A new blind method is proposed for identification of CDMA Time-Varying (TV)channels in this paper. By representing the TV channel's impulse responses in the delay-Doppler spread domain, the discrete-time canonical...A new blind method is proposed for identification of CDMA Time-Varying (TV)channels in this paper. By representing the TV channel's impulse responses in the delay-Doppler spread domain, the discrete-time canonical model of CDMA-TV systems is developed and a subspace method to identify blindly the Time-Invariant (TI) coordinates is proposed. Unlike existing basis expansion methods, this new algorithm does not require .estimation of the base frequencies, neither need the assumption of linearly varying delays across symbols. The algorithm offers definite explanation of the expansion coordinates. Simulation demonstrates the effectiveness of the algorithm.展开更多
An improved covariance driven subspace identification method is presented to identify the weakly excited modes. In this method, the traditional Hankel matrix is replaced by a reformed one to enhance the identifiabilit...An improved covariance driven subspace identification method is presented to identify the weakly excited modes. In this method, the traditional Hankel matrix is replaced by a reformed one to enhance the identifiability of weak characteristics. The robustness of eigenparameter estimation to noise contamination is reinforced by the improved Hankel matrix, in combination with component energy index (CEI) which indicates the vibration intensity of signal components, an alternative stabilization diagram is adopted to effectively separate spurious and physical modes. Simulation of a vibration system of multiple-degree-of-freedom and experiment of a frame structure subject to wind excitation are presented to demonstrate the improvement of the proposed blind method. The performance of this blind method is assessed in terms of its capability in extracting the weak modes as well as the accuracy of estimated parameters. The results have shown that the proposed blind method gives a better estimation of the weak modes from response signals of small signal to noise ratio (SNR)and gives a reliable separation of spurious and physical estimates.展开更多
The on-orbit parameter identification of a space structure can be used for the modification of a system dynamics model and controller coefficients. This study focuses on the estimation of a system state-space model fo...The on-orbit parameter identification of a space structure can be used for the modification of a system dynamics model and controller coefficients. This study focuses on the estimation of a system state-space model for a two-link space manipulator in the procedure of capturing an unknown object, and a recursive tracking approach based on the recursive predictor-based subspace identification(RPBSID) algorithm is proposed to identify the manipulator payload mass parameter. Structural rigid motion and elastic vibration are separated, and the dynamics model of the space manipulator is linearized at an arbitrary working point(i.e., a certain manipulator configuration).The state-space model is determined by using the RPBSID algorithm and matrix transformation. In addition, utilizing the identified system state-space model, the manipulator payload mass parameter is estimated by extracting the corresponding block matrix. In numerical simulations, the presented parameter identification method is implemented and compared with the classical algebraic algorithm and the recursive least squares method for different payload masses and manipulator configurations. Numerical results illustrate that the system state-space model and payload mass parameter of the two-link flexible space manipulator are effectively identified by the recursive subspace tracking method.展开更多
In this paper, a stochastic model of plague is first studied by subspace identification. First, the discrete model of plague is obtained based on the classical model. The corresponding stochastic model is proposed for...In this paper, a stochastic model of plague is first studied by subspace identification. First, the discrete model of plague is obtained based on the classical model. The corresponding stochastic model is proposed for the existence of stochastic disturbances. Second, for the model, the parameter matrices and noise intensity are obtained. Finally, the simulations of the model show that the subspace identification is more precise than least square method.展开更多
We study the subspace identification for the continuous-time errors-in-variables model from sampled data.First,the filtering approach is applied to handle the time-derivative problem inherent in continuous-time identi...We study the subspace identification for the continuous-time errors-in-variables model from sampled data.First,the filtering approach is applied to handle the time-derivative problem inherent in continuous-time identification.The generalized Poisson moment functional is focused.A total least squares equation based on this filtering approach is derived.Inspired by the idea of discrete-time subspace identification based on principal component analysis,we develop two algorithms to deliver consistent estimates for the continuous-time errors-in-variables model by introducing two different instrumental variables.Order determination and other instrumental variables are discussed.The usefulness of the proposed algorithms is illustrated through numerical simulation.展开更多
We investigate the identification problems of a class of linear stochastic time-delay systems with unknown delayed states in this study. A time-delay system is expressed as a delay differential equation with a single ...We investigate the identification problems of a class of linear stochastic time-delay systems with unknown delayed states in this study. A time-delay system is expressed as a delay differential equation with a single delay in the state vector. We first derive an equivalent linear time-invariant(LTI) system for the time-delay system using a state augmentation technique. Then a conventional subspace identification method is used to estimate augmented system matrices and Kalman state sequences up to a similarity transformation. To obtain a state-space model for the time-delay system, an alternate convex search(ACS) algorithm is presented to find a similarity transformation that takes the identified augmented system back to a form so that the time-delay system can be recovered. Finally, we reconstruct the Kalman state sequences based on the similarity transformation. The time-delay system matrices under the same state-space basis can be recovered from the Kalman state sequences and input-output data by solving two least squares problems. Numerical examples are to show the effectiveness of the proposed method.展开更多
Considering the multivariable and fractional-order characteristics of proton exchange membrane fuel cells(PEMFCs),a fractional-order subspace identification method(FOSIM)is proposed in this paper to establish a fracti...Considering the multivariable and fractional-order characteristics of proton exchange membrane fuel cells(PEMFCs),a fractional-order subspace identification method(FOSIM)is proposed in this paper to establish a fractionalorder state space(FOSS)model,which can be expressed as a multivariable configuration with two inputs,hydrogenflow rate and stack current,and two outputs,cell voltage and power.Based on this model,a novel constrained optimal control law named the Hildreth model predictive control(H-MPC)strategy is created,which employs a Hildreth quadratic programming algorithm to adjust the output power of fuel cells through adaptively regulating hydrogen flow and stack current.dSPACE semi-physical simulation results demonstrate that,compared with proportional-integral-derivative and quadratic programming MPC(QP-MPC),the proposed H-MPC exhibits better tracking ability and strong robustness against variations of PEMFC power.展开更多
文摘A new blind method is proposed for identification of CDMA Time-Varying (TV)channels in this paper. By representing the TV channel's impulse responses in the delay-Doppler spread domain, the discrete-time canonical model of CDMA-TV systems is developed and a subspace method to identify blindly the Time-Invariant (TI) coordinates is proposed. Unlike existing basis expansion methods, this new algorithm does not require .estimation of the base frequencies, neither need the assumption of linearly varying delays across symbols. The algorithm offers definite explanation of the expansion coordinates. Simulation demonstrates the effectiveness of the algorithm.
基金This project is supported by National Natural Science Foundation of China (No.10302019).
文摘An improved covariance driven subspace identification method is presented to identify the weakly excited modes. In this method, the traditional Hankel matrix is replaced by a reformed one to enhance the identifiability of weak characteristics. The robustness of eigenparameter estimation to noise contamination is reinforced by the improved Hankel matrix, in combination with component energy index (CEI) which indicates the vibration intensity of signal components, an alternative stabilization diagram is adopted to effectively separate spurious and physical modes. Simulation of a vibration system of multiple-degree-of-freedom and experiment of a frame structure subject to wind excitation are presented to demonstrate the improvement of the proposed blind method. The performance of this blind method is assessed in terms of its capability in extracting the weak modes as well as the accuracy of estimated parameters. The results have shown that the proposed blind method gives a better estimation of the weak modes from response signals of small signal to noise ratio (SNR)and gives a reliable separation of spurious and physical estimates.
基金funded by the National Natural Science Foundation of China (Nos. 11572069 and 51775541)the China Postdoctoral Science Foundation (No. 2016M601354)
文摘The on-orbit parameter identification of a space structure can be used for the modification of a system dynamics model and controller coefficients. This study focuses on the estimation of a system state-space model for a two-link space manipulator in the procedure of capturing an unknown object, and a recursive tracking approach based on the recursive predictor-based subspace identification(RPBSID) algorithm is proposed to identify the manipulator payload mass parameter. Structural rigid motion and elastic vibration are separated, and the dynamics model of the space manipulator is linearized at an arbitrary working point(i.e., a certain manipulator configuration).The state-space model is determined by using the RPBSID algorithm and matrix transformation. In addition, utilizing the identified system state-space model, the manipulator payload mass parameter is estimated by extracting the corresponding block matrix. In numerical simulations, the presented parameter identification method is implemented and compared with the classical algebraic algorithm and the recursive least squares method for different payload masses and manipulator configurations. Numerical results illustrate that the system state-space model and payload mass parameter of the two-link flexible space manipulator are effectively identified by the recursive subspace tracking method.
基金Acknowledgments This work was supported by the National Natural Science Foundation of China (NSFC) under Grant 61374137 and the State Key Laboratory of Integrated Automation of Process Industry Technology and Research Center of National Metallurgical Automation Fundamental Research Funds (2013ZCX02-03).
文摘In this paper, a stochastic model of plague is first studied by subspace identification. First, the discrete model of plague is obtained based on the classical model. The corresponding stochastic model is proposed for the existence of stochastic disturbances. Second, for the model, the parameter matrices and noise intensity are obtained. Finally, the simulations of the model show that the subspace identification is more precise than least square method.
基金supported by the National Natural Science Foundation of China (Nos.60674086 and 60736021)the Scientific and Technology Plan of Zhejiang Province,China (No.2007C21173)
文摘We study the subspace identification for the continuous-time errors-in-variables model from sampled data.First,the filtering approach is applied to handle the time-derivative problem inherent in continuous-time identification.The generalized Poisson moment functional is focused.A total least squares equation based on this filtering approach is derived.Inspired by the idea of discrete-time subspace identification based on principal component analysis,we develop two algorithms to deliver consistent estimates for the continuous-time errors-in-variables model by introducing two different instrumental variables.Order determination and other instrumental variables are discussed.The usefulness of the proposed algorithms is illustrated through numerical simulation.
文摘We investigate the identification problems of a class of linear stochastic time-delay systems with unknown delayed states in this study. A time-delay system is expressed as a delay differential equation with a single delay in the state vector. We first derive an equivalent linear time-invariant(LTI) system for the time-delay system using a state augmentation technique. Then a conventional subspace identification method is used to estimate augmented system matrices and Kalman state sequences up to a similarity transformation. To obtain a state-space model for the time-delay system, an alternate convex search(ACS) algorithm is presented to find a similarity transformation that takes the identified augmented system back to a form so that the time-delay system can be recovered. Finally, we reconstruct the Kalman state sequences based on the similarity transformation. The time-delay system matrices under the same state-space basis can be recovered from the Kalman state sequences and input-output data by solving two least squares problems. Numerical examples are to show the effectiveness of the proposed method.
基金This work was supported in part by National Natural Science Foundation of China grant No.61374153 and grant No.52377209in part by“Postgraduate Research&Practice Innovation Program of Jiangsu Province”(grant No.SJCX23_0132).
文摘Considering the multivariable and fractional-order characteristics of proton exchange membrane fuel cells(PEMFCs),a fractional-order subspace identification method(FOSIM)is proposed in this paper to establish a fractionalorder state space(FOSS)model,which can be expressed as a multivariable configuration with two inputs,hydrogenflow rate and stack current,and two outputs,cell voltage and power.Based on this model,a novel constrained optimal control law named the Hildreth model predictive control(H-MPC)strategy is created,which employs a Hildreth quadratic programming algorithm to adjust the output power of fuel cells through adaptively regulating hydrogen flow and stack current.dSPACE semi-physical simulation results demonstrate that,compared with proportional-integral-derivative and quadratic programming MPC(QP-MPC),the proposed H-MPC exhibits better tracking ability and strong robustness against variations of PEMFC power.