting depressurization in the top seams and bottom seams,respectively.Second,the production contribution shows a logarithmic relationship with the permeability ratio.The range of the production contribution difference grows from 11.24%to 99.99%when the permeability ratio increases 50 times.By comparison,reservoir pressure has a limited influence,with a maximum of 13.64%.Third,the interlayer interference of the top seams and bottom seams can be intensified by the reservoir pressure difference and the interval distance,respectively.The proposed model has been calibrated and verified and can be directly applied to engineering,serving as a reference for reservoir combination optimization.In summary,coal seams with a permeability ratio within 10,reservoir pressure difference within 1.50 MPa,and interval distances within 50 m are recommended to coproduce together.展开更多
The fine rnicrostrueture of the Y-modified ion plated Ti(Y)N coating/substrate steel A3 system has been examined by means of TEM and microdiffraction technique.It was revealed that the interface consists of 3 sublayer...The fine rnicrostrueture of the Y-modified ion plated Ti(Y)N coating/substrate steel A3 system has been examined by means of TEM and microdiffraction technique.It was revealed that the interface consists of 3 sublayers,i.e.α-Fe+Y_6Fe_(23),Ti+Y+FeTi and Ti_2N+YN +Ti_xN_y.The thicknesses of them are about 200,50 and 120 nm respectively.The phases in the transition area seem to have certain orientation relations.The mechanism of interface formation has also been discussed.展开更多
We employ novel digital Fresnel reflection holography to capture the 3D flows within the viscous sublayerof a smooth-wall turbulent channel flow at Reτ=400.The measurements reveal unsteady and diverse flow patterns i...We employ novel digital Fresnel reflection holography to capture the 3D flows within the viscous sublayerof a smooth-wall turbulent channel flow at Reτ=400.The measurements reveal unsteady and diverse flow patterns in the sublayer including nearly uniform high and low speed flows and strong small-scale(onthe order of viscous wall units)spanwise meandering motions.The probability density functions(PDFs)ofwall shear stresses show a clear discrepancy in high stress range with those from direct numerical simu-lation(DNS),which is attributed to the unresolved streamwise and spanwise motions by DNS.Moreover,the PDF of Lagrangian particle accelerations yields a stretched exponential shape like that in homogenousisotropic turbulence,indicating strong intermittency in the sublayer.We find a significant fraction of highaccelerations is associated with the small-scale meandering motions.Our study helps explain the effectof sublayer-scale roughness on reducing drag and flow separation reported in the literature.展开更多
文摘Several methods for evaluating the sublayer suspension beneath old pavement with falling weight deflectormeter(FWD), were summarized and the respective advantages and disadvantages were analyzed. Based on these methods, the evaluation principles were improved and a new type of the neural network, functional-link neural network was proposed to evaluate the sublayer suspension with FWD test results. The concept of function link, learning method of functional-link neural network and the establishment process of neural network model were studied in detail. Based on the old pavement over-repairing engineering of Kaiping section, Guangdong Province in G325 National Highway, the application of functional-link neural network in evaluation of sublayer suspension beneath old pavement based on FWD test data on the spot was investigated. When learning rate is 0.1 and training cycles are 405, the functional-link network error is less than 0.000 1, while the optimum chosen 4-8-1 BP needs over 10 000 training cycles to reach the same accuracy with less precise evaluation results. Therefore, in contrast to common BP neural network,the functional-link neural network adopts single layer structure to learn and calculate, which simplifies the network, accelerates the convergence speed and improves the accuracy. Moreover the trained functional-link neural network can be (adopted) to directly evaluate the sublayer suspension based on FWD test data on the site. Engineering practice indicates that the functional-link neural model gains very excellent results and effectively guides the pavement over-repairing construction.
基金This research was supported by National Science and Technology Major Project(No.2016ZX05044002-005)and National Natural Science Foundation of China(No.41772155)The first author gratefully acknowledges financial support from China Scholarship Council(No.CSC201906420044)and expresses thanks to Richard Smith and Eric Lysczek for grammar check.
文摘Multiple-seam gas coproduction is a technology with potential to achieve economic targets.Physical experiments could replicate gas flow dynamics in two seams.In this study,numerical simulation was conducted based on physical experiments.Through calibration,the simulated results agreed with the experimental results.Three findings were obtained.First,the pressure distribution intrinsically depends on the depressurization effectiveness in each coal seam.The gas pressure difference and interval distance influence the pressure distribution by inhibiting depressurization in the top seams and bottom seams,respectively.Second,the production contribution shows a logarithmic relationship with the permeability ratio.The range of the production contribution difference grows from 11.24%to 99.99%when the permeability ratio increases 50 times.By comparison,reservoir pressure has a limited influence,with a maximum of 13.64%.Third,the interlayer interference of the top seams and bottom seams can be intensified by the reservoir pressure difference and the interval distance,respectively.The proposed model has been calibrated and verified and can be directly applied to engineering,serving as a reference for reservoir combination optimization.In summary,coal seams with a permeability ratio within 10,reservoir pressure difference within 1.50 MPa,and interval distances within 50 m are recommended to coproduce together.
文摘The fine rnicrostrueture of the Y-modified ion plated Ti(Y)N coating/substrate steel A3 system has been examined by means of TEM and microdiffraction technique.It was revealed that the interface consists of 3 sublayers,i.e.α-Fe+Y_6Fe_(23),Ti+Y+FeTi and Ti_2N+YN +Ti_xN_y.The thicknesses of them are about 200,50 and 120 nm respectively.The phases in the transition area seem to have certain orientation relations.The mechanism of interface formation has also been discussed.
文摘We employ novel digital Fresnel reflection holography to capture the 3D flows within the viscous sublayerof a smooth-wall turbulent channel flow at Reτ=400.The measurements reveal unsteady and diverse flow patterns in the sublayer including nearly uniform high and low speed flows and strong small-scale(onthe order of viscous wall units)spanwise meandering motions.The probability density functions(PDFs)ofwall shear stresses show a clear discrepancy in high stress range with those from direct numerical simu-lation(DNS),which is attributed to the unresolved streamwise and spanwise motions by DNS.Moreover,the PDF of Lagrangian particle accelerations yields a stretched exponential shape like that in homogenousisotropic turbulence,indicating strong intermittency in the sublayer.We find a significant fraction of highaccelerations is associated with the small-scale meandering motions.Our study helps explain the effectof sublayer-scale roughness on reducing drag and flow separation reported in the literature.