Elemental doping is an effective strategy to enhance photocatalytic activity and extend the light absorption range of single-component photocatalysts.In this work,a series of La-doped CeO_(2) nanorods(La-CeO_(2)-x) wi...Elemental doping is an effective strategy to enhance photocatalytic activity and extend the light absorption range of single-component photocatalysts.In this work,a series of La-doped CeO_(2) nanorods(La-CeO_(2)-x) with La content of 1 wt%-15 wt% are synthesized by a simple hydrothermal method and further used as photocatalyst for sulfamerazine(SMR) degradation.The prepared La-CeO_(2)-x nanorods exhibit a great improvement in electron-hole pair migration and visible-light response due to the synergistic effect of abundant oxygen vacancies and heterogeneous elements(La).Consequently,La-CeO_(2)-x exhibited excellent visible-light photocatalytic performances and chemical stability for SMR degradation,the La-CeO_(2)-5 sample achieved the highest SMR degradation rate of 81%,which was 3.4 times higher than that of the original CeO_(2).Furthermore,three possible degradation pathways of SMR in La-CeO_(2) photocatalytic reactions were proposed by liquid chromatography-mass spectrometry technique.Finally,density functional theory calculations were carried out to provide an in-depth understanding of the structure-performance relationships.Considering its excellent properties and better photocatalytic performance,this study demonstrates that La doping in CeO_(2) is an effective way to increase oxygen vacancy and improve the photochemical properties of photocatalysts.展开更多
基金financially supported by the National Natural Science Foundation of China (No.52300206)the Natural Science Foundation of Jiangsu Province (No.BK20230705)+3 种基金the Industry-University Research Cooperation Project of Jiangsu Province,China (No.BY20221227)Natural Science Foundation of Jiangsu Higher Education Institutions of China (No.22KJB610014)the Talent-Recruiting Program of Nanjing Institute of Technology (No.YKJ202124)the Open Fund of Advanced Industrial Technology Research Institute,Nanjing Institute of Technology (No. XJY202110)。
文摘Elemental doping is an effective strategy to enhance photocatalytic activity and extend the light absorption range of single-component photocatalysts.In this work,a series of La-doped CeO_(2) nanorods(La-CeO_(2)-x) with La content of 1 wt%-15 wt% are synthesized by a simple hydrothermal method and further used as photocatalyst for sulfamerazine(SMR) degradation.The prepared La-CeO_(2)-x nanorods exhibit a great improvement in electron-hole pair migration and visible-light response due to the synergistic effect of abundant oxygen vacancies and heterogeneous elements(La).Consequently,La-CeO_(2)-x exhibited excellent visible-light photocatalytic performances and chemical stability for SMR degradation,the La-CeO_(2)-5 sample achieved the highest SMR degradation rate of 81%,which was 3.4 times higher than that of the original CeO_(2).Furthermore,three possible degradation pathways of SMR in La-CeO_(2) photocatalytic reactions were proposed by liquid chromatography-mass spectrometry technique.Finally,density functional theory calculations were carried out to provide an in-depth understanding of the structure-performance relationships.Considering its excellent properties and better photocatalytic performance,this study demonstrates that La doping in CeO_(2) is an effective way to increase oxygen vacancy and improve the photochemical properties of photocatalysts.