期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A 12-Channel,30Gb/s,0.18μm CMOS Front-End Amplifier for Parallel Optic-Fiber Receivers
1
作者 李智群 薛兆丰 +1 位作者 王志功 冯军 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2006年第1期47-53,共7页
This paper presents a 12-channel,30Gb/s front-end amplifier realized in standard 0.18μm CMOS technology for parallel optlc-fiber receivers. In order to overcome the problem of inadequate bandwidth caused by the large... This paper presents a 12-channel,30Gb/s front-end amplifier realized in standard 0.18μm CMOS technology for parallel optlc-fiber receivers. In order to overcome the problem of inadequate bandwidth caused by the large parasitical capacitor of CMOS photo-detectors,a regulated-cascode structure and noise optimization are used in the design of the transimpedance amplifier. The experimental results indicate that, with a parasitical capacitance of 2pF,a single channel is able to work at bite rates of up to 2.5Gb/s,and a clear eye diagram is obtained with a 0. 8mVpp input. Furthermore, an isolation structure combined with a p^+ guard.ring (PGR), an n^+ guard-ring (NGR),and a deep-n-well (DNW) for parallel amplifier is also presented. Taking this combined structure, the crosstalk and the substrate noise coupling have been effectively reduced. Compared with the isolation of PGR or PGR + NGR,the measured results show that the isolation degree of this structure is improved by 29.2 and 8. ldB at 1GHz,and by 8. 1 and 2. 5dB at 2GHz,respectively. With a 1.8V supply,each channel of the front-end amplifier consumes a DC power of 85mW,and the total power consumption of 12 channels is about 1W. 展开更多
关键词 parallel optic-fiber receiver front-end amplifier regulated-cascode substrate noise coupling ISOLATION
下载PDF
An improved single-π equivalent circuit model for on-chip inductors in GaAs process 被引量:1
2
作者 Hansheng Wang Weiliang He +1 位作者 Minghui Zhang Lu Tang 《Journal of Semiconductors》 EI CAS CSCD 2017年第11期91-96,共6页
An improved single-π equivalent circuit model for on-chip inductors in the GaAs process is presented in this paper. Considering high order parasites, the model is established by comprising an improved skin effect bra... An improved single-π equivalent circuit model for on-chip inductors in the GaAs process is presented in this paper. Considering high order parasites, the model is established by comprising an improved skin effect branch and a substrate lateral coupling branch. The parameter extraction is based on an improved characteristic function approach and vector fitting method. The model has better simulation than the previous work over the measured data of 2.5r and 4.5r on-chip inductors in the GaAs process. 展开更多
关键词 on-chip inductors GaAs process equivalent circuit model substrate lateral coupling branch improved characteristic function approach vector fitting
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部