When the voltage of an analog input signal is equal to the supply voltage, it is difficult for a conventional successive approximation ADC to correctly convert the analog signal into digital signal. This paper introdu...When the voltage of an analog input signal is equal to the supply voltage, it is difficult for a conventional successive approximation ADC to correctly convert the analog signal into digital signal. This paper introduces an improved successive approximation ADC, which can convert the rail-to-rail input range and reduce sampling time through a track-and-hold circuit. Comparator offset cancellation and capacitor self-calibration techniques are used in this ADC. Measurement results show that the peak SNDR of this ADC reaches 72 dB and the signal effective bandwidth is up to 1.25 MHz. It consumes 1 mW in the test, and the figure of merit is 123 fJ/conversion-step.展开更多
Addressing the impact of capacitor mismatch on the conversion accuracy of successive approximation register analog-to-digital converter(SAR ADC),a 12-bit 1 MS/s sub-binary SAR ADC designed using variable step size dig...Addressing the impact of capacitor mismatch on the conversion accuracy of successive approximation register analog-to-digital converter(SAR ADC),a 12-bit 1 MS/s sub-binary SAR ADC designed using variable step size digital calibration was proposed.The least mean square(LMS)calibration algorithm was employed with a ramp signal used as the calibration input.Weight errors,extracted under injected disturbances,underwent iterative training to optimize weight values.To address the trade-off between conversion accuracy and speed caused by a fixed step size,a novel variable step size algorithm tailored for SAR ADC calibration was proposed.The core circuit and layout of the SAR ADC were implemented using the Taiwan Semiconductor Manufacturing Company(TSMC)0.35μm complementary metal-oxide-semiconductor(CMOS)commercial process.Simulation of the SAR ADC calibration algorithm was conducted using Simulink,demonstrating quick convergence and meeting conversion accuracy requirements compared to fixed step size simulation.The results indicated that the convergence speed of the LMS digital calibration algorithm with variable step size was approximately eight times faster than that with a fixed step size,also yielding a lower mean square error(MSE).After calibration,the simulation results for the SAR ADC exhibited an effective number of bit(ENOB)of 11.79 bit and a signal-to-noise and distortion ratio(SNDR)of 72.72 dB,signifying a notable enhancement in the SAR ADC performance.展开更多
A 14-bit low power self-timed differential successive approximation(SAR) ADC with an on-chip multisegment bandgap reference(BGR) is described.An on-chip multi-segment BGR,which has a temperature coefficient of 1.3...A 14-bit low power self-timed differential successive approximation(SAR) ADC with an on-chip multisegment bandgap reference(BGR) is described.An on-chip multi-segment BGR,which has a temperature coefficient of 1.3 ppm/℃and a thermal drift of about 100μV over the temperature range of -40 to 120℃is implemented to provide a high precision reference voltage for the SAR ADC.The Gray code form is utilized instead of binary form mode control to reduce substrate noise and enhance the linearity of the whole system.Self-timed bit-cycling is adopted to enhance the time efficiency.The 14-bit ADC was fabricated in a TSMC 0.13μm CMOS process. With the on-chip BGR,the SAR ADC achieves an SNDR of 81.2 dB(13.2 ENOB) and an SFDR of 85.2 dB with a conversion rate of 2 MS/s at room temperature and can keep an ENOB of more than 12 bits at a conversion rate of 2 MS/s over the temperature range from -40 to 120℃.展开更多
文摘When the voltage of an analog input signal is equal to the supply voltage, it is difficult for a conventional successive approximation ADC to correctly convert the analog signal into digital signal. This paper introduces an improved successive approximation ADC, which can convert the rail-to-rail input range and reduce sampling time through a track-and-hold circuit. Comparator offset cancellation and capacitor self-calibration techniques are used in this ADC. Measurement results show that the peak SNDR of this ADC reaches 72 dB and the signal effective bandwidth is up to 1.25 MHz. It consumes 1 mW in the test, and the figure of merit is 123 fJ/conversion-step.
基金the Natural Science Basic Research Project of Shaanxi Province,China(2020JM-583)。
文摘Addressing the impact of capacitor mismatch on the conversion accuracy of successive approximation register analog-to-digital converter(SAR ADC),a 12-bit 1 MS/s sub-binary SAR ADC designed using variable step size digital calibration was proposed.The least mean square(LMS)calibration algorithm was employed with a ramp signal used as the calibration input.Weight errors,extracted under injected disturbances,underwent iterative training to optimize weight values.To address the trade-off between conversion accuracy and speed caused by a fixed step size,a novel variable step size algorithm tailored for SAR ADC calibration was proposed.The core circuit and layout of the SAR ADC were implemented using the Taiwan Semiconductor Manufacturing Company(TSMC)0.35μm complementary metal-oxide-semiconductor(CMOS)commercial process.Simulation of the SAR ADC calibration algorithm was conducted using Simulink,demonstrating quick convergence and meeting conversion accuracy requirements compared to fixed step size simulation.The results indicated that the convergence speed of the LMS digital calibration algorithm with variable step size was approximately eight times faster than that with a fixed step size,also yielding a lower mean square error(MSE).After calibration,the simulation results for the SAR ADC exhibited an effective number of bit(ENOB)of 11.79 bit and a signal-to-noise and distortion ratio(SNDR)of 72.72 dB,signifying a notable enhancement in the SAR ADC performance.
文摘A 14-bit low power self-timed differential successive approximation(SAR) ADC with an on-chip multisegment bandgap reference(BGR) is described.An on-chip multi-segment BGR,which has a temperature coefficient of 1.3 ppm/℃and a thermal drift of about 100μV over the temperature range of -40 to 120℃is implemented to provide a high precision reference voltage for the SAR ADC.The Gray code form is utilized instead of binary form mode control to reduce substrate noise and enhance the linearity of the whole system.Self-timed bit-cycling is adopted to enhance the time efficiency.The 14-bit ADC was fabricated in a TSMC 0.13μm CMOS process. With the on-chip BGR,the SAR ADC achieves an SNDR of 81.2 dB(13.2 ENOB) and an SFDR of 85.2 dB with a conversion rate of 2 MS/s at room temperature and can keep an ENOB of more than 12 bits at a conversion rate of 2 MS/s over the temperature range from -40 to 120℃.