Currently,China has 32 Earth observation satellites in orbit.The satellites can provide various data such as optical,multispectral,infrared,and radar.The spatial resolution of China Earth observation satellites ranges...Currently,China has 32 Earth observation satellites in orbit.The satellites can provide various data such as optical,multispectral,infrared,and radar.The spatial resolution of China Earth observation satellites ranges from low to medium to high.The satellites possess the capability to observe across multiple spectral bands,under all weather conditions,and at all times.The data of China Earth observation satellites has been widely used in fields such as natural resource detection,environmental monitoring and protection,disaster prevention and reduction,urban planning and mapping,agricultural and forestry surveys,land survey and geological prospecting,and ocean forecasting,achieving huge social benefits.This article introduces the recent progress of Earth observation satellites in China since 2022,especially the satellite operation,data archiving,data distribution and data coverage.展开更多
The primary objective of this paper is to present a comprehensive case study on monitoring wildfires in Nakhon Nayok, Thailand, utilizing Earth observation platforms. This initiative project has been undertaken by the...The primary objective of this paper is to present a comprehensive case study on monitoring wildfires in Nakhon Nayok, Thailand, utilizing Earth observation platforms. This initiative project has been undertaken by the Excellence Center of Space Technology and Research (ECSTAR), in partnership with its spin-off startup, TeroSpace. The study aims to provide an in-depth analysis of the wildfire incidents in the region, utilizing advanced technologies such as satellite imagery and data analytics, and to identify ways to improve future wildfire management. In particular, the paper focuses on the wildfires including thermal area comparison that ravaged the land in Nakhon Nayok Province in central Thailand from March to April 18th, 2023. To conduct this study, the ECSTAR-TeroSpace analytic team utilized satellite images from Earth observation platforms: MODIS and Sentinel-2A. By presenting this case study, this paper contributes to the broader understanding of how to monitor and manage wildfires in a changing climate. The findings of this study underscore the importance of proactive and collaborative efforts in mitigating the negative impacts of wildfires in Nakhon Nayok and other regions in Thailand.展开更多
Earth observation technology has provided highly useful information in global climate change research over the past few decades and greatly promoted its development,especially through providing biological,physical,and...Earth observation technology has provided highly useful information in global climate change research over the past few decades and greatly promoted its development,especially through providing biological,physical,and chemical parameters on a global scale.Earth observation data has the 4V features(volume,variety,veracity,and velocity) of big data that are suitable for climate change research.Moreover,the large amount of data available from scientific satellites plays an important role.This study reviews the advances of climate change studies based on Earth observation big data and provides examples of case studies that utilize Earth observation big data in climate change research,such as synchronous satelliteeaerialeground observation experiments,which provide extremely large and abundant datasets; Earth observational sensitive factors(e.g.,glaciers,lakes,vegetation,radiation,and urbanization); and global environmental change information and simulation systems.With the era of global environment change dawning,Earth observation big data will underpin the Future Earth program with a huge volume of various types of data and will play an important role in academia and decisionmaking.Inevitably,Earth observation big data will encounter opportunities and challenges brought about by global climate change.展开更多
Human beings are now facing global and regional sustainable development challenges.In China, Earth observation data play a fundamental role in Earth system science research. The support given by Earth observation data...Human beings are now facing global and regional sustainable development challenges.In China, Earth observation data play a fundamental role in Earth system science research. The support given by Earth observation data is required by many studies, including those on Earth's limited natural resources, the rapid development of economic and social needs, global change, extreme events, food security, water resources, sustainable economic and urban development, and emergency response. Application operation systems in many ministries and departments in China have entered a stage of sustainable development, and the State Key Project of High-Resolution Earth Observation Systems has been progressing since 2006. Earth observation technology in China has entered a period of rapid development.展开更多
The stratosphere airship provides a unique and promising platform for earth observation. Researches on the project design and control scheme for earth observation platforms are still rarely documented. Nonlinear dynam...The stratosphere airship provides a unique and promising platform for earth observation. Researches on the project design and control scheme for earth observation platforms are still rarely documented. Nonlinear dynamics, model uncertainties, and external disturbances contribute to the difficulty in maneuvering the stratosphere airship. A key technical challenge for the earth observation platform is station keeping, or the ability to remain fixed over a geo-location. This paper investigates the conceptual design, modeling and station-keeping attitude control of the near-space earth observation platform. A conceptual design of the earth observation platform is presented. The dynamics model of the platform is derived from the Newton-Euler formulation, and the station-keeping control system of the platform is formulated. The station-keeping attitude control approach for the platform is proposed. The multi-input multi-output nonlinear control system is decoupled into three single-input single-output linear subsystems via feedback linearization, the attitude controller design is carried out on the new linear systems using terminal sliding mode control, and the global stability of the closed-loop system is proven by using the Lyapunov theorem. The performance of the designed control system is simulated by using the variable step Runge-Kutta integrator. Simulation results show that the control system tracks the commanded attitude with an error of zero, which verify the effectiveness and robustness of the designed control system in the presence of parametric uncertainties. The near-space earth observation platform has several advantages over satellites, such as high resolution, fast to deploy, and convenient to retrieve, and the proposed control scheme provides an effective approach for station-keeping attitude control of the earth observation platform.展开更多
Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currentl...Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods.展开更多
This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satell...This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective.展开更多
China is expanding and sharing its capacity for Earth observation by developing sensors,platforms,and launch capabilities in tandem with growing lunar and deep space exploration.China is considering the Moon as a viab...China is expanding and sharing its capacity for Earth observation by developing sensors,platforms,and launch capabilities in tandem with growing lunar and deep space exploration.China is considering the Moon as a viable Earth observation platform to provide high-quality,planetary-scale data.The platform would produce consistent spatiotemporal data because of its long operational life and the geological stability of the Moon.China is also quickly improving its capabilities in processing and transforming Earth observation data into useful and practical information.Programs such as the Big Earth Data Science Engineering Program(CASEarth)provide opportunities to integrate data and develop“Big Earth Data”platforms to add value to data through analysis and integration.Such programs can offer products and services independently and in collaboration with international partners for data-driven decision support and policy development.With the rapid digital transformation of societies,and consequently increasing demand for big data and associated products,Digital Earth and the Digital Belt and Road Program(DBAR)allow Chinese experts to collaborate with international partners to integrate valuable Earth observation data in regional and global sustainable development.展开更多
Sustainability is the current theme of global development, and for China, it is not only an opportunity but also a challenge. In 2016, the Paris Agreement on climate change was adopted, addressing the need to limit th...Sustainability is the current theme of global development, and for China, it is not only an opportunity but also a challenge. In 2016, the Paris Agreement on climate change was adopted, addressing the need to limit the rise of global temperatures. The United Nations(UN) has set Sustainable Development Goals(SDGs) to transform our world in terms of closely linking human well-being, economic prosperity, and healthy environments. Sustainable development requires the support of spatial information and objective evaluation,and the capability of macroscopic, rapid, accurate Earth observation techniques plays an important role in sustainable development. Recently, Earth observation technologies are developing rapidly in China, where scientists are building coordinated, comprehensive and sustainable Earth observation systems for global monitoring programs. Recent efforts include the Digital Belt and Road Program(DBAR) and comparative studies of the "three poles". This and other researches will provide powerful support for solving problems such as global change and environmental degradation.展开更多
SDGSAT-1,the world's first science satellite dedicated to assisting the United Nations 2030 Sustainable Development Agenda,has been operational for over two and a half years.It provides valuable data to aid in imp...SDGSAT-1,the world's first science satellite dedicated to assisting the United Nations 2030 Sustainable Development Agenda,has been operational for over two and a half years.It provides valuable data to aid in implementing the Sustainable Development Goals internationally.Through its Open Science Program,the satellite has maintained consistent operations and delivered free data to scientific and technological users from 88 countries.This program has produced a wealth of scientific output,with 72 papers,including 28 on data processing methods and 44 on applications for monitoring progress toward SDGs related to sustainable cities,clean energy,life underwater,climate action,and clean water and sanitation.SDGSAT-1 is equipped with three key instruments:a multispectral imager,a thermal infrared spectrometer,and a glimmer imager,which have enabled ground-breaking research in a variety of domains such as water quality analysis,identification of industrial heat sources,assessment of environmental disaster impacts,and detection of forest fires.The precise measurements and ongoing monitoring made possible by this invaluable data significantly advance our understanding of various environmental phenomena.They are essential for making well-informed decisions on a local and global scale.Beyond its application to academic research,SDGSAT-1 promotes global cooperation and strengthens developing countries'capacity to accomplish their sustainable development goals.As the satellite continues to gather and distribute data,it plays a pivotal role in developing strategies for environmental protection,disaster management and relief,and resource allocation.These initiatives highlight the satellite's vital role in fostering international collaboration and technical innovation to advance scientific knowledge and promote a sustainable future.展开更多
Due to the limitation of data sources, the application of Distributed Hydrological Models (DHMs) using earth observation data to research water resources is necessary. In this study, the BTOPMC (Block-wise use of TOPM...Due to the limitation of data sources, the application of Distributed Hydrological Models (DHMs) using earth observation data to research water resources is necessary. In this study, the BTOPMC (Block-wise use of TOPMODEL) model was applied for 2 basins in the tropical monsoon region. This is the first time that the land cover map of the CCI (Climate Change Initiative Land Cover Team) was prepared for input data instead of IGBP (International Geosphere-Biosphere Programme) land cover map as proposed in the demo version of the BTOPMC model. The calibration and validation results showed that the Nash-Sutcliffe coefficients for daily stream discharge were 77.5% and 68.7% at Cung Son station (Ba basin). The Nash-Sutcliffe coefficients for daily stream discharge were 79.4% and 69.0% at Binh Tuong station (Kone basin), respectively. Because of a stop in measuring the discharge at Binh Tuong station in 2007, this model was applied to simulate discharge during the period of 2008-2015. Furthermore, the effect of land cover on discharge at Cung Son station was considered. The annual discharge in 2010 at Cung Son decreased 8 m3/s in the comparison between two scenarios (land cover of 2000 and 2010). According to this result, it is possible to propose a wide application range of the DHMs model to the tropical monsoon river basins using earth observation data.展开更多
Thermonuclear reaction exerts its influence of X-emission to produce several windows’ channel in the presence of an oscillator under electrical relay circuit with a decisive importance to a radiofrequency Earth obser...Thermonuclear reaction exerts its influence of X-emission to produce several windows’ channel in the presence of an oscillator under electrical relay circuit with a decisive importance to a radiofrequency Earth observation satellite. Indian Television Network (National Channel) has introduced a radiofrequency accelerator to produce X-emission at resonance with an activation of artificial human environment under relay analogy in the presence of an Earth observation satellite. Thermonuclear reaction communicates several windows’ channel via Earth observation satellite. Star Television network communicates an artificial human environment under the influence of a relay circuit with different pulse code units of human brain with an active influence of an artificial sensation to generate the loss of humanity around the world.展开更多
Earth observation (EO) provides the opportunity for periodic and spatially detailed assessment of the state of the environment in urban areas. In this study, the potential of EO based indicators (EI) to assess the sta...Earth observation (EO) provides the opportunity for periodic and spatially detailed assessment of the state of the environment in urban areas. In this study, the potential of EO based indicators (EI) to assess the state of environment in the urban agglomeration of Athens (UAA) is examined. EO based indicators as used in the study, include land surface temperature, land use, land cover and aerosols distribution. The indicators are also related to the household density and population density, as extracted from census data, for the same area. Indicators are applied at the municipal scale and are also used to estimate an aggregate environmental indicator (AEI), at municipal scale, by integrating all indicators mentioned above in a GIS environment. It is found that the urban agglomeration of Athens is practically “dichotomized”, by being divided in a western and eastern area, with considerably different environmental conditions. Results are considered important for focused interventions supporting environmental urban planning, whereas they represent the high potential of EO based indicators to monitor and assess the state of the urban environment.展开更多
The support given by Earth observation data and Earth system science play an increasingly important role in global change,regional sustainable development,extreme events,and the development of social and economic need...The support given by Earth observation data and Earth system science play an increasingly important role in global change,regional sustainable development,extreme events,and the development of social and economic needs.This field is also moving towards systematization,platforms,and standardized development.In December 2015,nearly 200 parties of the United Nations Framework Convention on Climate Change agreed in Paris to make arrangements for global action in response to climate change by 2020.China jointly issued a climate change adaptation strategy for cities in 2016 and then elevated national action to respond to climate change.China's Earth Observation and Earth Science development is facing new challenges as it supports the national civil space infrastructure and high-resolution Earth observation system.展开更多
The multi-platform,multi-band and multi-mode Earth Observation(EO) system has been established in China in recent years.The advanced technologies are playing more and more important role for sustainable development in...The multi-platform,multi-band and multi-mode Earth Observation(EO) system has been established in China in recent years.The advanced technologies are playing more and more important role for sustainable development in whole country.This paper introduces the results and achievements of EO monitoring for agriculture,EO surveying for land resources,EO monitoring for ecological environment,EO support for national surveying and national e-government,natural disaster monitoring and emergency response.It points out that the EO technologies could contribute more to the country,including in the field of global change in the coming decade.展开更多
Remote sensing, which came into being at the first International Symposium on Remote Sensing of Environment (ISRSE) 50 years ago, has enabled people to obtain objecive and realistic spatial and temporal information th...Remote sensing, which came into being at the first International Symposium on Remote Sensing of Environment (ISRSE) 50 years ago, has enabled people to obtain objecive and realistic spatial and temporal information through the application of Earth observation technologies and analyze and understand the macro-level changes of the Earth system from a spaial view. The technology of Earth observaion from space has incomparable advantages in the study of the Earth. This aricle introduces the 50-year development of Earth observaion in the world and the 30-year development of Earth observaion in China and reflects on the building of China's Earth observaion system.展开更多
An observation network focusing on earthquakes wascompleted one year aheadof schedule and put into operationrecently. According to scientists, this135-million-yuan (U.S.$16.3million) project could also be usedfor geod...An observation network focusing on earthquakes wascompleted one year aheadof schedule and put into operationrecently. According to scientists, this135-million-yuan (U.S.$16.3million) project could also be usedfor geodetic surveying, ionosphereand sea-level observations,展开更多
Satellite remote sensing,characterized by extensive coverage,fre-quent revisits,and continuous monitoring,provides essential data support for addressing global challenges.Over the past six decades,thousands of Earth o...Satellite remote sensing,characterized by extensive coverage,fre-quent revisits,and continuous monitoring,provides essential data support for addressing global challenges.Over the past six decades,thousands of Earth observation satellites and sensors have been deployed worldwide.These valuable Earth observation assets are contributed independently by various nations and organizations employing diverse methodologies.This poses a significant challenge in effectively discovering global Earth observation resources and realizing their full potential.In this paper,we describe the develop-ment of GEOSatDB,the most complete semantic database of civil Earth observation satellites developed based on a unified ontology model.A similarity matching method is used to integrate satellite information and a prompt strategy is used to extract unstructured sensor information.The resulting semantic database contains 127,949 semantic statements for 2,340 remote sensing satellites and 1,021 observation sensors.The global Earth observation capabil-ities of 195 countries worldwide have been analyzed in detail,and a concrete use case along with an associated query demonstration is presented.This database provides significant value in effectively facilitating the semantic understanding and sharing of Earth observa-tion resources.展开更多
Earth observation(EO) technologies,such as very high-resolution optical satellite data available from Maxar,can enhance economic consequence modeling of disasters by capturing the fine-grained and real-time behavioral...Earth observation(EO) technologies,such as very high-resolution optical satellite data available from Maxar,can enhance economic consequence modeling of disasters by capturing the fine-grained and real-time behavioral responses of businesses and the public.We investigated this unique approach to economic consequence modeling to determine whether crowd-sourced interpretations of EO data can be used to illuminate key economic behavioral responses that could be used for computable general equilibrium modeling of supply chain repercussions and resilience effects.We applied our methodology to the COVID-19 pandemic experience in Los Angeles County,California as a case study.We also proposed a dynamic adjustment approach to account for the changing character of EO through longer-term disasters in the economic modeling context.We found that despite limitations,EO data can increase sectoral and temporal resolution,which leads to significant differences from other data sources in terms of direct and total impact results.The findings from this analytical approach have important implications for economic consequence modeling of disasters,as well as providing useful information to policymakers and emergency managers,whose goal is to reduce disaster costs and to improve economic resilience.展开更多
The 18th International Symposium on Geodynamics and Earth Tides 2016 covered phenomena that generate temporal variations in geodetic and geophysical observations. In calculating the stress field for Earth tides, the o...The 18th International Symposium on Geodynamics and Earth Tides 2016 covered phenomena that generate temporal variations in geodetic and geophysical observations. In calculating the stress field for Earth tides, the observed geodetic response is used for defining the Earth's theology, the Earth internal structure, 'Earth rotation parameters, and the functioning of the sophisticated instrumentation mounted on Earth and satellites. The instrumentation capable of observing Earth tides, measures changes generated by lithospheric plate movements, as the earthquake cycle and volcanism. Hydrology, tem- perature, and pressure, either of natural or anthropogenic origin, affect the high precision observations, and therefore must be included in this study-realm.展开更多
文摘Currently,China has 32 Earth observation satellites in orbit.The satellites can provide various data such as optical,multispectral,infrared,and radar.The spatial resolution of China Earth observation satellites ranges from low to medium to high.The satellites possess the capability to observe across multiple spectral bands,under all weather conditions,and at all times.The data of China Earth observation satellites has been widely used in fields such as natural resource detection,environmental monitoring and protection,disaster prevention and reduction,urban planning and mapping,agricultural and forestry surveys,land survey and geological prospecting,and ocean forecasting,achieving huge social benefits.This article introduces the recent progress of Earth observation satellites in China since 2022,especially the satellite operation,data archiving,data distribution and data coverage.
文摘The primary objective of this paper is to present a comprehensive case study on monitoring wildfires in Nakhon Nayok, Thailand, utilizing Earth observation platforms. This initiative project has been undertaken by the Excellence Center of Space Technology and Research (ECSTAR), in partnership with its spin-off startup, TeroSpace. The study aims to provide an in-depth analysis of the wildfire incidents in the region, utilizing advanced technologies such as satellite imagery and data analytics, and to identify ways to improve future wildfire management. In particular, the paper focuses on the wildfires including thermal area comparison that ravaged the land in Nakhon Nayok Province in central Thailand from March to April 18th, 2023. To conduct this study, the ECSTAR-TeroSpace analytic team utilized satellite images from Earth observation platforms: MODIS and Sentinel-2A. By presenting this case study, this paper contributes to the broader understanding of how to monitor and manage wildfires in a changing climate. The findings of this study underscore the importance of proactive and collaborative efforts in mitigating the negative impacts of wildfires in Nakhon Nayok and other regions in Thailand.
基金funded by the International Cooperation and Exchanges National Natural Science Foundation of China (41120114001)
文摘Earth observation technology has provided highly useful information in global climate change research over the past few decades and greatly promoted its development,especially through providing biological,physical,and chemical parameters on a global scale.Earth observation data has the 4V features(volume,variety,veracity,and velocity) of big data that are suitable for climate change research.Moreover,the large amount of data available from scientific satellites plays an important role.This study reviews the advances of climate change studies based on Earth observation big data and provides examples of case studies that utilize Earth observation big data in climate change research,such as synchronous satelliteeaerialeground observation experiments,which provide extremely large and abundant datasets; Earth observational sensitive factors(e.g.,glaciers,lakes,vegetation,radiation,and urbanization); and global environmental change information and simulation systems.With the era of global environment change dawning,Earth observation big data will underpin the Future Earth program with a huge volume of various types of data and will play an important role in academia and decisionmaking.Inevitably,Earth observation big data will encounter opportunities and challenges brought about by global climate change.
文摘Human beings are now facing global and regional sustainable development challenges.In China, Earth observation data play a fundamental role in Earth system science research. The support given by Earth observation data is required by many studies, including those on Earth's limited natural resources, the rapid development of economic and social needs, global change, extreme events, food security, water resources, sustainable economic and urban development, and emergency response. Application operation systems in many ministries and departments in China have entered a stage of sustainable development, and the State Key Project of High-Resolution Earth Observation Systems has been progressing since 2006. Earth observation technology in China has entered a period of rapid development.
基金supported by Hunan Provincial Innovation Foundation for Postgraduate(Grant No. CX2011B005)National University of Defense Technology Innovation Foundation for Postgraduate, China(GranNo. B110105)
文摘The stratosphere airship provides a unique and promising platform for earth observation. Researches on the project design and control scheme for earth observation platforms are still rarely documented. Nonlinear dynamics, model uncertainties, and external disturbances contribute to the difficulty in maneuvering the stratosphere airship. A key technical challenge for the earth observation platform is station keeping, or the ability to remain fixed over a geo-location. This paper investigates the conceptual design, modeling and station-keeping attitude control of the near-space earth observation platform. A conceptual design of the earth observation platform is presented. The dynamics model of the platform is derived from the Newton-Euler formulation, and the station-keeping control system of the platform is formulated. The station-keeping attitude control approach for the platform is proposed. The multi-input multi-output nonlinear control system is decoupled into three single-input single-output linear subsystems via feedback linearization, the attitude controller design is carried out on the new linear systems using terminal sliding mode control, and the global stability of the closed-loop system is proven by using the Lyapunov theorem. The performance of the designed control system is simulated by using the variable step Runge-Kutta integrator. Simulation results show that the control system tracks the commanded attitude with an error of zero, which verify the effectiveness and robustness of the designed control system in the presence of parametric uncertainties. The near-space earth observation platform has several advantages over satellites, such as high resolution, fast to deploy, and convenient to retrieve, and the proposed control scheme provides an effective approach for station-keeping attitude control of the earth observation platform.
基金supported by National Natural Science Foundation of China,China(No.42004016)HuBei Natural Science Fund,China(No.2020CFB329)+1 种基金HuNan Natural Science Fund,China(No.2023JJ60559,2023JJ60560)the State Key Laboratory of Geodesy and Earth’s Dynamics self-deployment project,China(No.S21L6101)。
文摘Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods.
基金supported by the National Natural Science Foundation of China(7127106671171065+1 种基金71202168)the Natural Science Foundation of Heilongjiang Province(GC13D506)
文摘This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective.
基金Supported by the Chinese Academy of Sciences Strategic Priority Research Program of the Big Earth Data Science Engineering Program(XDA19090000,XDA19030000)。
文摘China is expanding and sharing its capacity for Earth observation by developing sensors,platforms,and launch capabilities in tandem with growing lunar and deep space exploration.China is considering the Moon as a viable Earth observation platform to provide high-quality,planetary-scale data.The platform would produce consistent spatiotemporal data because of its long operational life and the geological stability of the Moon.China is also quickly improving its capabilities in processing and transforming Earth observation data into useful and practical information.Programs such as the Big Earth Data Science Engineering Program(CASEarth)provide opportunities to integrate data and develop“Big Earth Data”platforms to add value to data through analysis and integration.Such programs can offer products and services independently and in collaboration with international partners for data-driven decision support and policy development.With the rapid digital transformation of societies,and consequently increasing demand for big data and associated products,Digital Earth and the Digital Belt and Road Program(DBAR)allow Chinese experts to collaborate with international partners to integrate valuable Earth observation data in regional and global sustainable development.
文摘Sustainability is the current theme of global development, and for China, it is not only an opportunity but also a challenge. In 2016, the Paris Agreement on climate change was adopted, addressing the need to limit the rise of global temperatures. The United Nations(UN) has set Sustainable Development Goals(SDGs) to transform our world in terms of closely linking human well-being, economic prosperity, and healthy environments. Sustainable development requires the support of spatial information and objective evaluation,and the capability of macroscopic, rapid, accurate Earth observation techniques plays an important role in sustainable development. Recently, Earth observation technologies are developing rapidly in China, where scientists are building coordinated, comprehensive and sustainable Earth observation systems for global monitoring programs. Recent efforts include the Digital Belt and Road Program(DBAR) and comparative studies of the "three poles". This and other researches will provide powerful support for solving problems such as global change and environmental degradation.
文摘SDGSAT-1,the world's first science satellite dedicated to assisting the United Nations 2030 Sustainable Development Agenda,has been operational for over two and a half years.It provides valuable data to aid in implementing the Sustainable Development Goals internationally.Through its Open Science Program,the satellite has maintained consistent operations and delivered free data to scientific and technological users from 88 countries.This program has produced a wealth of scientific output,with 72 papers,including 28 on data processing methods and 44 on applications for monitoring progress toward SDGs related to sustainable cities,clean energy,life underwater,climate action,and clean water and sanitation.SDGSAT-1 is equipped with three key instruments:a multispectral imager,a thermal infrared spectrometer,and a glimmer imager,which have enabled ground-breaking research in a variety of domains such as water quality analysis,identification of industrial heat sources,assessment of environmental disaster impacts,and detection of forest fires.The precise measurements and ongoing monitoring made possible by this invaluable data significantly advance our understanding of various environmental phenomena.They are essential for making well-informed decisions on a local and global scale.Beyond its application to academic research,SDGSAT-1 promotes global cooperation and strengthens developing countries'capacity to accomplish their sustainable development goals.As the satellite continues to gather and distribute data,it plays a pivotal role in developing strategies for environmental protection,disaster management and relief,and resource allocation.These initiatives highlight the satellite's vital role in fostering international collaboration and technical innovation to advance scientific knowledge and promote a sustainable future.
文摘Due to the limitation of data sources, the application of Distributed Hydrological Models (DHMs) using earth observation data to research water resources is necessary. In this study, the BTOPMC (Block-wise use of TOPMODEL) model was applied for 2 basins in the tropical monsoon region. This is the first time that the land cover map of the CCI (Climate Change Initiative Land Cover Team) was prepared for input data instead of IGBP (International Geosphere-Biosphere Programme) land cover map as proposed in the demo version of the BTOPMC model. The calibration and validation results showed that the Nash-Sutcliffe coefficients for daily stream discharge were 77.5% and 68.7% at Cung Son station (Ba basin). The Nash-Sutcliffe coefficients for daily stream discharge were 79.4% and 69.0% at Binh Tuong station (Kone basin), respectively. Because of a stop in measuring the discharge at Binh Tuong station in 2007, this model was applied to simulate discharge during the period of 2008-2015. Furthermore, the effect of land cover on discharge at Cung Son station was considered. The annual discharge in 2010 at Cung Son decreased 8 m3/s in the comparison between two scenarios (land cover of 2000 and 2010). According to this result, it is possible to propose a wide application range of the DHMs model to the tropical monsoon river basins using earth observation data.
文摘Thermonuclear reaction exerts its influence of X-emission to produce several windows’ channel in the presence of an oscillator under electrical relay circuit with a decisive importance to a radiofrequency Earth observation satellite. Indian Television Network (National Channel) has introduced a radiofrequency accelerator to produce X-emission at resonance with an activation of artificial human environment under relay analogy in the presence of an Earth observation satellite. Thermonuclear reaction communicates several windows’ channel via Earth observation satellite. Star Television network communicates an artificial human environment under the influence of a relay circuit with different pulse code units of human brain with an active influence of an artificial sensation to generate the loss of humanity around the world.
文摘Earth observation (EO) provides the opportunity for periodic and spatially detailed assessment of the state of the environment in urban areas. In this study, the potential of EO based indicators (EI) to assess the state of environment in the urban agglomeration of Athens (UAA) is examined. EO based indicators as used in the study, include land surface temperature, land use, land cover and aerosols distribution. The indicators are also related to the household density and population density, as extracted from census data, for the same area. Indicators are applied at the municipal scale and are also used to estimate an aggregate environmental indicator (AEI), at municipal scale, by integrating all indicators mentioned above in a GIS environment. It is found that the urban agglomeration of Athens is practically “dichotomized”, by being divided in a western and eastern area, with considerably different environmental conditions. Results are considered important for focused interventions supporting environmental urban planning, whereas they represent the high potential of EO based indicators to monitor and assess the state of the urban environment.
文摘The support given by Earth observation data and Earth system science play an increasingly important role in global change,regional sustainable development,extreme events,and the development of social and economic needs.This field is also moving towards systematization,platforms,and standardized development.In December 2015,nearly 200 parties of the United Nations Framework Convention on Climate Change agreed in Paris to make arrangements for global action in response to climate change by 2020.China jointly issued a climate change adaptation strategy for cities in 2016 and then elevated national action to respond to climate change.China's Earth Observation and Earth Science development is facing new challenges as it supports the national civil space infrastructure and high-resolution Earth observation system.
文摘The multi-platform,multi-band and multi-mode Earth Observation(EO) system has been established in China in recent years.The advanced technologies are playing more and more important role for sustainable development in whole country.This paper introduces the results and achievements of EO monitoring for agriculture,EO surveying for land resources,EO monitoring for ecological environment,EO support for national surveying and national e-government,natural disaster monitoring and emergency response.It points out that the EO technologies could contribute more to the country,including in the field of global change in the coming decade.
文摘Remote sensing, which came into being at the first International Symposium on Remote Sensing of Environment (ISRSE) 50 years ago, has enabled people to obtain objecive and realistic spatial and temporal information through the application of Earth observation technologies and analyze and understand the macro-level changes of the Earth system from a spaial view. The technology of Earth observaion from space has incomparable advantages in the study of the Earth. This aricle introduces the 50-year development of Earth observaion in the world and the 30-year development of Earth observaion in China and reflects on the building of China's Earth observaion system.
文摘An observation network focusing on earthquakes wascompleted one year aheadof schedule and put into operationrecently. According to scientists, this135-million-yuan (U.S.$16.3million) project could also be usedfor geodetic surveying, ionosphereand sea-level observations,
基金supported by the Major Program of the National Natural Science Foundation of China[42090015].
文摘Satellite remote sensing,characterized by extensive coverage,fre-quent revisits,and continuous monitoring,provides essential data support for addressing global challenges.Over the past six decades,thousands of Earth observation satellites and sensors have been deployed worldwide.These valuable Earth observation assets are contributed independently by various nations and organizations employing diverse methodologies.This poses a significant challenge in effectively discovering global Earth observation resources and realizing their full potential.In this paper,we describe the develop-ment of GEOSatDB,the most complete semantic database of civil Earth observation satellites developed based on a unified ontology model.A similarity matching method is used to integrate satellite information and a prompt strategy is used to extract unstructured sensor information.The resulting semantic database contains 127,949 semantic statements for 2,340 remote sensing satellites and 1,021 observation sensors.The global Earth observation capabil-ities of 195 countries worldwide have been analyzed in detail,and a concrete use case along with an associated query demonstration is presented.This database provides significant value in effectively facilitating the semantic understanding and sharing of Earth observa-tion resources.
基金funded by the NASA Disasters Program grant#NH18ZDA001N001N.
文摘Earth observation(EO) technologies,such as very high-resolution optical satellite data available from Maxar,can enhance economic consequence modeling of disasters by capturing the fine-grained and real-time behavioral responses of businesses and the public.We investigated this unique approach to economic consequence modeling to determine whether crowd-sourced interpretations of EO data can be used to illuminate key economic behavioral responses that could be used for computable general equilibrium modeling of supply chain repercussions and resilience effects.We applied our methodology to the COVID-19 pandemic experience in Los Angeles County,California as a case study.We also proposed a dynamic adjustment approach to account for the changing character of EO through longer-term disasters in the economic modeling context.We found that despite limitations,EO data can increase sectoral and temporal resolution,which leads to significant differences from other data sources in terms of direct and total impact results.The findings from this analytical approach have important implications for economic consequence modeling of disasters,as well as providing useful information to policymakers and emergency managers,whose goal is to reduce disaster costs and to improve economic resilience.
基金scientifically supported by the IAG:Commission 3,the IAG Sub-commission 3.1 and International Geodynamics and Earth Tide ServiceThe University of Trieste and the sponsors of the Symposium,namely the OGS(Istituto Nazionale di Oceanografia e di Geofisica Sperimentale)+8 种基金the Dipartimento di Fisica E. Caianiello,University of Salernothe Department of Mathematics and Geosciences of the University of TriesteLeica Geosystems S.P.A.International Association of Geodesy (3 IAG Travel Awards for young scientists)the European Geosciences Union(support to 8 young scientists)the Rector Maurizio Fermeglia of the University of Triestethe President Maria Cristina Pedicchio of OGSInstitute of oceanography and applied geophysicsthrough the contribution of the Italian Space Agency in the frame of the project "MOCASS" (-Mass Observation with Cold Atom Sensors in Space
文摘The 18th International Symposium on Geodynamics and Earth Tides 2016 covered phenomena that generate temporal variations in geodetic and geophysical observations. In calculating the stress field for Earth tides, the observed geodetic response is used for defining the Earth's theology, the Earth internal structure, 'Earth rotation parameters, and the functioning of the sophisticated instrumentation mounted on Earth and satellites. The instrumentation capable of observing Earth tides, measures changes generated by lithospheric plate movements, as the earthquake cycle and volcanism. Hydrology, tem- perature, and pressure, either of natural or anthropogenic origin, affect the high precision observations, and therefore must be included in this study-realm.