期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
The Coupling Relationship between the Uplift of Longmen Shan and the Subsidence of Foreland Basin,Sichuan,China 被引量:4
1
作者 LI Yong YAN Liang +5 位作者 SHAO Chongjian WANG Zhengjiang YAN Zhaokun YU Qian ZHOU Rongjun LI Haibin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第2期379-395,共17页
Depending on the analysis of the coeval sedimentary geometry and subsidence mechanism in the Longmen Shan foreland basin, three models about the coupling relationship between Longmen Shan uplift and foreland basin sub... Depending on the analysis of the coeval sedimentary geometry and subsidence mechanism in the Longmen Shan foreland basin, three models about the coupling relationship between Longmen Shan uplift and foreland basin subsidence since the Indosinian have been proposed:(1) crustal shortening and its related wide wedge-shaped foreland basin,(2) crustal isostatic rebound and its related tabular foreland basin, and(3) lower crustal flow and its related narrow wedge-shaped foreland basin. Based on the narrow wedge-shaped foreland basin developed since 4 Ma, it is believed that the narrow crustal shortening and tectonic load driven by lower crustal flow is a primary driver for the present Longmen Shan uplift and the Wenchuan(Ms 8.0) earthquake. 展开更多
关键词 coupling relationship foreland basin subsidence Longmen Shan uplift eastern margin of Tibetan Plateau SICHUAN China Proto-Tethys
下载PDF
Subsidence Analysis and Burial History of the Late Carboniferous to Early Jurassic Soutpansberg Basin,Limpopo Province,South Africa 被引量:1
2
作者 Ntokozo MALAZA LIU Ken ZHAO Baojin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第6期2000-2007,共8页
The subsidence history of the Soutpansberg Basin was reconstructed by a tectonic subsidence analysis coupled with backstripping calculations based on data of newly interpreted sequence boundaries. Furthermore, burial ... The subsidence history of the Soutpansberg Basin was reconstructed by a tectonic subsidence analysis coupled with backstripping calculations based on data of newly interpreted sequence boundaries. Furthermore, burial and time plots were constructed in order to understand the burial and thermal history of the basin. Input data were based on facies, lithostratigraphic models and tectonic interpretations. The studied succession is up to 1000 m and is underlain by the Achaean Limpopo Mobile Belt. The subsidence within the basin supports the primary graben system which must have been centred within the present basins, and later became a region of faulting. The subsidence and burial history curves suggests two phases of rapid subsidence during the Early-Late Permian (300–230 Ma) and Middle Triassic (215–230 Ma). The areas of greater extension subsided more rapidly during these intervals. Two slow subsidence phases are observed during the Late Triassic (215–198 Ma) and Early Jurassic (198–100 Ma). These intervals represent the post-rift thermal subsidence and are interpreted as slow flexural subsidence. Based on these observations on the subsidence curves, it is possible to infer that the first stage of positive inflexion (300 Ma) is therefore recognised as the first stage of the Soutpansberg Basin formation. 展开更多
关键词 basin subsidence Karoo Supergroup Soutpansberg basin Permian-Jurassic
下载PDF
Geochemical characteristics of Sr isotopes in the LS33 drill core from the Qiongdongnan Basin, South China Sea, and their response to the uplift of the Tibetan Plateau
3
作者 Ke Wang Shikui Zhai +1 位作者 Zenghui Yu Huaijing Zhang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第5期117-129,共13页
Making full use of modern analytical and testing techniques to explore and establish new indexes or methods for extracting paleoseawater geochemical information from sediments will help to reconstruct the sedimentary ... Making full use of modern analytical and testing techniques to explore and establish new indexes or methods for extracting paleoseawater geochemical information from sediments will help to reconstruct the sedimentary paleoenvironment in different research areas.The connection between the subsidence of the South China Sea basin and the uplift of the Tibetan Plateau has been a scientific concern in recent decades.To explore the information on the sedimentary paleoenvironment,provenance changes and uplift of Tibetan Plateau contained in core sediments(debris),we selected core samples from Well LS33 in the Qiongdongnan Basin,South China Sea,and analyzed the contents of typical elements(Al,Th,and rare earth elements)that can indicate changes in provenance and the Sr isotopic compositions,which can reveal the geochemical characteristics of the paleoseawater depending on the type of material(authigenic carbonate and terrigenous detritus).The results show the following:(1)during the late Miocene,the Red River transported a large amount of detrital sediments from the ancient continental block(South China)to the Qiongdongnan Basin.(2)The authigenic carbonates accurately record changes in the 87Sr/86Sr ratios in the South China Sea since the Oligocene.These ratios reflect the semi-closed marginal sea environment of the South China Sea(relative to the ocean)and the sedimentary paleoenvironment evolution process of the deep-water area of the Qiongdongnan Basin from continental to transitional and then to bathyal.(3)Since the Neogene,the variations in the 87Sr/86Sr ratio in the authigenic carbonates have been consistent with the variations in the uplift rate of the Tibetan Plateau and the sediment accumulation rate in the Qiongdongnan Basin.These consistent changes indicate the complex geological process of the change in the rock weathering intensity and terrigenous Sr flux caused by changes in the uplift rate of the Tibetan Plateau,which influence the Sr isotope composition of seawater. 展开更多
关键词 sediments from a drill core grouping analysis elements and Sr isotopes provenance and paleoenvironment uplift of the Tibetan Plateau and subsidence of the South China Sea basin
下载PDF
A Global Perspective on Crustal Structure and Evolution based on A New Crustal Classification
4
作者 Irina M.ARTEMIEVA Alexey SHULGIN 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第S01期48-50,共3页
Knowledge of the crustal structure is the key for understanding physical and chemical conditions of its formation and later modification by geodynamic processes.It has long been recognized that crustal structure is co... Knowledge of the crustal structure is the key for understanding physical and chemical conditions of its formation and later modification by geodynamic processes.It has long been recognized that crustal structure is controlled by tectonic settings,and that the crustal thickness is one of the most important parameters that reflects the geodynamic origin of the crust.A long tectonic life of continental crust leads to its significant reworking by plate tectonics processes and crust-mantle interaction,which include mechanical extension. 展开更多
关键词 crustal delamination granitization basin subsidence orogenic processes continental rifting HOTSPOTS continental shelves failed oceans oceanic crust
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部