期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
Tandem Co–O dual sites on halloysite with promoted reaction kinetics for sulfur reduction
1
作者 Qiang Zhang Yinyin Qian +2 位作者 Ji-Jun Zou Ruijie Gao Huaming Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第12期486-493,I0013,共9页
Facilitating sulfur reduction reaction(SRR)is a promising pathway to tackle the polysulfide shuttle effect and enhance the electrochemical performance of lithium-sulfur(Li-S)batteries.Catalysts with a solo active site... Facilitating sulfur reduction reaction(SRR)is a promising pathway to tackle the polysulfide shuttle effect and enhance the electrochemical performance of lithium-sulfur(Li-S)batteries.Catalysts with a solo active site can reduce a reaction barrier of a certain transition-intermediate,but the linear scaling relationship between multi-intermediates still obstructs overall SRR.Herein,we construct tandem Co–O dual sites with accelerating SRR kinetics by loading highly dispersed cobalt sulfide clusters on halloysite.This catalyst features Co with upshifted d-orbital and O with downshifted p-orbital,which cooperatively adsorb long-chain polysulfide and dissociate an S–S bond,thus achieving both optimal adsorption–desorption strength and reduced conversion energy barrier of multi-intermediates in SRR.The Li-S coin batteries using the electrocatalyst endows a high specific capacity of 1224.3 m Ah g^(-1)at 0.2 C after 200cycles,and enhances cycling stability with a low-capacity decay rate of 0.03%per cycle at 1 C after1000 cycles.Moreover,the strategy of the tandem Co–O dual sites is further verified in a practical Li-S pouch battery that realizes 1014.1 m Ah g^(-1)for 100 cycles,which opens up a novel avenue for designing electrocatalysts to accelerate multi-step reactions. 展开更多
关键词 Sulfur reduction reaction Dual catalytic site ORBIT Li-S battery
下载PDF
STUDIES ON THE REACTION OF SULFUR,SELENIUM AND TELLURIUM WITH SODIUM HYDROXIDE UNDER PHASE TRANSFER CATALYSIS(Ⅱ).A CONVENIENT METHOD FOR THE SYNTHESIS OF BI(ACYL)DISULFIDES
2
作者 Jin-Xian WANG(Chin-Hsien WANG) Wenfeng CUI Yulai HU Kai ZHAO Institute of Chemistry,Department of Chemistry,Northwest Normal University,Lanzhou,730070 《Chinese Chemical Letters》 SCIE CAS CSCD 1990年第3期193-196,共4页
A simple and general method for the synthesis of bi(acyl)disulfides is reported.Sulfur is allowed to react with sodium hydroxide to give sodium disulfide at 65℃ under PTC,which can react with acyl halides to afford b... A simple and general method for the synthesis of bi(acyl)disulfides is reported.Sulfur is allowed to react with sodium hydroxide to give sodium disulfide at 65℃ under PTC,which can react with acyl halides to afford bi(acyl)disulfides in good to excellent isolated yields.The effects of solvents and phase transfer catalysts are discussed. 展开更多
关键词 In Wang ACYL)DISULFIDES STUDIES ON THE reaction OF SULFUR SELENIUM AND TELLURIUM WITH SODIUM HYDROXIDE UNDER PHASE TRANSFER CATALYSIS A CONVENIENT METHOD FOR THE SYNTHESIS OF BI PEG OC Ph
下载PDF
Boosting Lean Electrolyte Lithium-Sulfur Battery Performance with Transition Metals: A Comprehensive Review 被引量:5
3
作者 Hui Pan Zhibin Cheng +8 位作者 Zhenyu Zhou Sijie Xie Wei Zhang Ning Han Wei Guo Jan Fransaer Jiangshui Luo Andreu Cabot Michael Wübbenhorst 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期53-100,共48页
Lithium–sulfur(Li–S) batteries have received widespread attention, and lean electrolyte Li–S batteries have attracted additional interest because of their higher energy densities. This review systematically analyze... Lithium–sulfur(Li–S) batteries have received widespread attention, and lean electrolyte Li–S batteries have attracted additional interest because of their higher energy densities. This review systematically analyzes the effect of the electrolyte-to-sulfur(E/S) ratios on battery energy density and the challenges for sulfur reduction reactions(SRR) under lean electrolyte conditions. Accordingly, we review the use of various polar transition metal sulfur hosts as corresponding solutions to facilitate SRR kinetics at low E/S ratios(< 10 μL mg~(-1)), and the strengths and limitations of different transition metal compounds are presented and discussed from a fundamental perspective. Subsequently, three promising strategies for sulfur hosts that act as anchors and catalysts are proposed to boost lean electrolyte Li–S battery performance. Finally, an outlook is provided to guide future research on high energy density Li–S batteries. 展开更多
关键词 Transition metals Lean electrolyte Sulfur reduction reactions Li–S batteries
下载PDF
Tunable vacancy defect chemistry on free-standing carbon cathode for lithium-sulfur batteries 被引量:2
4
作者 Xi Zhang Xiaohong Liu +1 位作者 Wei Zhang Yingze Song 《Green Energy & Environment》 SCIE EI CSCD 2023年第2期354-359,共6页
The defect chemistry is successfully modulated on free-standing and binder-free carbon cathodes for highly efficient Li-S redox reactions.Such rationally regulated defect engineering realizes the synchronization of io... The defect chemistry is successfully modulated on free-standing and binder-free carbon cathodes for highly efficient Li-S redox reactions.Such rationally regulated defect engineering realizes the synchronization of ion/electron-conductive and defect-rich networks on the threedimension carbon cathode,leading to its tunable activity for both relieving the shuttle phenomenon and accelerating the sulfur redox reaction kinetics.As expected,the defective carbon cathode harvests a high rate capacity of 1217.8 mAh g^(-1)at 0.2 C and a superior capacity retention of61.7%at 2 C after 500 cycles.Even under the sulfur mass loading of 11.1 mg cm^(-2),the defective cathode still holds a remarkable areal capacity of 8.5 mAh cm^(-2). 展开更多
关键词 Li–S chemistry Tunable vacancy defects Free-standing cathode Electrocatalytic activity Sulfur redox reaction kinetics
下载PDF
Construction of strong built-in electric field in binary metal sulfide heterojunction to propel high-loading lithium-sulfur batteries 被引量:1
5
作者 Weiming Xiong Jiande Lin +6 位作者 Huiqun Wang Sha Li Junhao Wang Yuxiang Mao Xiao Zhan De-Yin Wu Li Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期492-501,I0011,共11页
The practical application of lithium-sulfur(Li-S)batteries is greatly hindered by soluble polysulfides shuttling and sluggish sulfur redox kinetics.Rational design of multifunctional hybrid materials with superior ele... The practical application of lithium-sulfur(Li-S)batteries is greatly hindered by soluble polysulfides shuttling and sluggish sulfur redox kinetics.Rational design of multifunctional hybrid materials with superior electronic conductivity and high electrocatalytic activity,e.g.,heterostructures,is a promising strategy to solve the above obstacles.Herein,a binary metal sulfide MnS-MoS_(2) heterojunction electrocatalyst is first designed for the construction of high-sulfur-loaded and durable Li-S batteries.The MnS-MoS_(2) p-n heterojunction shows a unique structure of MoS_(2) nanosheets decorated with ample MnS nanodots,which contributes to the formation of a strong built-in electric field at the two-phase interface.The MnS-MoS_(2) hybrid host shows strong soluble polysulfide affinity,enhanced electronic conductivity,and exceptional catalytic effect on sulfur reduction.Benefiting from the synergistic effect,the as-derived S/MnS-MoS_(2) cathode delivers a superb rate capability(643 m A h g^(-1)at 6 C)and a durable cyclability(0.048%decay per cycle over 1000 cycles).More impressively,an areal capacity of 9.9 m A h cm^(-2)can be achieved even under an extremely high sulfur loading of 14.7 mg cm^(-2)and a low electrolyte to sulfur ratio of 2.9μL mg^(-1).This work provides an in-depth understanding of the interfacial catalytic effect of binary metal compound heterojunctions on sulfur reaction kinetics. 展开更多
关键词 Lithium-sulfur battery MnS-MoS_(2)heterojunction Built-in electric field Sulfur reaction kinetics High sulfur loading
下载PDF
Design principle of single-atom catalysts for sulfur reduction reaction—interplay between coordination patterns and transition metals
6
作者 Wentao Zhang Gaoshang Zhang +5 位作者 Zhaotian Xie Xinming Zhang Jiabin Ma Ziyao Gao Kuang Yu Lele Peng 《Science China Materials》 SCIE EI CAS CSCD 2024年第10期3215-3224,共10页
The polysulfide shuttling effect is the primary bottleneck restricting the industrial application of Li-S batteries,and the electrocatalytic sulfur reduction reaction(SRR)has emerged as an effective solution.Carbon-ba... The polysulfide shuttling effect is the primary bottleneck restricting the industrial application of Li-S batteries,and the electrocatalytic sulfur reduction reaction(SRR)has emerged as an effective solution.Carbon-based singleatom catalysts(SACs),which promotes SRR,show great potential in inhibiting the shuttling effect of polysulfides.Meanwhile,the optimization and rational design of such catalysts requires a deep understanding to the fundamental SRR mechanism and remains highly nontrivial.In this work,we construct a comprehensive database of carbon-based SACs,covering different coordination patterns,heteroatoms,and transition metals.The SRR activities are determined using density functional theory calculations,revealing a synergistic effect between the p orbital of the heteroatom and the d orbital of the transition metal.This interplay underscores the critical importance of the coordination environment for SRR under the ortho-P_(2)C_(2)structure.Regardless of the transition metal type,the ortho-P_(2)C_(2)coordination pattern significantly enhances the SRR performance of SACs,surpassing the widely reported N_(3)C_(1)and N_(4)coordinated graphene-based SACs.Furthermore,heteroatoms with ortho-P_(2)C_(2)may exhibit SRR activity.In a word,by using this comprehensive dataset and data-driven framework,we propose a promising novel class of coordination structure(ortho-P_(2)C_(2)structure)and neglected design principle. 展开更多
关键词 single-atom catalysts ortho-P doped structure abinitio calculations machine learning sulfur reduction reaction
原文传递
Understanding synergistic catalysis on Pt–Cu diatomic sites via operando X-ray absorption spectroscopy in sulfur redox reactions
7
作者 Shuai Xie Xingjia Chen +13 位作者 Leilei Wang Guikai Zhang Haifeng Lv Guolei Cai Ying-Rui Lu Ting-Shan Chan e Jing Zhang Juncai Dong Hongchang Jin Xianghua Kong Junling Lu Song Jin Xiaojun Wu Hengxing Ji 《eScience》 2024年第5期110-119,共10页
Sulfur redox reactions render lithium–sulfur(Li–S)batteries with an energy density of>500Whkg−1 but suffer a low practical capacity and fast capacity fade due to sluggish sulfur redox reaction(SRR)kinetics,which ... Sulfur redox reactions render lithium–sulfur(Li–S)batteries with an energy density of>500Whkg−1 but suffer a low practical capacity and fast capacity fade due to sluggish sulfur redox reaction(SRR)kinetics,which lies in the complex reaction process that involves a series of reaction intermediates and proceeds via a cascade reaction.Here,we present a Pt–Cu dual-atom catalyst(Pt/Cu-NG)as an electrocatalyst for sulfur redox reactions.Pt/Cu-NG enabled the rapid conversion of soluble polysulfide intermediates into insoluble Li2S2/Li2S,and consequently,it prevented the accumulation and shuttling of lithium polysulfides,thus outperforming the corresponding single-atom catalysts(SACs)with individual Pt or Cu sites.Operando X-ray absorption spectroscopy and density functional theory calculations revealed that a synergistic effect between the paired Pt and Cu atoms modifies the electronic structure of the Pt site through d-orbital interactions,resulting in an optimal moderate interaction of the metal atom with the different sulfide species.This optimal interaction enhanced charge transfer kinetics and promoted sulfur redox reactions.Our work thus provides important insights on the atomic scale into the synergistic effects operative in dual-atom catalysts and will thus pave the way to electrocatalysts with enhanced efficiency for high-performance Li–S batteries. 展开更多
关键词 Dual-atom catalysts Sulfur redox reaction Lithium-sulfur batteries Synergistic interaction X-ray absorption spectroscopy
原文传递
Towards full demonstration of high areal loading sulfur cathode in lithium–sulfur batteries 被引量:15
8
作者 Long Kong Qi Jin +5 位作者 Xi-Tian Zhang Bo-Quan Li Jin-Xiu Chen Wan-Cheng Zhu Jia-Qi Huang Qiang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第12期17-22,共6页
Lithium–sulfur(Li–S)batteries have been recognized as promising substitutes for current energy-storage technologies owing to their exceptional advantages in very high-energy density and excellent material sustainabi... Lithium–sulfur(Li–S)batteries have been recognized as promising substitutes for current energy-storage technologies owing to their exceptional advantages in very high-energy density and excellent material sustainability.The cathode with high sulfur areal loading is vital for the practical applications of Li–S batteries with very high energy density.However,the high sulfur loading in an electrode results in poor rate and cycling performances of batteries in most cases.Herein,we used diameters of 5.0(D5)and 13.0(D13)mm to probe the effect of electrodes with different sizes on the rate and cycling performances under a high sulfur loading(4.5 mg cm^-2).The cell with D5 sulfur cathode exhibits better rate and cycling performances comparing with a large(D13)cathode.Both the high concentration of lithium polysulfides and corrosion of lithium metal anode impede rapid kinetics of sulfur redox reactions,which results in inferior battery performance of the Li–S cell with large diameter cathode.This work highlights the importance of rational matching of the large sulfur cathode with a high areal sulfur loading,carbon modified separators,organic electrolyte,and Li metal anode in a pouch cell,wherein the sulfur redox kinetics and lithium metal protection should be carefully considered under the flooded lithium polysulfide conditions in a working Li–S battery. 展开更多
关键词 Lithium sulfur batteries High areal sulfur loading Lithium anode protection Sulfur redox reactions Polysulfide interm ediates
下载PDF
The formation of crystalline lithium sulfide on electrocatalytic surfaces in lithium-sulfur batteries 被引量:4
9
作者 Yun-Wei Song Jin-Lei Qin +5 位作者 Chang-Xin Zhao Meng Zhao Li-Peng Hou Yan-Qi Peng Hong-Jie Peng Bo-Quan Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第1期568-573,I0015,共7页
Lithium-sulfur(Li-S)battery is highly regarded as a promising next-generation energy storage device but suffers from sluggish sulfur redox kinetics.Probing the behavior and mechanism of the sulfur species on electroca... Lithium-sulfur(Li-S)battery is highly regarded as a promising next-generation energy storage device but suffers from sluggish sulfur redox kinetics.Probing the behavior and mechanism of the sulfur species on electrocatalytic surface is the first step to rationally introduce polysulfide electrocatalysts for kinetic promotion in a working battery.Herein,crystalline lithium sulfide(Li_(2)S)is exclusively observed on electrocatalytic surface with uniform spherical morphology while Li_(2)S on non-electrocatalytic surface is amorphous and irregular.Further characterization indicates the crystalline Li_(2)S preferentially participates in the discharge/charge process to render reduced interfacial resistance,high sulfur utilization,and activated sulfur redox reactions.Consequently,crystalline Li_(2)S is proposed with thermodynamic and kinetic advantages to rati on alize the superior performances of Li-S batteries.The evoluti on of solid Li_(2)S on electrocatalytic surface not only addresses the polysulfide electrocatalysis strategy,but also inspires further investigation into the chemistry of energy-related processes. 展开更多
关键词 Lithium-sulfur batteries Polysulfide electrocatalysis Lithium sulfide Framework porphyrin Sulfur redox reactions
下载PDF
Understanding Sulfur Redox Mechanisms in Different Electrolytes for Room-Temperature Na-S Batteries 被引量:5
10
作者 Hanwen Liu Wei-Hong Lai +7 位作者 Qiuran Yang Yaojie Lei Can Wu Nana Wang Yun-Xiao Wang Shu-Lei Chou Hua Kun Liu Shi Xue Dou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第8期107-120,共14页
This work reports influence of two different electrolytes,carbonate ester and ether electrolytes,on the sulfur redox reactions in room-temperature Na-S batteries.Two sulfur cathodes with different S loading ratio and ... This work reports influence of two different electrolytes,carbonate ester and ether electrolytes,on the sulfur redox reactions in room-temperature Na-S batteries.Two sulfur cathodes with different S loading ratio and status are investigated.A sulfur-rich composite with most sulfur dispersed on the surface of a carbon host can realize a high loading ratio(72%S).In contrast,a confined sulfur sample can encapsulate S into the pores of the carbon host with a low loading ratio(44%S).In carbonate ester electrolyte,only the sulfur trapped in porous structures is active via‘solid-solid’behavior during cycling.The S cathode with high surface sulfur shows poor reversible capacity because of the severe side reactions between the surface polysulfides and the carbonate ester solvents.To improve the capacity of the sulfur-rich cathode,ether electrolyte with NaNO_(3) additive is explored to realize a‘solid-liquid’sulfur redox process and confine the shuttle effect of the dissolved polysulfides.As a result,the sulfur-rich cathode achieved high reversible capacity(483 mAh g^(−1)),corresponding to a specific energy of 362 Wh kg^(−1) after 200 cycles,shedding light on the use of ether electrolyte for high-loading sulfur cathode. 展开更多
关键词 Room-temperature sodium-sulfur batteries Carbonate ester electrolyte Ether electrolyte Sulfur cathode Sulfur redox reactions
下载PDF
Regulating f orbital of Tb electronic reservoir to activate stepwise and dual-directional sulfur conversion reaction 被引量:1
11
作者 Shuang Yu Shuo Yang +12 位作者 Dong Cai Huagui Nie Xuemei Zhou Tingting Li Ce Liang Haohao Wang Yangyang Dong Rui Xu Guoyong Fang Jinjie Qian Yongjie Ge Yue Hu Zhi Yang 《InfoMat》 SCIE CAS CSCD 2023年第1期125-138,共14页
The sluggish kinetics in multistep sulfur redox reaction with different energy requirements for each step,is considered as the crucial handicap of lithium–sulfur(Li–S)batteries.Designing an electron reservoir,which ... The sluggish kinetics in multistep sulfur redox reaction with different energy requirements for each step,is considered as the crucial handicap of lithium–sulfur(Li–S)batteries.Designing an electron reservoir,which can dynamically release electron to/accept electron from sulfur species during dis-charge/charge,is the ideal strategy for realizing stepwise and dual-directional polysulfide electrocatalysis.Herein,a single Tb^(3+/4+)oxide with moderate unfilled f orbital is synthetized as an electron reservoir to optimize polysulfide adsorption via Tb–S and N…Li bonds,reduce activation energy barrier,expe-dite electron/Li+transport,and selectively catalyze both long-chain and short-chain polysulfide conversions during charge and discharge.As a result,Tb electron reservoir enables stable operation of low-capacity decay(0.087%over 500 cycles at 1 C),high sulfur loading(5.2 mg cm^(2))and electrolyte-starved(7.5μL mg^(-1))Li–S batteries.This work could unlock the potential of f orbital engineering for high-energy battery systems. 展开更多
关键词 electronic reservoir lithium-sulfur battery sulfur redox reaction kinetics unfilled f orbital
原文传递
Sulfur poisoning mechanism of three way catalytic converter and its grey relational analysis
12
作者 蔡皓 刘亚飞 +3 位作者 龚金科 鄂加强 耿玉鹤 余立平 《Journal of Central South University》 SCIE EI CAS 2014年第11期4091-4096,共6页
Combining a detailed catalytic surface reaction mechanism with noble metal and promoter elementary reactions, a new three-way catalytic converter(TWC) reaction mechanism is established. Based on the new mechanism, ste... Combining a detailed catalytic surface reaction mechanism with noble metal and promoter elementary reactions, a new three-way catalytic converter(TWC) reaction mechanism is established. Based on the new mechanism, steady condition numerical simulation is carried out, and the change of light-off temperatures and conversion efficiency with various SO2 contents is obtained. By grey relational analysis(GRA), the relational grade between conversion efficiency and SO2 content is obtained. And, the result shows that SO2 content has the most important influence on C3H6 and NOX conversion efficiency. This provides an important reference to the improvement of activity design of TWC, and may provide guidance for the condition design and optimization of TWC. 展开更多
关键词 sulfur poisoning three-way catalytic converter reaction mechanism numerical simulation grey relational analysis
下载PDF
A General Electrochemical Synthesis of Sulfonimidoyl Fluorides,Azides,and Acetates
13
作者 Yi-Min Jiang Yong-Ying Lin +4 位作者 Lingyun Zhu Yi Yu Yuanming Li Yuqi Lin Ke-Yin Ye 《CCS Chemistry》 CSCD 2024年第8期2021-2030,共10页
Sulfonimidoyl fluorides,the aza-bioisostere of sulfonyl fluorides,are emerging as a promising linkage agent in the sulfur(VI)fluoride exchange reaction(SuFEx).However,conventional synthetic approaches typically requir... Sulfonimidoyl fluorides,the aza-bioisostere of sulfonyl fluorides,are emerging as a promising linkage agent in the sulfur(VI)fluoride exchange reaction(SuFEx).However,conventional synthetic approaches typically require the use of either unstable sulfonimidoyl chlorides,toxic and corrosive sulfur fluorides,or expensive electrophilic fluorinating agents.Herein,we report an electrochemistry-enabled oxidative nucleophilic fluorination of readily available and bench-stable sulfinamides using a commercially available and easy-to-handle triethylamine trihydrofluoride.With other nucleophilic agents,this electrochemical approach also serves as a general approach to diverse sulfonimidoyl derivatives,including sulfonimidoyl azides and acetates. 展开更多
关键词 ELECTROCHEMISTRY click chemistry sulfur(VI)fluoride exchange reaction sulfonimidoyl fluoride SULFINAMIDE
原文传递
Efficient activation of sulfite for reductive-oxidative degradation of chloramphenicol by carbon-supported cobalt ferrite catalysts
14
作者 Yongjie Li Mingjie Huang +2 位作者 Wen-Da Oh Xiaohui Wu Tao Zhou 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第10期106-110,共5页
Activation of(bi)sulfite(S(IV))by metal oxides is strongly limited by low electrons utilization.In this study,two carbon-supported cobalt ferrites spinels(CoFe^(2)O_(4) QDs-GO and CoFe^(2)O_(4) MOFs-CNTs)have been suc... Activation of(bi)sulfite(S(IV))by metal oxides is strongly limited by low electrons utilization.In this study,two carbon-supported cobalt ferrites spinels(CoFe^(2)O_(4) QDs-GO and CoFe^(2)O_(4) MOFs-CNTs)have been successfully synthesized by one-step solvothermal method.It was found that both catalysts could efficiently activate S(IV),with rapid reductive dechlorination and then oxidative degradation of a recalcitrant antibiotic chloramphenicol(CAP).Characterizations revealed that CoFe^(2)O_(4) spinels were tightly coated on the carbon bases(GO and CNTs),with effectiveness of the internal transfer of electrons.O_(2)˙−was identified for the reductive dechlorination of CAP,with simultaneously detection of both•OH and SO_(4)^(˙−)responsible for further oxidative degradation.The sulfur oxygen radical conversion reactions and molecular oxygen activation would occur together upon the carbon-based spinels.Spatial-separated interfacial reductive-oxidation of CAP would occur with dechlorination of CAP by O_(2)^(˙−)on the carbon bases,and oxidative degradation of intermediates by SO_(4)^(˙−/•)OH upon the CoFe^(2)O_(4) catalysts. 展开更多
关键词 Cobalt ferrite spinel Sulfite activation Reductive dechlorination Carbon supports Sulfur oxygen radical reactions
原文传递
Defect engineering on carbon black for accelerated Li-S chemistry 被引量:7
15
作者 Wenlong Cai Yingze Song +5 位作者 Yuting Fang Weiwei Wang Songlin Yu Huaisheng Ao Yongchun Zhu Yitai Qian 《Nano Research》 SCIE EI CAS CSCD 2020年第12期3315-3320,共6页
Rationally designing sulfur hosts with the functions of confining lithium polysulfides(LiPSs)and promoting sulfur reaction kinetics is critically important to the real implementation of lithium-sulfur(Li-S)batteries.H... Rationally designing sulfur hosts with the functions of confining lithium polysulfides(LiPSs)and promoting sulfur reaction kinetics is critically important to the real implementation of lithium-sulfur(Li-S)batteries.Herein,the defect-rich carbon black(CB)as sulfur host was successfully constructed through a rationally regulated defect engineering.Thus-obtained defect-rich CB can act as an active electrocatalyst to enable the sulfur redox reaction kinetics,which could be regarded as effective inhibitor to alleviate the LiPS shuttle.As expected,the cathode consisting of sulfur and defect-rich CB presents a high rate capacity of 783.8 mA·h·g^−1 at 4 C and a low capacity decay of only 0.07% per cycle at 2 C over 500 cycles,showing favorable electrochemical performances.The strategy in this investigation paves a promising way to the design of active electrocatalysts for realizing commercially viable Li-S batteries. 展开更多
关键词 Li-S chemistry defect engineering carbon black sulfur reaction kinetics
原文传递
A review of transition metal chalcogenide/graphene nanocomposites for energy storage and conversion 被引量:8
16
作者 Hong Yuan Long Kong +1 位作者 Tao Li Qiang Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第12期2180-2194,共15页
To meet the ever-increasing energy demands, advanced electrode materials are strongly requested for the exploration of advanced energy storage and conversion technologies, such as Li-ion batteries, Li-S batteries, Li-... To meet the ever-increasing energy demands, advanced electrode materials are strongly requested for the exploration of advanced energy storage and conversion technologies, such as Li-ion batteries, Li-S batteries, Li-]Zn-air batteries, supercapacitors, dye-sensitized solar cells, and other electrocatalysis process (e.g., oxygen reductionlevolution reaction, hydrogen evolution reaction). Transition metal chalcogenides (TMCs, Le., sulfides and selenides) are forcefully considered as an emerging candidate, owing to their unique physical and chemical properties. Moreover, the integration of TMCs with conductive graphene host has enabled the significant improvement of electrochemical performance of devices. In this review, the recent research progress on TMC]graphene composites for applications in energy storage and conversion devices is summarized. The preparation process of TMC]graphene nanocomposites is also included. In order to promote an in-depth understanding of performance improvement for TMC/graphene materials, the operating principle of various devices and technologies are briefly presented. Finally, the perspectives are given on the design and construction of advanced electrode materials. 展开更多
关键词 Transition metal chalcogenidesGraphene/Sulfides/SelenidesLithium ion batteriesLithium sulfur batteriesLithium oxygen batteriesZinc air batteriesSupercapacitorsElectrocatalysisOxygen reduction/evolution reaction
原文传递
Three-component synthesis of imidazo[1,2-c]pyrimidines using silica sulfuric acid(SSA)
17
作者 Mohammad Bakherad Ali Keivanloo +1 位作者 Masoumeh Siavashi Mina Omidian 《Chinese Chemical Letters》 SCIE CAS CSCD 2014年第1期149-151,共3页
This letter describes a simple and efficient synthesis of 3-(cyclohexylamino)-7-hydroxy-2-arylimi- dazo[1,2-c]pyrimidin-5(6H)-one via a one-pot three-component reaction of cyclohexyl isocyanide, an aldehyde, and 4... This letter describes a simple and efficient synthesis of 3-(cyclohexylamino)-7-hydroxy-2-arylimi- dazo[1,2-c]pyrimidin-5(6H)-one via a one-pot three-component reaction of cyclohexyl isocyanide, an aldehyde, and 4-amiopyrimidine-2,6-diol in the presence of a catalytic amount of SSA. 展开更多
关键词 Multi-component reaction (MCR)Silica sulfuric acidlsocyanideImidazo[l 2-c] pyrimidines
原文传递
Constructing Abnormal Step-Scheme Nano-Heterointerfaces as Sulfur Electrocatalysts with Desirable Electron Confinement for Practical Li-S Battery
18
作者 Dan Luo Hedong Chen +9 位作者 Guihua Liu Yihang Nie Tingzhou Yang Qianyi Ma Xiaoyong Lai Jingde Li Yi Cui Xin Wang Yongguang Zhang Zhongwei Chen 《Renewables》 2024年第1期61-72,共12页
Heterostructured sulfur electrocatalysts have long been heralded as an effective approach to settle the issues of the shuttle effect and sluggish reaction kinetics of lithium polysulfides(LiPSs)in lithium-sulfur(Li-S)... Heterostructured sulfur electrocatalysts have long been heralded as an effective approach to settle the issues of the shuttle effect and sluggish reaction kinetics of lithium polysulfides(LiPSs)in lithium-sulfur(Li-S)batteries.However,the limited active sites on the interface of the heterostructure offer unsatisfactory LiPSs conversion capability,rendering sluggish reaction kinetics.Herein,we have designed abnormal step-scheme nano-heterointerfaces,containing P-N,N-semimetal,and P-semimetal heterostructures as sulfur electrocatalysts to regulate the LiPSs catalytic conversion behavior,which demonstrates efficient catalytic activity and robust structural stability.The excellent electron-confinement contributed by the step-scheme barrier endows the electron gathering at the nano-heterointerfaces,conferring high selectivity and durability of electrocatalyst for an accelerated sulfur reduction reaction.The unique robust structure design further bestows the sulfur composite with favored ion/mass transportation within the electrode.Attributed to these structural features,the Li-S cell delivers excellent performance under high areal capacity over 7 mAh cm^(−2) and lean electrolyte/sulfur ratio below 2.5μL mg^(−1),decent rate capability up to 8 C,remarkable cyclic stability over 500 cycles,and satisfactory energy density of 386.3 Wh kg^(−1) in a 7.5 Ah pouch cell.This nano-heterointerface structure design strategy endows a sulfur cathode with superior LiPSs catalytic activity,opening new insights into high-performance Li-S batteries. 展开更多
关键词 lithium-sulfur batteries lithium polysulfides nano-heterointerface sulfur reduction reaction catalytic active sites
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部