期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Recursive super-convergence computation for multi-dimensional problems via one-dimensional element energy pro jection technique 被引量:11
1
作者 Si YUAN Yue WU Qinyan XING 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第7期1031-1044,共14页
This paper presents a strategy for computation of super-convergent solutions of multi-dimensional problems in the finite element method (FEM) by recursive application of the one-dimensional (1D) element energy pro... This paper presents a strategy for computation of super-convergent solutions of multi-dimensional problems in the finite element method (FEM) by recursive application of the one-dimensional (1D) element energy projection (EEP) technique. The main idea is to conceptually treat multi-dimensional problems as generalized 1D problems, based on which the concepts of generalized 1D FEM and its consequent EEP formulae have been developed in a unified manner. Equipped with these concepts, multi-dimensional problems can be recursively discretized in one dimension at each step, until a fully discretized standard finite element (FE) model is reached. This conceptual dimension-by- dimension (D-by-D) discretization procedure is entirely equivalent to a full FE discretization. As a reverse D-by-D recovery procedure, by using the unified EEP formulae together with proper extraction of the generalized nodal solutions, super-convergent displacements and first derivatives for two-dimensional (2D) and three-dimensional (3D) problems can be obtained over the domain. Numerical examples of 3D Poisson's equation and elasticity problem are given to verify the feasibility and effectiveness of the proposed strategy. 展开更多
关键词 three-dimensional(3D)problem generalized one-dimensional(1D)finiteelement method (FEM) dimension-by-dimension(D-by-D) super-convergence elementenergy projection(EEP)
下载PDF
Self-adaptive strategy for one-dimensional finite element method based on EEP method with optimal super-convergence order 被引量:4
2
作者 袁驷 邢沁妍 +1 位作者 王旭 叶康生 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第5期591-602,共12页
Based on the newly-developed element energy projection (EEP) method with optimal super-convergence order for computation of super-convergent results, an improved self-adaptive strategy for one-dimensional finite ele... Based on the newly-developed element energy projection (EEP) method with optimal super-convergence order for computation of super-convergent results, an improved self-adaptive strategy for one-dimensional finite element method (FEM) is proposed. In the strategy, a posteriori errors are estimated by comparing FEM solutions to EEP super-convergent solutions with optimal order of super-convergence, meshes are refined by using the error-averaging method. Quasi-FEM solutions are used to replace the true FEM solutions in the adaptive process. This strategy has been found to be simple, clear, efficient and reliable. For most problems, only one adaptive step is needed to produce the required FEM solutions which pointwise satisfy the user specified error tolerances in the max-norm. Taking the elliptical ordinary differential equation of the second order as the model problem, this paper describes the fundamental idea, implementation strategy and computational algorithm and representative numerical examples are given to show the effectiveness and reliability of the proposed approach. 展开更多
关键词 finite element method (FEM) self-adaptive solution super-convergence optimal convergence order element energy projection condensed shape functions
下载PDF
COMPUTATION OF SUPER-CONVERGENT NODAL STRESSES OF TIMOSHENKO BEAM ELEMENTS BY EEP METHOD 被引量:1
3
作者 王枚 袁驷 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2004年第11期1228-1240,共13页
The newly proposed element energy projection(EEP) method has been applied to the computation of super_convergent nodal stresses of Timoshenko beam elements.General formulas based on element projection theorem were der... The newly proposed element energy projection(EEP) method has been applied to the computation of super_convergent nodal stresses of Timoshenko beam elements.General formulas based on element projection theorem were derived and illustrative numerical examples using two typical elements were given.Both the analysis and examples show that EEP method also works very well for the problems with vector function solutions.The EEP method gives super_convergent nodal stresses,which are well comparable to the nodal displacements in terms of both convergence rate and error magnitude.And in addition,it can overcome the “shear locking” difficulty for stresses even when the displacements are badly affected.This research paves the way for application of the EEP method to general one_dimensional systems of ordinary differential equations. 展开更多
关键词 Timoshenko beam element super-convergent stress element energy projection method shear locking
下载PDF
Self-adaptive one-dimensional nonlinear finite element method based on element energy projection method 被引量:16
4
作者 袁驷 杜炎 +1 位作者 邢沁妍 叶康生 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第10期1223-1232,共10页
The element energy projection (EEP) method for computation of super- convergent resulting in a one-dimensional finite element method (FEM) is successfully used to self-adaptive FEM analysis of various linear probl... The element energy projection (EEP) method for computation of super- convergent resulting in a one-dimensional finite element method (FEM) is successfully used to self-adaptive FEM analysis of various linear problems, based on which this paper presents a substantial extension of the whole set of technology to nonlinear problems. The main idea behind the technology transfer from linear analysis to nonlinear analysis is to use Newton's method to linearize nonlinear problems into a series of linear problems so that the EEP formulation and the corresponding adaptive strategy can be directly used without the need for specific super-convergence formulation for nonlinear FEM. As a re- sult, a unified and general self-adaptive algorithm for nonlinear FEM analysis is formed. The proposed algorithm is found to be able to produce satisfactory finite element results with accuracy satisfying the user-preset error tolerances by maximum norm anywhere on the mesh. Taking the nonlinear ordinary differential equation (ODE) of second-order as the model problem, this paper describes the related fundamental idea, the imple- mentation strategy, and the computational algorithm. Representative numerical exam- ples are given to show the efficiency, stability, versatility, and reliability of the proposed approach. 展开更多
关键词 NONLINEARITY finite element method (FEM) self-adaptive analysis super-convergence element energy projection (EEP)~ ordinary differential equation(ODE)
下载PDF
SELF-ADAPTIVE STRATEGY FOR ONE-DIMENSIONAL FINITE ELEMENT METHOD BASED ON ELEMENT ENERGY PROJECTION METHOD 被引量:3
5
作者 袁驷 和雪峰 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第11期1461-1474,共14页
Based on the newly-developed element energy projection (EEP) method for computation of super-convergent results in one-dimensional finite element method (FEM), the task of self-adaptive FEM analysis was converted ... Based on the newly-developed element energy projection (EEP) method for computation of super-convergent results in one-dimensional finite element method (FEM), the task of self-adaptive FEM analysis was converted into the task of adaptive piecewise polynomial interpolation. As a result, a satisfactory FEM mesh can be obtained, and further FEM analysis on this mesh would immediately produce an FEM solution which usually satisfies the user specified error tolerance. Even though the error tolerance was not completely satisfied, one or two steps of further local refinements would be sufficient. This strategy was found to be very simple, rapid, cheap and efficient. Taking the elliptical ordinary differential equation of second order as the model problem, the fundamental idea, implementation strategy and detailed algorithm are described. Representative numerical examples are given to show the effectiveness and reliability of the proposed approach. 展开更多
关键词 finite element method (FEM) self-adaptive solution super-convergence element energy projection ordinary differential equation (ODE)
下载PDF
OPTIMAL A POSTERIORI ERROR ESTIMATES OF THE LOCAL DISCONTINUOUS GALERKIN METHOD FOR CONVECTION- DIFFUSION PROBLEMS IN ONE SPACE DIMENSION 被引量:1
6
作者 Mahboub Baccouch 《Journal of Computational Mathematics》 SCIE CSCD 2016年第5期511-531,共21页
In this paper, we derive optimal order a posteriori error estimates for the local dis- continuous Galerkin (LDC) method for linear convection-diffusion problems in one space dimension. One of the key ingredients in ... In this paper, we derive optimal order a posteriori error estimates for the local dis- continuous Galerkin (LDC) method for linear convection-diffusion problems in one space dimension. One of the key ingredients in our analysis is the recent optimal superconver- gence result in [Y. Yang and C.-W. Shu, J. Comp. Math., 33 (2015), pp. 323-340]. We first prove that the LDG solution and its spatial derivative, respectively, converge in the L2-norm to (p + 1)-degree right and left Radau interpolating polynomials under mesh re- finement. The order of convergence is proved to be p + 2, when piecewise polynomials of degree at most p are used. These results are used to show that the leading error terms on each element for the solution and its derivative are proportional to (p + 1)-degree right and left Radau polynomials. We further prove that, for smooth solutions, the a posteriori LDG error estimates, which were constructed by the author in an earlier paper, converge, at a fixed time, to the true spatial errors in the L2-norm at (.9(hp+2) rate. Finally, we prove that the global effectivity indices in the L2-norm converge to unity at (9(h) rate. These results improve upon our previously published work in which the order of convergence for the a posteriori error estimates and the global effectivity index are proved to be p+3/2 and 1/2, respectively. Our proofs are valid for arbitrary regular meshes using PP polynomials with p ≥ 1. Several numerical experiments are performed to validate the theoretical results. 展开更多
关键词 Local discontinuous Galerkin method Convection-diffusion problems super-convergence Radau polynomials A posteriori error estimation.
原文传递
SUPERCONVERGENCE OF LEAST-SQUARES MIXED FINITE ELEMENT FOR SECOND-ORDER ELLIPTIC PROBLEMS
7
作者 Yan-pingChen De-haoYu 《Journal of Computational Mathematics》 SCIE CSCD 2003年第6期825-832,共8页
In this paper the least-squares mixed finite element is considered for solving second-order elliptic problems in two dimensional domains. The primary solution u and the flux σ are approximated using finite element sp... In this paper the least-squares mixed finite element is considered for solving second-order elliptic problems in two dimensional domains. The primary solution u and the flux σ are approximated using finite element spaces consisting of piecewise polynomials of degree k and r respectively. Based on interpolation operators and an auxiliary projection, superconvergent H1-error estimates of both the primary solution approximation uh and the flux approximation σh are obtained under the standard quasi-uniform assumption on finite element partition. The superconvergence indicates an accuracy of O(hr+2) for the least-squares mixed finite element approximation if Raviart-Thomas or Brezzi-Douglas-Fortin-Marini elements of order r are employed with optimal error estimate of O(hr+1). 展开更多
关键词 Elliptic problem super-convergence Interpolation projection Least-squares mixed finite element.
原文传递
SUPERCONVERGENCE ANALYSIS OF LOW ORDER NONCONFORMING MIXED FINITE ELEMENT METHODS FOR TIME-DEPENDENT NAVIER-STOKES EQUATIONS
8
作者 Huaijun Yang Dongyang Shi Qian Liu 《Journal of Computational Mathematics》 SCIE CSCD 2021年第1期63-80,共18页
In this paper,the superconvergence properties of the time-dependent Navier-Stokes equations are investigated by a low order nonconforming mixed finite element method(MFEM).In terms of the integral identity technique,t... In this paper,the superconvergence properties of the time-dependent Navier-Stokes equations are investigated by a low order nonconforming mixed finite element method(MFEM).In terms of the integral identity technique,the superclose error estimates for both the velocity in broken H-norm and the pressure in L2-norm are first obtained,which play a key role to bound the numerical solution in Lx-norm.Then the corresponding global superconvergence results are derived through a suitable interpolation postprocessing approach.Finally,some numerical results are provided to demonstrated the theoretical analysis. 展开更多
关键词 Navier-Stokes equations Nonconforming MFEM Supercloseness and super-convergence.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部