Polyethersulfone(PES) is widely used as biomaterials due to its thermal stability,mechanical strength,and chemical inertness.Nevertheless,their blood compatibility is still not adequate for hemodialysis and blood puri...Polyethersulfone(PES) is widely used as biomaterials due to its thermal stability,mechanical strength,and chemical inertness.Nevertheless,their blood compatibility is still not adequate for hemodialysis and blood purification.In this study,the sulfonated polyethersulfone(SPES) was synthesized through an electrophilic substitution reaction,and PES/SPES blending membranes were prepared.The characterization of the SPES was studied by FTIR.The water adsorption and water contact angle experiments show that the hydrophilicity of PES/SPES blend membrane was improved as for the sulfonate group existing in the SPES.Moreover,PES/SPES blend membrane could effectively reduce bovine serum albumin adsorption and prolong the blood coagulation time compared with the PES membrane,thereby improving blood compatibility.展开更多
This study was performed to investigate the availability of forward osmosis(FO)for microalgae harvesting using sulfonated polyethersulfone(SPES)/PES porous membranes.In FO process,porous membranes(<25.0 L m^−2 h^−1...This study was performed to investigate the availability of forward osmosis(FO)for microalgae harvesting using sulfonated polyethersulfone(SPES)/PES porous membranes.In FO process,porous membranes(<25.0 L m^−2 h^−1)exhibited more superior water flux than TFC FO membranes(<2.6 L m^−2 h^−1).Furthermore,the incorporation of SPES has been demonstrated to enhance membrane performance.The effects of SPES content on pore structure and separation performance were investigated.Compared with pure PES porous membranes,porous membranes with 40%SPES yielded an improved hydrophilicity and greater porosity.It exhibited two times higher water fluxes than the pure PES porous membrane.For microalgae harvesting,AL-FS mode(active layer facing the feed solution)was more favourable than AL-DS mode(active layer facing the draw solution)because less deposited microalgae on the active layer mitigate the membrane biofouling.FO operation combined with SPES/PES porous membranes is conducive to preserving microalgae cell integrity under the mild condition.In addition,FO membrane can be cleaned by a simple water rinse.Potential implications were highlighted as a sustainable method for microalgae harvesting because of no pressure input and less chemical cleaning demand.展开更多
Using the hydrogen-bonding interaction between graphene oxide(GO) and sulfonated polyethersulfone (SPES), we constructed the multilayer structure of GO and SPES on the polyester tiber mats via layer-by-layer self-...Using the hydrogen-bonding interaction between graphene oxide(GO) and sulfonated polyethersulfone (SPES), we constructed the multilayer structure of GO and SPES on the polyester tiber mats via layer-by-layer self-assembly. In each self-assembled layer, sulfonic acid groups are arranged along the a^s of fiber, which provides the long-range proton transmission channels, promoting the rapidly proton conduction. The performances of the composite membranes based on SPES and multilayer assembled polyester fiber mats were studied. The results show that the proton conductivity of composite membranes increases with the increasing assembly layers. At the same time, the mechanical properties and methanol-resistance of the composite membranes were obviously improved.展开更多
In this work, we evaluate the properties of solution casted polysulfone (PSf)/sulfonated polyethersulfone (SPES) blend membranes prepared by non-solvent induced phase inversion technique. The morphologies of these...In this work, we evaluate the properties of solution casted polysulfone (PSf)/sulfonated polyethersulfone (SPES) blend membranes prepared by non-solvent induced phase inversion technique. The morphologies of these blend membranes, observed using scanning electron microscopy (SEM) and atomic force microscopy (AFM) imaging, indicated a smoother skin layer and an increased number of highly interconnected pores in the sub layer. The efficacy of the prepared membranes was evaluated in terms of porosity, ultrafiltration rate (UFR), molecular weight cut-off (MWCO) and mean pore size. The hydrophilicity of these membranes was in consonance with contact angle values. It was observed that the selectivity and the UFR of the blend membranes were higher when compared to pristine membranes. Furthermore, these blend membranes demonstrated an increase in biocompatibility - prolonged blood clotting time, suppressed platelet adhesion, reduced protein adsorption and lower complement activation. These membranes were also investigated for uremic solute removal. Diffusive permeability of middle molecular weight cytochrome-c revealed an increase from 8 × 10 ^-4 cm·s ^-1 to 18 × 10^-4 cm· s^- and illustrates the possibility that these sulfonated PES/PSf blend membranes can be used to prepare membrane modules for hemodialysis applications.展开更多
The current work focused on the investigation of charge and separation characteristics of nanofiltration (NF) membrane embracing dissociated functional groups under different electrolyte solutions. The electro-kinet...The current work focused on the investigation of charge and separation characteristics of nanofiltration (NF) membrane embracing dissociated functional groups under different electrolyte solutions. The electro-kinetic method was carried out to assess the membrane volume charge density (X) with different salt concentrations ranging from 0.1 to 10 mol. m-3 and different electrolyte species, such as type 1-1, type 2-1 and type 3-1. The Donnan steric pore model-dielectric exclusion (DSPM- DE) model was employed to evaluate the separation characteristics of the NF membrane for wide range of electrolyte concentration (from 25.7 to 598.9mol·m^-3). The results indicated that the dissociation of the hydro- philic functional groups and the specific adsorption contributed to charge formation on membrane surface. The former played a dominant role in type 1-1 and type 2-1 electrolytes at dilute aqueous solutions (0.1-0.5 mol · m^3). However, for type 3-1 electrolyte, specific adsorp- tion should contribute to the charge effect to a large extent. Moreover, the correlation between the volume charge density and feed concentration was in accordance with Freundlich isotherm. Furthermore, it was found that the separation characteristic of NF membrane could be evaluated well by DSPM-DE model coupling with electro-kinetic method in a whole concentration range.展开更多
基金Supported by the Special Fund for International Cooperation Projects of China (2005DFA50160)
文摘Polyethersulfone(PES) is widely used as biomaterials due to its thermal stability,mechanical strength,and chemical inertness.Nevertheless,their blood compatibility is still not adequate for hemodialysis and blood purification.In this study,the sulfonated polyethersulfone(SPES) was synthesized through an electrophilic substitution reaction,and PES/SPES blending membranes were prepared.The characterization of the SPES was studied by FTIR.The water adsorption and water contact angle experiments show that the hydrophilicity of PES/SPES blend membrane was improved as for the sulfonate group existing in the SPES.Moreover,PES/SPES blend membrane could effectively reduce bovine serum albumin adsorption and prolong the blood coagulation time compared with the PES membrane,thereby improving blood compatibility.
基金This work was supported by the National Natural Science Foundation of China(No.21576250)the Key Research Project of Shandong Province(No.2018CXGC 1003),and the Young Taishan Scholars Program of Shandong Province.
文摘This study was performed to investigate the availability of forward osmosis(FO)for microalgae harvesting using sulfonated polyethersulfone(SPES)/PES porous membranes.In FO process,porous membranes(<25.0 L m^−2 h^−1)exhibited more superior water flux than TFC FO membranes(<2.6 L m^−2 h^−1).Furthermore,the incorporation of SPES has been demonstrated to enhance membrane performance.The effects of SPES content on pore structure and separation performance were investigated.Compared with pure PES porous membranes,porous membranes with 40%SPES yielded an improved hydrophilicity and greater porosity.It exhibited two times higher water fluxes than the pure PES porous membrane.For microalgae harvesting,AL-FS mode(active layer facing the feed solution)was more favourable than AL-DS mode(active layer facing the draw solution)because less deposited microalgae on the active layer mitigate the membrane biofouling.FO operation combined with SPES/PES porous membranes is conducive to preserving microalgae cell integrity under the mild condition.In addition,FO membrane can be cleaned by a simple water rinse.Potential implications were highlighted as a sustainable method for microalgae harvesting because of no pressure input and less chemical cleaning demand.
基金Supported by the National Natural Science Foundation of China(No.21574017).
文摘Using the hydrogen-bonding interaction between graphene oxide(GO) and sulfonated polyethersulfone (SPES), we constructed the multilayer structure of GO and SPES on the polyester tiber mats via layer-by-layer self-assembly. In each self-assembled layer, sulfonic acid groups are arranged along the a^s of fiber, which provides the long-range proton transmission channels, promoting the rapidly proton conduction. The performances of the composite membranes based on SPES and multilayer assembled polyester fiber mats were studied. The results show that the proton conductivity of composite membranes increases with the increasing assembly layers. At the same time, the mechanical properties and methanol-resistance of the composite membranes were obviously improved.
基金supported by the Department of Science and Technology (DST),Government of India (IDP/MED/2010/17/2(General)
文摘In this work, we evaluate the properties of solution casted polysulfone (PSf)/sulfonated polyethersulfone (SPES) blend membranes prepared by non-solvent induced phase inversion technique. The morphologies of these blend membranes, observed using scanning electron microscopy (SEM) and atomic force microscopy (AFM) imaging, indicated a smoother skin layer and an increased number of highly interconnected pores in the sub layer. The efficacy of the prepared membranes was evaluated in terms of porosity, ultrafiltration rate (UFR), molecular weight cut-off (MWCO) and mean pore size. The hydrophilicity of these membranes was in consonance with contact angle values. It was observed that the selectivity and the UFR of the blend membranes were higher when compared to pristine membranes. Furthermore, these blend membranes demonstrated an increase in biocompatibility - prolonged blood clotting time, suppressed platelet adhesion, reduced protein adsorption and lower complement activation. These membranes were also investigated for uremic solute removal. Diffusive permeability of middle molecular weight cytochrome-c revealed an increase from 8 × 10 ^-4 cm·s ^-1 to 18 × 10^-4 cm· s^- and illustrates the possibility that these sulfonated PES/PSf blend membranes can be used to prepare membrane modules for hemodialysis applications.
基金Acknowledgements This research was supported by the National Natural Science Foundation of China (Grant No. 20706050).
文摘The current work focused on the investigation of charge and separation characteristics of nanofiltration (NF) membrane embracing dissociated functional groups under different electrolyte solutions. The electro-kinetic method was carried out to assess the membrane volume charge density (X) with different salt concentrations ranging from 0.1 to 10 mol. m-3 and different electrolyte species, such as type 1-1, type 2-1 and type 3-1. The Donnan steric pore model-dielectric exclusion (DSPM- DE) model was employed to evaluate the separation characteristics of the NF membrane for wide range of electrolyte concentration (from 25.7 to 598.9mol·m^-3). The results indicated that the dissociation of the hydro- philic functional groups and the specific adsorption contributed to charge formation on membrane surface. The former played a dominant role in type 1-1 and type 2-1 electrolytes at dilute aqueous solutions (0.1-0.5 mol · m^3). However, for type 3-1 electrolyte, specific adsorp- tion should contribute to the charge effect to a large extent. Moreover, the correlation between the volume charge density and feed concentration was in accordance with Freundlich isotherm. Furthermore, it was found that the separation characteristic of NF membrane could be evaluated well by DSPM-DE model coupling with electro-kinetic method in a whole concentration range.