In the northwestern margin of the Youjiang basin(NWYB)in SW China,many Carlin-like gold deposits are highly antimony(Sb)-rich,and many vein-type Sb deposits contain much Au.These deposits have similar ages,host rocks,...In the northwestern margin of the Youjiang basin(NWYB)in SW China,many Carlin-like gold deposits are highly antimony(Sb)-rich,and many vein-type Sb deposits contain much Au.These deposits have similar ages,host rocks,ore-forming temperatures,ore-related alterations and ore mineral assemblages,but the Au and Sb metallogenic relations and their ore-forming process remain enigmatic.Here we investigate the large Qinglong Sb deposit in the NWYB,which has extensive sub-economic Au mineralization,and present a new metallogenic model based on in-situ trace elements(EPMA and LA-ICP-MS)and sulfur isotopes(NanoSIMS and fs-LA-MC-ICPMS)of the ore sulfides.At Qinglong,economic Sb ores contain coarse-grained stibnite,jasperoid quartz and fluorite,whilst the sub-economic Au–Sb ores comprise dominantly veined quartz,arsenian pyrite and fine-grained stibnite.Three generations of ore-related pyrite(Py1,Py2 and Py3)and two generations of stibnite(Stb1 and Stb2)are identified based on their texture,chemistry,and sulfur isotopes.The pre-ore Py1 is characterized by the lower ore element(Au,As,Sb,Cu and Ag)contents(mostly below the LA-ICP-MS detection limit)and Co/Ni ratios(average 0.31)than the ore-stage pyrites(Py2 and Py3),implying a sedimentary/diagenetic origin.The Py2 and Py3 have elevated ore element abundance(maximum As=6500 ppm,Au=22 ppm,Sb=6300 ppm,Cu=951 ppm,Ag=77 ppm)and Co/Ni ratios(average 1.84),and have positive As vs.Au–Sb–Cu–Ag correlations.Early-ore Stb1 has lower As(0.12–0.30 wt.%)than late-ore Stb2(0.91–1.20 wt.%).These features show that the progressive As enrichment in ore sulfides is accompanied by increasing Au,Sb,Cu and Ag with the hydrothermal evolution,thereby making As a good proxy for Au.As-rich,As-poor and As-free zones are identified via NanoSIMS mapping of the Au-bearing pyrite.The As-rich zones in the Qinglong Au-bearing pyrites(Py2 and Py3)and ore stibnites(Stb1 and Stb2)have narrowδ^(34)SH_(2)S ranges(-8.9‰to +4.1‰,average-3.1‰)and-2.9‰to +6.9‰,average + 1.3‰),respectively,indicating that the Au-rich and Sb-rich fluids may have had the same sulfur source.Published in-situ sulfur isotopic data of pyrite As-rich zones from other Carlin-like Au deposits(Shuiyindong,Taipingdong,Nayang,Getang and Lianhuashan)in the NWYB have similar ore-fluidδSH_(2)S values(-4.5‰to +6.7‰,average-0.6‰)to those of Qinglong.Therefore,we infer that the sulfur of both Au and Sb mineralization was derived from the same magmatic-related source(0±5‰)in the NWYB.Moreover,the core of pyrites(Py1)has variable S isotope fractionation(-18.9‰to +18.1‰,mostly +3‰to +12‰),suggesting that the higher-^(34)S H_(2)S was produced by bacterial sulfate reduction(BSR).The hydrothermal pyrite(Py2 and Py3)δ^(34)S values gradually decrease with increasing As concentrations,and ultimately,within the restricted range(-5‰to +5‰)in As-rich zones.This variation implies that the As-rich pyrite was formed through ongoing interactions of the magmatic-hydrothermal fluid with pre-existing sedimentary pyrites,causing the progressive decreasing δ^(34)S values with As content increase,Hence,the fluid/mineral interaction may have generated the observed variation in δ^(34)S and As contents.Overall,comparing the Au and Sb deposits in the NWYB,we favor a magmatic-related source for the Au–Sb–As-rich fluids,but the Au-and Sb-ore fluids were likely evolved at separate stages in the ore-forming system.展开更多
The northern slope of the South China Sea is a gas-hydrate-bearing region related to a high deposition rate of organic-rich sediments co-occurring with intense methanogenesis in subseafloor environments.Anaerobic oxid...The northern slope of the South China Sea is a gas-hydrate-bearing region related to a high deposition rate of organic-rich sediments co-occurring with intense methanogenesis in subseafloor environments.Anaerobic oxidation of methane(AOM) coupled with bacterial sulfate reduction results in the precipitation of solid phase minerals in seepage sediment,including pyrite and gypsum.Abundant aggregates of pyrites and gypsums are observed between the depth of 667 and 850 cm below the seafloor(cmbsf) in the entire core sediment of HS328 from the northern South China Sea.Most pyrites are tubes consisting of framboidal cores and outer crusts.Gypsum aggregates occur as rosettes and spheroids consisting of plates.Some of them grow over pyrite,indicating that gypsum precipitation postdates pyrite formation.The sulfur isotopic values(δ^34 S) of pyrite vary greatly(from –46.6‰ to –12.3‰ V-CDT) and increase with depth.Thus,the pyrite in the shallow sediments resulted from organoclastic sulfate reduction(OSR) and is influenced by AOM with depth.The relative high abundance and δ^34 S values of pyrite in sediments at depths from 580 to 810 cmbsf indicate that this interval is the location of a paleo-sulfate methane transition zone(SMTZ).The sulfur isotopic composition of gypsum(from–25‰ to –20.7‰) is much lower than that of the seawater sulfate,indicating the existence of a 34 S-depletion source of sulfur species that most likely are products of the oxidation of pyrites formed in OSR.Pyrite oxidation is controlled by ambient electron acceptors such as MnO2,iron(Ⅲ) and oxygen driven by the SMTZ location shift to great depths.The δ^34 S values of gypsum at greater depth are lower than those of the associated pyrite,revealing downward diffusion of 34 S-depleted sulfate from the mixture of oxidation of pyrite derived by OSR and the seawater sulfate.These sulfates also lead to an increase of calcium ions from the dissolution of calcium carbonate mineral,which will be favor to the formation of gypsum.Overall,the mineralogy and sulfur isotopic composition of the pyrite and gypsum suggest variable redox conditions caused by reduced seepage intensities,and the pyrite and gypsum can be a recorder of the intensity evolution of methane seepage.展开更多
Pyrite framboids were found in the Permian-Triassic boundary at Meishan Section,while their sulfur isotopes were determined.The majority of framboids is less than 5μm in diameter,with some large-sized framboids.Also,...Pyrite framboids were found in the Permian-Triassic boundary at Meishan Section,while their sulfur isotopes were determined.The majority of framboids is less than 5μm in diameter,with some large-sized framboids.Also,euhedral gypsums were observed in the boundary clay.The authors suppose that most of the pyrite framboids formed just below the redox boundary and stopped growing after entering the lower water column.The result indicates that it was probably lower dysoxia condition in the temporal ocean.Moreover,the authors also presume that some pyrite was oxidated to sulfates accompanying the fluctuation of redox condition,which would probably be the origin of the negative sulfur isotopes of gypsum and CAS reported before.In addition,sulfur isotope of framboidal pyrite suggests that sulfur is originated from bacterial sulfate reduction in anoxic condition.Therefore, this study confirms that the ocean was widely anoxic during the Permian-Triassic transitional period. However,the redox condition in temporal ocean was probably not stable,with short-term fluctuations.展开更多
The Leishan-Rongjiang antimony ore field(LAOF) is in a unique geotectonic location in the uplift between the Youjiang and Xiangzhong basins.This paper focuses on two representative deposits in the LAOF:the Bameng and ...The Leishan-Rongjiang antimony ore field(LAOF) is in a unique geotectonic location in the uplift between the Youjiang and Xiangzhong basins.This paper focuses on two representative deposits in the LAOF:the Bameng and Peize antimony(Sb) deposits.We analyzed fluid inclusions(FIs) in stibnite and coexisting quartz,as well as the sulfur isotopic composition of stibnite,to better understand the nature of the ore-forming fluid and the metallogenic process.The FIs data from samples of the stibnite and coexisting quartz indicate that the ore-forming fluids were characterized by low-temperature(150-210 ℃),low-salinity(1.5 wt%-6.0 wt%NaCl equiv.),and low-density(0.872-0.961 g/cm^3).The δ^(34)S values of stibnite(-8.21‰ to 3.76‰,average =-6.30‰)fall in between the sulfur isotopic compositions of the mantle and of biogenic sulfur in sedimentary rocks.However,the δ^(34)S_(∑s) values(-4.41 ‰ to +0.04‰,average =-2.49‰) of the ore-forming fluids are generally closer to the sulfur isotopic composition of the mantle source,indicating that the sulfur in the LAOF was mainly sourced from the mantle,but with possible involvement of biogenic sulfur.In addition,FIs petrography and ore deposit geology show that fluid boiling resulted from an abrupt decrease in pressure,which may have triggered the precipitation of stibnite.We conclude that low-temperature,dilute hydrothermal fluids with mixed origins migrated along the regional fault and interacted with the wall rock,extracting the ore-forming materials.Then,the oreforming fluids were injected into the fault fracture zones.展开更多
Methane seepage is the signal of the deep hydrocarbon reservoir. The determination of seepage is significant to the exploration of petroleum, gas and gas hydrate. The seepage habits microbial and macrofaunal life whic...Methane seepage is the signal of the deep hydrocarbon reservoir. The determination of seepage is significant to the exploration of petroleum, gas and gas hydrate. The seepage habits microbial and macrofaunal life which is fueled by the hydrocarbons, the metabolic byproducts facilitate the precipitation of authigenic minerals. The study of methane seepage is also important to understand the oceanographic condition and local ecosystem. The seepage could be active or quiescent at different times. The geophysical surveys and the geochemical determinations reveal the existence of seepage. Among these methods, only geochemical determination could expose message of the dormant seepages. The active seepage demonstrates high porewater methane concentration with rapid SO42- depleted, low HaS and dissolved inorganic carbon (DIC), higher rates of sulfate reduction (SR) and anaerobic oxidation of methane (AOM). The quiescent seepage typically develops authigenic carbonates with specific biomarkers, with extremely depleted 13C in gas, DIC and carbonates and with enriched 34S sulfate and depleted 34S pyrite. The origin of methane, minerals precipitation, the scenario of seepage and the possible method of immigration could be determined by the integration of solutes concentration, mineral composition and isotopic fractionation of carbon, sulfur. Numerical models with the integrated results provide useful insight into the nature and intensity of methane seepage occurring in the sediment and paleo- oceanographic conditions. Unfortunately, the intensive investigation of a specific area with dormant seep is still limit. Most seepage and modeling studies are site-specific and little attempt has been made to extrapolate the results to larger scales. Further research is thus needed to foster our understanding of the methane seepage.展开更多
Studies of the mineralogy and sulfur isotope composition of sediment-hosted hydrothermal sulfide minerals in cores are important for understanding the seafloor mineralization environment and material source and recons...Studies of the mineralogy and sulfur isotope composition of sediment-hosted hydrothermal sulfide minerals in cores are important for understanding the seafloor mineralization environment and material source and reconstructing the hydrothermal history.However,the source of ore-forming materials and the history of hydrothermal activity in the southern Okinawa Trough(SOT)remain unclear.Here,the mineralogy and sulfur isotope characteristics of sulfides from gravity core HOBAB4-S2,collected between the Yonaguni Knoll IV hydrothermal field(HF)and the Tangyin HF,was investigated.Enrichments in Zn(up to 321×10^(-6)),Cu(up to73.7×10^(-6)),and Pb(up to 160×10^(-6))and the presence of pyrite,galena,pyrrhotite and minor sphalerite and chalcopyrite provide evidence for the input of hydrothermal materials into the sediments.The pyrite morphologies include disseminated cubic,pentagonal dodecahedron,and framboidal forms.Except for minor framboidal pyrite,euhedral pyrite from core HOBAB4-S2 is mainly of hydrothermal origin with Co/Ni ratios>1 and S/Fe atomic ratios<2 in the Cu-Zn-Pb-rich layers.The occurrences of hexagonal pyrrhotite,high-Co(up to0.17%)pyrite and high-Fe sphalerite indicate that the hydrothermal precipitates formed at medium-high temperatures and low-sulfur fugacity(f S_(2))environments.The δ^(34) S values of sulfides(0.21‰–3.45‰)with low-f S_(2) mineral assemblages(e.g.,pyrrhotite±high-Fe sphalerite)in the core are significantly lower than those of magmatic rocks and seawater,indicating possible incorporation of previously formed biogenic sulfur in the sediment.Combined with the age model of the core,it is suggested that hydrothermal activity likely began in the Tangyin HF before AD 1445–1483 and that at least three active episodes may have occurred since then.展开更多
Objective Authigenic pyrite often develops extensively in marine sediments,which is an important product of sulfate reduction in an anoxic environment.It has a specific appearance and complicated sulfur isotopic prope...Objective Authigenic pyrite often develops extensively in marine sediments,which is an important product of sulfate reduction in an anoxic environment.It has a specific appearance and complicated sulfur isotopic properties,and acts as important evidence of methane seep in marine sediments.Strong AOM(anaerobic oxidation of methane)activity has developed in the Okinawa Trough.展开更多
The Nage Cu-Pb polymetallic deposit is located in the transitional zone of the Yangtze craton and cathaysia,that is the southwest of Jiangnan orogenic belt. The mainly strata are Wentong formation of Mesoproterozoic S...The Nage Cu-Pb polymetallic deposit is located in the transitional zone of the Yangtze craton and cathaysia,that is the southwest of Jiangnan orogenic belt. The mainly strata are Wentong formation of Mesoproterozoic Sibo group and the Jialu formation(Qbj) ,Wuye formation(Qbw) ,Fanzhao formation(Qbf) and Gongdong formation(Qbg) of the Neoproterozoic Qingbaikou System Xiajiang group.展开更多
Oxygen fugacity(fO_(2))is a key intensity variable during the entire magmatic-hydrothermal mineralization courses.The redox state and its variations between different stages of the ore-forming fluids of intermediate s...Oxygen fugacity(fO_(2))is a key intensity variable during the entire magmatic-hydrothermal mineralization courses.The redox state and its variations between different stages of the ore-forming fluids of intermediate sulfidation epithermal deposits are rarely deciphered due to the lack of appropriate approaches to determine fO_(2)of the fluids.Here,we reported theδ^(34)S of the sulfides from three different stages(stageⅠ,Ⅱ,Ⅲ)of Zhengguang,an Early Ordovician Au-rich intermediate sulfidation(IS)epithermal deposit,to decipher the redox evolution of the ore-forming fluids.The increasingδ^(34)S values from stageⅠpyrite(pyl,average-2.6‰)through py2(average-1.9‰)to py3(average-0.2‰)indicates a decrease of the oxygen fugacity of the ore-forming fluids.A compilation ofδ^(34)S values of sulfides from two subtypes of IS deposits(Au-rich and Ag-rich)from NE China shows that theδ^(34)S values of sulfides from Au-rich IS deposits are systematically lighter than those of Ag-rich IS Ag-Pb-Zn deposit,indicating the ore-forming fluids of the former are more oxidized than the latter.We highlight that sulfur isotopic composition of hypogene sulfides is an efficacious proxy to fingerprint the oxygen fugacity fluctuations of epithermal deposits and could potentially be used to distinguish the subtypes of IS deposits.展开更多
Located along the southern part of the West Qinling orogenic belt,the Yangshan gold deposit is one of the largest in China.The major gold ores of Yangshan are disseminated in metasedimentary host rocks with minor nati...Located along the southern part of the West Qinling orogenic belt,the Yangshan gold deposit is one of the largest in China.The major gold ores of Yangshan are disseminated in metasedimentary host rocks with minor native gold amounts in stibnite-gold quartz veins.Pyrite and arsenopyrite are the major Au-bearing minerals.Hydrothermal muscovite from gold-bearing quartz veins was dated using the in situ Rb-Sr method to determine the formation age of the Yangshan gold deposit.The Rb-Sr isochron date of the muscovite yielded 210.1±5.6 Ma(MSWD=1.2).This date is near the lower end of the period of the mineralized granitic dykes(210.49-213.10 Ma).Two stages of gold enriching process are recognized in the gold-bearing pyrite:the first is incorporated with the Co,Cu,As,Ni enrichment;and the second is accompanied by Bi,Co,Ni,Pb,Cu,Sb concentration.The in-situ sulfur isotopic values of pyrites show a restrictedΔ34s range of-1.43‰to 2.86‰with a mean value of 0.43‰.Trace-element mapping and in-situ sulfur isotopic analysis of pyrite suggest that the sulfur deposits are likely derived from a magmatic source and likely assimilated by sulfur from the sedimentary bedrock.Thus,magmatism plays a critical role in the formation of the Yangshan gold deposit.展开更多
A new experimental calibration was undertaken in this study to get a more reliable sphalerite-galena sulfur isotope geothermometer. The experimental conditions selected in study were very similar to those of natural h...A new experimental calibration was undertaken in this study to get a more reliable sphalerite-galena sulfur isotope geothermometer. The experimental conditions selected in study were very similar to those of natural hydrothermal solution. The high-precision SF6 method was used in sulfur isotope analyses. The obtained calibration curve for sulfur isotope fractionation between sphalerite and galena can be expressed with the equation 10001nαSp-Gn= 0.74×106T-2+0.08.展开更多
The Goshgarchay Cu-Au deposit is located in the central part of the northwest flank of the Murovdagh region in the Lesser Caucasus.The Goshgarchay Cu-Au deposit is associated with Middle Jurassic volcanic and Late Jur...The Goshgarchay Cu-Au deposit is located in the central part of the northwest flank of the Murovdagh region in the Lesser Caucasus.The Goshgarchay Cu-Au deposit is associated with Middle Jurassic volcanic and Late Jurassic-Early Cretaceous high-K calc-alkaline intrusive rocks.The Cu-Au mineralization is commonly related to quartz-sericite-chlorite alteration dominantly composed of chalcopyrite,gold,sphalerite,pyrite,bornite,hematite,covellite,chalcocite,malachite,and azurite.The Goshgarchay copper-gold deposit,which is 600 m wide and approximately 1.2 km long,is seen as a faultcontrolled and vein-,stockwork-and disseminated type deposit.The Goshgarchay Cu-Au deposit predominantly comprises Cu(max.64500 ppm)and Au(max.11.3 ppm),while it comprises relatively less amounts Zn(max.437 ppm),Mo(max.47.5 ppm),Pb(max.134 ppm),and Ag(max.21 ppm).The homogenization temperatures and salinities of fluid inclusions in quartz for stage Ⅰ range from 380℃ to 327℃,and 6.9 wt% to 2.6 wt% NaCl eq.,respectively.Thand salinities in quartz for stage Ⅱ range from 304℃ to 253℃,and 7.6 wt% to 3.2 wt% NaCl eq.,respectively.The calculated δ^(34)S_(h2s)values(-1.5‰ to 5.5‰)of sulfides and especially the narrow range of δ^(34)S_(h2s) values of chalcopyrite and bornite(between -0.07‰ and +0.7‰)indicate that the source of the Goshgarchay Cu-Au mineralization is magmatic.Based on the mineralogical,geochemical,fluid inclusion,and sulfur isotopic data,the Goshgarchay Cu-Au deposit represents a late stage peripheral magmatic-hydrothermal mineralization probably underlain by a concealed porphyry deposit.展开更多
The traditional method for sulfur isotope measurement using EA-IRMS commonly requires sulfur content greater than 2 μmol. Such a large sample size limits its application to low-S materials, the size mainly being due ...The traditional method for sulfur isotope measurement using EA-IRMS commonly requires sulfur content greater than 2 μmol. Such a large sample size limits its application to low-S materials, the size mainly being due to ineffective utilization of sample gas, almost 99.7% of which is discarded with carrier gas through the split port of the continuous-flow interface. A modified EA-IRMS system with a gas chromatographic(GC) column and a custom-built cryogenic concentration device is used in this study. We measured six reference materials to test the performance of this method. The results were consistent with those obtained through traditional EA-IRMS. Precisions ranging from ±0.24‰ to ±0.76‰(1σ)can be obtained with samples equivalent to ~80 nmol sulfur, which were similar to results obtained from an alternative method using an absorption column. Our improved method is a powerful tool for sulfur isotope measurement in ultrasmall sulfide and sulfate samples, which can be further applied to carbon, nitrogen and oxygen isotope analyses of samples at about 100 nmol level.展开更多
The Tianqiao Zn–Pb–Ag deposit in SW China,hosted by Devonian and Carboniferous limestone and clay rocks,is composed of sulfides such as sphalerite,galena,and pyrite.Pyrite is present in different paragenetic stages ...The Tianqiao Zn–Pb–Ag deposit in SW China,hosted by Devonian and Carboniferous limestone and clay rocks,is composed of sulfides such as sphalerite,galena,and pyrite.Pyrite is present in different paragenetic stages and can be divided into four types based on textures and mineral assemblages.Pyrite from the adjacent Shanshulin deposit(Py-SSL)is also used for comparison.Py1 shows framboid texture with grain diameter up to 1 mm and was commonly replaced by sphalerite.Py2 is characterized by overgrowth texture and displays inner oscillatory zoning.Py2 is associated with abundant sphalerite and galena.Py3 shows replacement relics textures where galena fills the fractures of pyrite.Py4 is a euhedral to subhedral crystal disseminated in dolomite and is characterized by deformation and fragmentation textures.Minor sphalerite and galena are associated with Py4.Py-SSL is subhedral and disseminated in dolomite,similar to Py4.Py1 was formed by a diagenetic or sedimentary process,whereas Py2 and Py3 were formed by multiple stages of ore fluids.Py4 and Py-SSL were formed at the carbonate-sulfide stage,but Py4 suffered from deformation after its formation.Py1,Py2,and Py3 are characterized by relative enrichment of Sb,Cu,and As,in contrast to Py4 and Py-SSL with higher Cr,W,Ge,Sn,Tl,Ni,and Ga contents.However,critical metals such as Ge,Ga,and In in pyrite are generally lower than10 ppm,which are not economically important.The trace element variation in Tianqiao pyrite with paragenesis results from fluid evolution in the Pb–Zn ore system and competition with co-precipitating minerals.Diagenetic and ore-forming hydrothermal fluids are responsible for the formation of different types of pyrite.Ore-related pyrite from the Tianqiao and Shanshulin deposits has Co and Ni distribution features similar to pyrite from sedimentary pyrite and submarine hydrothermal vents,different from those in volcanogenic massive sulfide,iron oxide-copper–gold,and porphyry Cu deposits,indicating their derivation of relatively low-temperature(<~250°C)hydrothermal fluids,similar to basin brines or seawater.,via fluid-rock interaction.This conclusion is also supported by the sulfur isotope composition of sulfides which are 13.0–13.5%,and 15.6–20.5%for Tianqiao and Shanshulin deposits,respectively.展开更多
Evaporite series is both an important target area looking for high-quality large potash deposits,but also one of the main types of hydrocarbon cap.Outcrops and drilling results indicate that five sets of evaporites we...Evaporite series is both an important target area looking for high-quality large potash deposits,but also one of the main types of hydrocarbon cap.Outcrops and drilling results indicate that five sets of evaporites were developed展开更多
Quantitative research of the origin of sulfur isotopes is a difficult problem that has puzzled geochemists all along. In the study of the middle and lower reaches of the Yangtze River and the Dongpo orefield in Hunan ...Quantitative research of the origin of sulfur isotopes is a difficult problem that has puzzled geochemists all along. In the study of the middle and lower reaches of the Yangtze River and the Dongpo orefield in Hunan Province, the authors successfully applied the mathematical model of mixed population screening to quantitatively resolving the problem on the origin of sulfur isotopes, which is significant in finding out the source of mineralizing matter and metallogenic mechanisms.展开更多
Carbon isotope, sulfur isotope, and trace element(including Rare Earth Elements, REE) analyses were conducted on the carbonates of the Dengying Formation at Lianghekou section in southern Shaanxi to reconstruct the te...Carbon isotope, sulfur isotope, and trace element(including Rare Earth Elements, REE) analyses were conducted on the carbonates of the Dengying Formation at Lianghekou section in southern Shaanxi to reconstruct the terminal Ediacaran shallow-water environment on the northwestern margin of the Yangtze Platform. At Lianghekou section, samples in the middle 50-m of the Beiwan Member show characteristics of low ΣREE concentrations, no MREE-enriched REE distribution patterns, high Ce/Ce* values close to 1, and enriched redox-sensitive elements, whereas samples in the lower 30-m and upper 10-m show opposite characteristics of high ∑REE concentrations, MREE-enriched REE distribution patterns, low Ce/Ce* values around 0.6, and no redox-sensitive elements enriched, indicating that oxygenation did occur in the shallow water on the northwestern margin of the Yangtze Platform and redox conditions of the shallow water fluctuated from relatively oxygenated to anoxic and then back to oxygenated again. We propose that the anoxia appeared in middle of the Beiwan time may associate with the anoxic upwelled water. On one hand, abundant nutrients were brought in by this upwelling event, which stimulated the photosynthetic carbon fixation and increased the organic carbon burial under this anoxic condition, causing a peak of 3.6‰ in δ 13 C. On the other hand, because the anoxic upwelled water replaced the oxic shallow water, together with the increasing organic matter in the water column, bacterial sulfate reduction was enhanced and therefore quickly reduced the sulfate concentration, which eventually caused δ 34 S increasing to 50‰. However, as the upwelling gradually disappeared, δ 13 C and δ 34 SCAS values decreased as well in the late Beiwan time, indicating the shallow water went back to suboxic or oxic again.展开更多
This study reports the sphalerite Rb-Sr age and LA-MC-ICP-MS in situ sulfur isotope analysis results of the Daliangzi Lead-Zinc Deposit in the Sichuan-Yunnan-Guizhou (SYG) triangle. Sphalerite Rb-Sr dating yields a ...This study reports the sphalerite Rb-Sr age and LA-MC-ICP-MS in situ sulfur isotope analysis results of the Daliangzi Lead-Zinc Deposit in the Sichuan-Yunnan-Guizhou (SYG) triangle. Sphalerite Rb-Sr dating yields a Mississippian age of 345.2±3.6 Ma (MSWD=I.4), which is older than the published Late Triassic mineralization ages (230-200 Ma) of some other deposits. This indicates that at least two stages of lead-zinc mineralization have occurred in the SYG lead-zinc triangle. The first stage occurred in the Mississippian under an extensional environment, while the second stage occurred in the Late Triassic under a compressional environment. In situ sulfur isotope analysis of sphalerite growth zoning presents relatively large δ^34S values of 11.3‰-15.2‰ with small variations. The large δ^34S values indicate a reduced sulfur source of thermochemical reduction of seawater sulfates. Abundant organic matter in the black fracture zone possibly supplied reductants for thermochemical sulfate reduction (TSR) at the mineralization site. The small variation of δ^34S values suggests a slow and stable TSR process that could prevent the sudden supersaturation of sphalerite in the fluid and the resulting of fast participation. This is consistent with the well-crystallized characteristic of the sphalerite of the Daliangzi Deposit.展开更多
The anaerobic oxidation of methane (AOM) has strongly developed at Core A, Site 79 of the middle Okinawa Trough, East China Sea, and a large amount of authigenic pyrite is preserved in the surface sediment. In this ...The anaerobic oxidation of methane (AOM) has strongly developed at Core A, Site 79 of the middle Okinawa Trough, East China Sea, and a large amount of authigenic pyrite is preserved in the surface sediment. In this study, we analyze the characteristics of the authigenic pyrite and its sulfur isotopic values. The authigenic pyrite is stripy and tubular, and there were foraminifera compartments filled with pyrite. The pyrite is extracted using chromium reduction, and the values of δ348 are found to lie between -41.20‰ and 8.92‰ V-CDT. The bulk pyrite tends to be more enriched in 348 with increasing depth. Particularly, the 834S value of the pyrite lies between -32.73%o and -41.20‰ V-CDT above 278 cmbsf, but it quickly increases below this depth (-21.49%o-8.92‰ V-CDT). At the same time, the total sulfur content of the pyrite shows an abrupt increase above 100 cmbsf but is otherwise stable between 1.04% and 0.55% below 100 cmbsf. The stable and negative values of 8345 and the decreasing values of total sulfur above 278 cmbsf indicate reduced AOM activities in 17.18-5.3 ka. In addition, the increasing δ34S and pyrite content indicate strong AOM development and methane seep below 278 cmbsf in 18.8-17.18 ka. In particular, the highest positive value of δ34S occurring in 18.78 ka indicates the most intense AOM activity. The shallow sul- fate-methane interface (SMI) and high methane flux below marine sediments also strongly support this activity.展开更多
The abundances of trace elements,a low pH of water and soil in areas impacted by the acid mine drainage(AMD)may cause an excessive uptake of potentially toxic elements and nutritional imbalances in plants.Metal-tolera...The abundances of trace elements,a low pH of water and soil in areas impacted by the acid mine drainage(AMD)may cause an excessive uptake of potentially toxic elements and nutritional imbalances in plants.Metal-tolerant,native plants are used for revegetation of degraded mining areas.We established levels of selected trace elements and stable sulfur isotopes in the above-ground plant biomass collected in a mining area in south-central Poland.In 2016,20 samples of the most common species were collected from sites with a different influence of acid mine drainage and analyzed for trace elements by the inductively coupled plasma mass spectrometry technique.On the basis of the results obtained in 2016,the most contaminated site was selected for a more detailed study,in which sulfur contents and stable sulfur isotope ratios were determined together with trace elements in 17 samples.The results confirmed that the plants native to the AMD area efficiently accumulated trace elements,especially As and rare earth elements.Mosses showed the highest content of trace elements,but exhibited the lowest concentrations of sulfur accompanied by the highestδ34S values.It has been shown for the first time that stable sulfur isotope composition of AMD plants in south-central Poland is significantly depleted in the 34S isotope showing an averageδ34 S value of–10.5‰in comparison with positiveδ34S values in local vegetation growing outside the AMD area and in local precipitation.展开更多
基金the National Natural Science Foundation of China(Grant No.41802107)Guizhou Scientific and Technology Fund(Grant No.QKHJC[2019]1315+2 种基金QKHJC[2019]1149H)China Postdoctoral Science Foundation(Grant No.2019M653495)the Talent Introduction Project of Guizhou University(Grant No.201772).
文摘In the northwestern margin of the Youjiang basin(NWYB)in SW China,many Carlin-like gold deposits are highly antimony(Sb)-rich,and many vein-type Sb deposits contain much Au.These deposits have similar ages,host rocks,ore-forming temperatures,ore-related alterations and ore mineral assemblages,but the Au and Sb metallogenic relations and their ore-forming process remain enigmatic.Here we investigate the large Qinglong Sb deposit in the NWYB,which has extensive sub-economic Au mineralization,and present a new metallogenic model based on in-situ trace elements(EPMA and LA-ICP-MS)and sulfur isotopes(NanoSIMS and fs-LA-MC-ICPMS)of the ore sulfides.At Qinglong,economic Sb ores contain coarse-grained stibnite,jasperoid quartz and fluorite,whilst the sub-economic Au–Sb ores comprise dominantly veined quartz,arsenian pyrite and fine-grained stibnite.Three generations of ore-related pyrite(Py1,Py2 and Py3)and two generations of stibnite(Stb1 and Stb2)are identified based on their texture,chemistry,and sulfur isotopes.The pre-ore Py1 is characterized by the lower ore element(Au,As,Sb,Cu and Ag)contents(mostly below the LA-ICP-MS detection limit)and Co/Ni ratios(average 0.31)than the ore-stage pyrites(Py2 and Py3),implying a sedimentary/diagenetic origin.The Py2 and Py3 have elevated ore element abundance(maximum As=6500 ppm,Au=22 ppm,Sb=6300 ppm,Cu=951 ppm,Ag=77 ppm)and Co/Ni ratios(average 1.84),and have positive As vs.Au–Sb–Cu–Ag correlations.Early-ore Stb1 has lower As(0.12–0.30 wt.%)than late-ore Stb2(0.91–1.20 wt.%).These features show that the progressive As enrichment in ore sulfides is accompanied by increasing Au,Sb,Cu and Ag with the hydrothermal evolution,thereby making As a good proxy for Au.As-rich,As-poor and As-free zones are identified via NanoSIMS mapping of the Au-bearing pyrite.The As-rich zones in the Qinglong Au-bearing pyrites(Py2 and Py3)and ore stibnites(Stb1 and Stb2)have narrowδ^(34)SH_(2)S ranges(-8.9‰to +4.1‰,average-3.1‰)and-2.9‰to +6.9‰,average + 1.3‰),respectively,indicating that the Au-rich and Sb-rich fluids may have had the same sulfur source.Published in-situ sulfur isotopic data of pyrite As-rich zones from other Carlin-like Au deposits(Shuiyindong,Taipingdong,Nayang,Getang and Lianhuashan)in the NWYB have similar ore-fluidδSH_(2)S values(-4.5‰to +6.7‰,average-0.6‰)to those of Qinglong.Therefore,we infer that the sulfur of both Au and Sb mineralization was derived from the same magmatic-related source(0±5‰)in the NWYB.Moreover,the core of pyrites(Py1)has variable S isotope fractionation(-18.9‰to +18.1‰,mostly +3‰to +12‰),suggesting that the higher-^(34)S H_(2)S was produced by bacterial sulfate reduction(BSR).The hydrothermal pyrite(Py2 and Py3)δ^(34)S values gradually decrease with increasing As concentrations,and ultimately,within the restricted range(-5‰to +5‰)in As-rich zones.This variation implies that the As-rich pyrite was formed through ongoing interactions of the magmatic-hydrothermal fluid with pre-existing sedimentary pyrites,causing the progressive decreasing δ^(34)S values with As content increase,Hence,the fluid/mineral interaction may have generated the observed variation in δ^(34)S and As contents.Overall,comparing the Au and Sb deposits in the NWYB,we favor a magmatic-related source for the Au–Sb–As-rich fluids,but the Au-and Sb-ore fluids were likely evolved at separate stages in the ore-forming system.
基金The Qingdao National Laboratory for Marine Science and Technology under contract No.QNLM2016ORP0210the National Natural Science Foundation of China under contract Nos 41306061,41473080 and 41376076the Scientific Cooperative Project by China National Petroleum Corporation and Chinese Academic of Sciences under contract No.2015A-4813
文摘The northern slope of the South China Sea is a gas-hydrate-bearing region related to a high deposition rate of organic-rich sediments co-occurring with intense methanogenesis in subseafloor environments.Anaerobic oxidation of methane(AOM) coupled with bacterial sulfate reduction results in the precipitation of solid phase minerals in seepage sediment,including pyrite and gypsum.Abundant aggregates of pyrites and gypsums are observed between the depth of 667 and 850 cm below the seafloor(cmbsf) in the entire core sediment of HS328 from the northern South China Sea.Most pyrites are tubes consisting of framboidal cores and outer crusts.Gypsum aggregates occur as rosettes and spheroids consisting of plates.Some of them grow over pyrite,indicating that gypsum precipitation postdates pyrite formation.The sulfur isotopic values(δ^34 S) of pyrite vary greatly(from –46.6‰ to –12.3‰ V-CDT) and increase with depth.Thus,the pyrite in the shallow sediments resulted from organoclastic sulfate reduction(OSR) and is influenced by AOM with depth.The relative high abundance and δ^34 S values of pyrite in sediments at depths from 580 to 810 cmbsf indicate that this interval is the location of a paleo-sulfate methane transition zone(SMTZ).The sulfur isotopic composition of gypsum(from–25‰ to –20.7‰) is much lower than that of the seawater sulfate,indicating the existence of a 34 S-depletion source of sulfur species that most likely are products of the oxidation of pyrites formed in OSR.Pyrite oxidation is controlled by ambient electron acceptors such as MnO2,iron(Ⅲ) and oxygen driven by the SMTZ location shift to great depths.The δ^34 S values of gypsum at greater depth are lower than those of the associated pyrite,revealing downward diffusion of 34 S-depleted sulfate from the mixture of oxidation of pyrite derived by OSR and the seawater sulfate.These sulfates also lead to an increase of calcium ions from the dissolution of calcium carbonate mineral,which will be favor to the formation of gypsum.Overall,the mineralogy and sulfur isotopic composition of the pyrite and gypsum suggest variable redox conditions caused by reduced seepage intensities,and the pyrite and gypsum can be a recorder of the intensity evolution of methane seepage.
基金supported by China Scholarship Council,National Natural Science Foundation of China(No40572020)Doctoral Program of Higher Education(No20040290005)
文摘Pyrite framboids were found in the Permian-Triassic boundary at Meishan Section,while their sulfur isotopes were determined.The majority of framboids is less than 5μm in diameter,with some large-sized framboids.Also,euhedral gypsums were observed in the boundary clay.The authors suppose that most of the pyrite framboids formed just below the redox boundary and stopped growing after entering the lower water column.The result indicates that it was probably lower dysoxia condition in the temporal ocean.Moreover,the authors also presume that some pyrite was oxidated to sulfates accompanying the fluctuation of redox condition,which would probably be the origin of the negative sulfur isotopes of gypsum and CAS reported before.In addition,sulfur isotope of framboidal pyrite suggests that sulfur is originated from bacterial sulfate reduction in anoxic condition.Therefore, this study confirms that the ocean was widely anoxic during the Permian-Triassic transitional period. However,the redox condition in temporal ocean was probably not stable,with short-term fluctuations.
基金financially supported by the National Natural Science Foundation (Grant No.41503030)the Planning Project of Science and Technology Cooperation of Guizhou Province (Grant Nos.20157663,20152032)
文摘The Leishan-Rongjiang antimony ore field(LAOF) is in a unique geotectonic location in the uplift between the Youjiang and Xiangzhong basins.This paper focuses on two representative deposits in the LAOF:the Bameng and Peize antimony(Sb) deposits.We analyzed fluid inclusions(FIs) in stibnite and coexisting quartz,as well as the sulfur isotopic composition of stibnite,to better understand the nature of the ore-forming fluid and the metallogenic process.The FIs data from samples of the stibnite and coexisting quartz indicate that the ore-forming fluids were characterized by low-temperature(150-210 ℃),low-salinity(1.5 wt%-6.0 wt%NaCl equiv.),and low-density(0.872-0.961 g/cm^3).The δ^(34)S values of stibnite(-8.21‰ to 3.76‰,average =-6.30‰)fall in between the sulfur isotopic compositions of the mantle and of biogenic sulfur in sedimentary rocks.However,the δ^(34)S_(∑s) values(-4.41 ‰ to +0.04‰,average =-2.49‰) of the ore-forming fluids are generally closer to the sulfur isotopic composition of the mantle source,indicating that the sulfur in the LAOF was mainly sourced from the mantle,but with possible involvement of biogenic sulfur.In addition,FIs petrography and ore deposit geology show that fluid boiling resulted from an abrupt decrease in pressure,which may have triggered the precipitation of stibnite.We conclude that low-temperature,dilute hydrothermal fluids with mixed origins migrated along the regional fault and interacted with the wall rock,extracting the ore-forming materials.Then,the oreforming fluids were injected into the fault fracture zones.
基金The National Natural Science Foundation of China under contract No.41376076the Natural Science Foundation of Guangdong Province under contract No.2015A030313718+1 种基金the Scientific Cooperative Project by China National Petroleum Corporation and Chinese Academy of Sciences under contract No.2015A-4813the National Marine Geological Project,China Geological Survey under contract No.GZH2012006003
文摘Methane seepage is the signal of the deep hydrocarbon reservoir. The determination of seepage is significant to the exploration of petroleum, gas and gas hydrate. The seepage habits microbial and macrofaunal life which is fueled by the hydrocarbons, the metabolic byproducts facilitate the precipitation of authigenic minerals. The study of methane seepage is also important to understand the oceanographic condition and local ecosystem. The seepage could be active or quiescent at different times. The geophysical surveys and the geochemical determinations reveal the existence of seepage. Among these methods, only geochemical determination could expose message of the dormant seepages. The active seepage demonstrates high porewater methane concentration with rapid SO42- depleted, low HaS and dissolved inorganic carbon (DIC), higher rates of sulfate reduction (SR) and anaerobic oxidation of methane (AOM). The quiescent seepage typically develops authigenic carbonates with specific biomarkers, with extremely depleted 13C in gas, DIC and carbonates and with enriched 34S sulfate and depleted 34S pyrite. The origin of methane, minerals precipitation, the scenario of seepage and the possible method of immigration could be determined by the integration of solutes concentration, mineral composition and isotopic fractionation of carbon, sulfur. Numerical models with the integrated results provide useful insight into the nature and intensity of methane seepage occurring in the sediment and paleo- oceanographic conditions. Unfortunately, the intensive investigation of a specific area with dormant seep is still limit. Most seepage and modeling studies are site-specific and little attempt has been made to extrapolate the results to larger scales. Further research is thus needed to foster our understanding of the methane seepage.
基金The National Natural Science Foundation of China under contract No.91958213the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDB42020402+3 种基金the National Programma on Global Change and AirSea Interaction under contract No.GASI-GEOGE-02the International Partnership Program of the Chinese Academy of Sciences under contract No.133137KYSB20170003the Special Fund for the Taishan Scholar Program of Shandong Province under contract No.ts201511061the National Key Basic Research Program of China under contract No.2013CB429700。
文摘Studies of the mineralogy and sulfur isotope composition of sediment-hosted hydrothermal sulfide minerals in cores are important for understanding the seafloor mineralization environment and material source and reconstructing the hydrothermal history.However,the source of ore-forming materials and the history of hydrothermal activity in the southern Okinawa Trough(SOT)remain unclear.Here,the mineralogy and sulfur isotope characteristics of sulfides from gravity core HOBAB4-S2,collected between the Yonaguni Knoll IV hydrothermal field(HF)and the Tangyin HF,was investigated.Enrichments in Zn(up to 321×10^(-6)),Cu(up to73.7×10^(-6)),and Pb(up to 160×10^(-6))and the presence of pyrite,galena,pyrrhotite and minor sphalerite and chalcopyrite provide evidence for the input of hydrothermal materials into the sediments.The pyrite morphologies include disseminated cubic,pentagonal dodecahedron,and framboidal forms.Except for minor framboidal pyrite,euhedral pyrite from core HOBAB4-S2 is mainly of hydrothermal origin with Co/Ni ratios>1 and S/Fe atomic ratios<2 in the Cu-Zn-Pb-rich layers.The occurrences of hexagonal pyrrhotite,high-Co(up to0.17%)pyrite and high-Fe sphalerite indicate that the hydrothermal precipitates formed at medium-high temperatures and low-sulfur fugacity(f S_(2))environments.The δ^(34) S values of sulfides(0.21‰–3.45‰)with low-f S_(2) mineral assemblages(e.g.,pyrrhotite±high-Fe sphalerite)in the core are significantly lower than those of magmatic rocks and seawater,indicating possible incorporation of previously formed biogenic sulfur in the sediment.Combined with the age model of the core,it is suggested that hydrothermal activity likely began in the Tangyin HF before AD 1445–1483 and that at least three active episodes may have occurred since then.
基金supported by the National Natural Science Foundation of China (grants No.41306062 and 41474119)the Key Laboratory of Gas Hydrate Foundation (grant No.SHW[2014]-DX-04)
文摘Objective Authigenic pyrite often develops extensively in marine sediments,which is an important product of sulfate reduction in an anoxic environment.It has a specific appearance and complicated sulfur isotopic properties,and acts as important evidence of methane seep in marine sediments.Strong AOM(anaerobic oxidation of methane)activity has developed in the Okinawa Trough.
基金National Basic Research Program of China(No.2007CB411402)Cooperation Program of Institute of Geochemistry and Guizhou Geology and Minerals Bureau 102 Geology Group
文摘The Nage Cu-Pb polymetallic deposit is located in the transitional zone of the Yangtze craton and cathaysia,that is the southwest of Jiangnan orogenic belt. The mainly strata are Wentong formation of Mesoproterozoic Sibo group and the Jialu formation(Qbj) ,Wuye formation(Qbw) ,Fanzhao formation(Qbf) and Gongdong formation(Qbg) of the Neoproterozoic Qingbaikou System Xiajiang group.
基金jointly funded by the National Natural Science Foundation of China(Grant Nos.42202085,42272080)China Postdoctoral Science Foundation(Grant Nos.2020M680666,2021T140660)+1 种基金postdoctoral program of China Scholarship Council(Grant No.202104910161)National Key Research and Development Program of China(Grant No.2017YFC0601305)。
文摘Oxygen fugacity(fO_(2))is a key intensity variable during the entire magmatic-hydrothermal mineralization courses.The redox state and its variations between different stages of the ore-forming fluids of intermediate sulfidation epithermal deposits are rarely deciphered due to the lack of appropriate approaches to determine fO_(2)of the fluids.Here,we reported theδ^(34)S of the sulfides from three different stages(stageⅠ,Ⅱ,Ⅲ)of Zhengguang,an Early Ordovician Au-rich intermediate sulfidation(IS)epithermal deposit,to decipher the redox evolution of the ore-forming fluids.The increasingδ^(34)S values from stageⅠpyrite(pyl,average-2.6‰)through py2(average-1.9‰)to py3(average-0.2‰)indicates a decrease of the oxygen fugacity of the ore-forming fluids.A compilation ofδ^(34)S values of sulfides from two subtypes of IS deposits(Au-rich and Ag-rich)from NE China shows that theδ^(34)S values of sulfides from Au-rich IS deposits are systematically lighter than those of Ag-rich IS Ag-Pb-Zn deposit,indicating the ore-forming fluids of the former are more oxidized than the latter.We highlight that sulfur isotopic composition of hypogene sulfides is an efficacious proxy to fingerprint the oxygen fugacity fluctuations of epithermal deposits and could potentially be used to distinguish the subtypes of IS deposits.
基金financially supported by China Geological Survey Project(Grant No.DD20220971)。
文摘Located along the southern part of the West Qinling orogenic belt,the Yangshan gold deposit is one of the largest in China.The major gold ores of Yangshan are disseminated in metasedimentary host rocks with minor native gold amounts in stibnite-gold quartz veins.Pyrite and arsenopyrite are the major Au-bearing minerals.Hydrothermal muscovite from gold-bearing quartz veins was dated using the in situ Rb-Sr method to determine the formation age of the Yangshan gold deposit.The Rb-Sr isochron date of the muscovite yielded 210.1±5.6 Ma(MSWD=1.2).This date is near the lower end of the period of the mineralized granitic dykes(210.49-213.10 Ma).Two stages of gold enriching process are recognized in the gold-bearing pyrite:the first is incorporated with the Co,Cu,As,Ni enrichment;and the second is accompanied by Bi,Co,Ni,Pb,Cu,Sb concentration.The in-situ sulfur isotopic values of pyrites show a restrictedΔ34s range of-1.43‰to 2.86‰with a mean value of 0.43‰.Trace-element mapping and in-situ sulfur isotopic analysis of pyrite suggest that the sulfur deposits are likely derived from a magmatic source and likely assimilated by sulfur from the sedimentary bedrock.Thus,magmatism plays a critical role in the formation of the Yangshan gold deposit.
文摘A new experimental calibration was undertaken in this study to get a more reliable sphalerite-galena sulfur isotope geothermometer. The experimental conditions selected in study were very similar to those of natural hydrothermal solution. The high-precision SF6 method was used in sulfur isotope analyses. The obtained calibration curve for sulfur isotope fractionation between sphalerite and galena can be expressed with the equation 10001nαSp-Gn= 0.74×106T-2+0.08.
基金financially supported by the Scientific Research Project Coordination of Konya Technical University(Grant No.211007014)。
文摘The Goshgarchay Cu-Au deposit is located in the central part of the northwest flank of the Murovdagh region in the Lesser Caucasus.The Goshgarchay Cu-Au deposit is associated with Middle Jurassic volcanic and Late Jurassic-Early Cretaceous high-K calc-alkaline intrusive rocks.The Cu-Au mineralization is commonly related to quartz-sericite-chlorite alteration dominantly composed of chalcopyrite,gold,sphalerite,pyrite,bornite,hematite,covellite,chalcocite,malachite,and azurite.The Goshgarchay copper-gold deposit,which is 600 m wide and approximately 1.2 km long,is seen as a faultcontrolled and vein-,stockwork-and disseminated type deposit.The Goshgarchay Cu-Au deposit predominantly comprises Cu(max.64500 ppm)and Au(max.11.3 ppm),while it comprises relatively less amounts Zn(max.437 ppm),Mo(max.47.5 ppm),Pb(max.134 ppm),and Ag(max.21 ppm).The homogenization temperatures and salinities of fluid inclusions in quartz for stage Ⅰ range from 380℃ to 327℃,and 6.9 wt% to 2.6 wt% NaCl eq.,respectively.Thand salinities in quartz for stage Ⅱ range from 304℃ to 253℃,and 7.6 wt% to 3.2 wt% NaCl eq.,respectively.The calculated δ^(34)S_(h2s)values(-1.5‰ to 5.5‰)of sulfides and especially the narrow range of δ^(34)S_(h2s) values of chalcopyrite and bornite(between -0.07‰ and +0.7‰)indicate that the source of the Goshgarchay Cu-Au mineralization is magmatic.Based on the mineralogical,geochemical,fluid inclusion,and sulfur isotopic data,the Goshgarchay Cu-Au deposit represents a late stage peripheral magmatic-hydrothermal mineralization probably underlain by a concealed porphyry deposit.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41627802 and 41973022)the Central Public-interest Scientific Institution Basal Research Fund (Grant No. YYWF201710)。
文摘The traditional method for sulfur isotope measurement using EA-IRMS commonly requires sulfur content greater than 2 μmol. Such a large sample size limits its application to low-S materials, the size mainly being due to ineffective utilization of sample gas, almost 99.7% of which is discarded with carrier gas through the split port of the continuous-flow interface. A modified EA-IRMS system with a gas chromatographic(GC) column and a custom-built cryogenic concentration device is used in this study. We measured six reference materials to test the performance of this method. The results were consistent with those obtained through traditional EA-IRMS. Precisions ranging from ±0.24‰ to ±0.76‰(1σ)can be obtained with samples equivalent to ~80 nmol sulfur, which were similar to results obtained from an alternative method using an absorption column. Our improved method is a powerful tool for sulfur isotope measurement in ultrasmall sulfide and sulfate samples, which can be further applied to carbon, nitrogen and oxygen isotope analyses of samples at about 100 nmol level.
基金Guizhou Science Foundation,20171197,Yumiao MengCAS Hundred Talents Program,Y9CJ034000,Xiao-Wen Huang+1 种基金National Natural Science Foundation of China,42073043,Yumiao Meng,41673050,Xiao-Wen HuangScience and Technique Foundation of Water Resources Department of Jiangxi Province,202123YBKT10,Chun-Xia Xu。
文摘The Tianqiao Zn–Pb–Ag deposit in SW China,hosted by Devonian and Carboniferous limestone and clay rocks,is composed of sulfides such as sphalerite,galena,and pyrite.Pyrite is present in different paragenetic stages and can be divided into four types based on textures and mineral assemblages.Pyrite from the adjacent Shanshulin deposit(Py-SSL)is also used for comparison.Py1 shows framboid texture with grain diameter up to 1 mm and was commonly replaced by sphalerite.Py2 is characterized by overgrowth texture and displays inner oscillatory zoning.Py2 is associated with abundant sphalerite and galena.Py3 shows replacement relics textures where galena fills the fractures of pyrite.Py4 is a euhedral to subhedral crystal disseminated in dolomite and is characterized by deformation and fragmentation textures.Minor sphalerite and galena are associated with Py4.Py-SSL is subhedral and disseminated in dolomite,similar to Py4.Py1 was formed by a diagenetic or sedimentary process,whereas Py2 and Py3 were formed by multiple stages of ore fluids.Py4 and Py-SSL were formed at the carbonate-sulfide stage,but Py4 suffered from deformation after its formation.Py1,Py2,and Py3 are characterized by relative enrichment of Sb,Cu,and As,in contrast to Py4 and Py-SSL with higher Cr,W,Ge,Sn,Tl,Ni,and Ga contents.However,critical metals such as Ge,Ga,and In in pyrite are generally lower than10 ppm,which are not economically important.The trace element variation in Tianqiao pyrite with paragenesis results from fluid evolution in the Pb–Zn ore system and competition with co-precipitating minerals.Diagenetic and ore-forming hydrothermal fluids are responsible for the formation of different types of pyrite.Ore-related pyrite from the Tianqiao and Shanshulin deposits has Co and Ni distribution features similar to pyrite from sedimentary pyrite and submarine hydrothermal vents,different from those in volcanogenic massive sulfide,iron oxide-copper–gold,and porphyry Cu deposits,indicating their derivation of relatively low-temperature(<~250°C)hydrothermal fluids,similar to basin brines or seawater.,via fluid-rock interaction.This conclusion is also supported by the sulfur isotope composition of sulfides which are 13.0–13.5%,and 15.6–20.5%for Tianqiao and Shanshulin deposits,respectively.
文摘Evaporite series is both an important target area looking for high-quality large potash deposits,but also one of the main types of hydrocarbon cap.Outcrops and drilling results indicate that five sets of evaporites were developed
文摘Quantitative research of the origin of sulfur isotopes is a difficult problem that has puzzled geochemists all along. In the study of the middle and lower reaches of the Yangtze River and the Dongpo orefield in Hunan Province, the authors successfully applied the mathematical model of mixed population screening to quantitatively resolving the problem on the origin of sulfur isotopes, which is significant in finding out the source of mineralizing matter and metallogenic mechanisms.
基金supported by the National Basic Research Program of China(Grant No.2011CB808805)MOST Special Fund from the State Key Laboratory of Continental Dynamics,Northwest University,and National Natural Science Foundation of China(Grant No.41172029)
文摘Carbon isotope, sulfur isotope, and trace element(including Rare Earth Elements, REE) analyses were conducted on the carbonates of the Dengying Formation at Lianghekou section in southern Shaanxi to reconstruct the terminal Ediacaran shallow-water environment on the northwestern margin of the Yangtze Platform. At Lianghekou section, samples in the middle 50-m of the Beiwan Member show characteristics of low ΣREE concentrations, no MREE-enriched REE distribution patterns, high Ce/Ce* values close to 1, and enriched redox-sensitive elements, whereas samples in the lower 30-m and upper 10-m show opposite characteristics of high ∑REE concentrations, MREE-enriched REE distribution patterns, low Ce/Ce* values around 0.6, and no redox-sensitive elements enriched, indicating that oxygenation did occur in the shallow water on the northwestern margin of the Yangtze Platform and redox conditions of the shallow water fluctuated from relatively oxygenated to anoxic and then back to oxygenated again. We propose that the anoxia appeared in middle of the Beiwan time may associate with the anoxic upwelled water. On one hand, abundant nutrients were brought in by this upwelling event, which stimulated the photosynthetic carbon fixation and increased the organic carbon burial under this anoxic condition, causing a peak of 3.6‰ in δ 13 C. On the other hand, because the anoxic upwelled water replaced the oxic shallow water, together with the increasing organic matter in the water column, bacterial sulfate reduction was enhanced and therefore quickly reduced the sulfate concentration, which eventually caused δ 34 S increasing to 50‰. However, as the upwelling gradually disappeared, δ 13 C and δ 34 SCAS values decreased as well in the late Beiwan time, indicating the shallow water went back to suboxic or oxic again.
基金financially supported by the China Geological Survey (No. 12120114019701)the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan)
文摘This study reports the sphalerite Rb-Sr age and LA-MC-ICP-MS in situ sulfur isotope analysis results of the Daliangzi Lead-Zinc Deposit in the Sichuan-Yunnan-Guizhou (SYG) triangle. Sphalerite Rb-Sr dating yields a Mississippian age of 345.2±3.6 Ma (MSWD=I.4), which is older than the published Late Triassic mineralization ages (230-200 Ma) of some other deposits. This indicates that at least two stages of lead-zinc mineralization have occurred in the SYG lead-zinc triangle. The first stage occurred in the Mississippian under an extensional environment, while the second stage occurred in the Late Triassic under a compressional environment. In situ sulfur isotope analysis of sphalerite growth zoning presents relatively large δ^34S values of 11.3‰-15.2‰ with small variations. The large δ^34S values indicate a reduced sulfur source of thermochemical reduction of seawater sulfates. Abundant organic matter in the black fracture zone possibly supplied reductants for thermochemical sulfate reduction (TSR) at the mineralization site. The small variation of δ^34S values suggests a slow and stable TSR process that could prevent the sudden supersaturation of sphalerite in the fluid and the resulting of fast participation. This is consistent with the well-crystallized characteristic of the sphalerite of the Daliangzi Deposit.
基金supported by the National Natural Science Foundation of China(Grand Nos.4130606241104086)+2 种基金the Key Laboratory of Gas Hydrate Foundation(Grand Nos.SHW[2014]-DX-03SHW[2014]-DX-04)the Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology Foundation(Grand No.MRE 201213)
文摘The anaerobic oxidation of methane (AOM) has strongly developed at Core A, Site 79 of the middle Okinawa Trough, East China Sea, and a large amount of authigenic pyrite is preserved in the surface sediment. In this study, we analyze the characteristics of the authigenic pyrite and its sulfur isotopic values. The authigenic pyrite is stripy and tubular, and there were foraminifera compartments filled with pyrite. The pyrite is extracted using chromium reduction, and the values of δ348 are found to lie between -41.20‰ and 8.92‰ V-CDT. The bulk pyrite tends to be more enriched in 348 with increasing depth. Particularly, the 834S value of the pyrite lies between -32.73%o and -41.20‰ V-CDT above 278 cmbsf, but it quickly increases below this depth (-21.49%o-8.92‰ V-CDT). At the same time, the total sulfur content of the pyrite shows an abrupt increase above 100 cmbsf but is otherwise stable between 1.04% and 0.55% below 100 cmbsf. The stable and negative values of 8345 and the decreasing values of total sulfur above 278 cmbsf indicate reduced AOM activities in 17.18-5.3 ka. In addition, the increasing δ34S and pyrite content indicate strong AOM development and methane seep below 278 cmbsf in 18.8-17.18 ka. In particular, the highest positive value of δ34S occurring in 18.78 ka indicates the most intense AOM activity. The shallow sul- fate-methane interface (SMI) and high methane flux below marine sediments also strongly support this activity.
基金This work was supported by the National Science Center(a research Grant#2015/17/B/ST10/02119).
文摘The abundances of trace elements,a low pH of water and soil in areas impacted by the acid mine drainage(AMD)may cause an excessive uptake of potentially toxic elements and nutritional imbalances in plants.Metal-tolerant,native plants are used for revegetation of degraded mining areas.We established levels of selected trace elements and stable sulfur isotopes in the above-ground plant biomass collected in a mining area in south-central Poland.In 2016,20 samples of the most common species were collected from sites with a different influence of acid mine drainage and analyzed for trace elements by the inductively coupled plasma mass spectrometry technique.On the basis of the results obtained in 2016,the most contaminated site was selected for a more detailed study,in which sulfur contents and stable sulfur isotope ratios were determined together with trace elements in 17 samples.The results confirmed that the plants native to the AMD area efficiently accumulated trace elements,especially As and rare earth elements.Mosses showed the highest content of trace elements,but exhibited the lowest concentrations of sulfur accompanied by the highestδ34S values.It has been shown for the first time that stable sulfur isotope composition of AMD plants in south-central Poland is significantly depleted in the 34S isotope showing an averageδ34 S value of–10.5‰in comparison with positiveδ34S values in local vegetation growing outside the AMD area and in local precipitation.