During the decommissioning of the Fukushima Daiichi nuclear power plant,it is important to consider the retrieval of resolidified debris both in air and underwater configurations.For the subsequent retrieval of debris...During the decommissioning of the Fukushima Daiichi nuclear power plant,it is important to consider the retrieval of resolidified debris both in air and underwater configurations.For the subsequent retrieval of debris from the reactor building,the resolidified debris must be cut into smaller pieces using various cutting methods.During the cutting process,aerosol particles are expected to be generated at the submicron scale.It has been noted that such aerosols sizing within the Greenfield gap(0.1-1μm)are difficult to remove effectively using traditional spraying methods.Therefore,to improve the aerosol removal efficiency of the spray system,a new aerosol agglomeration method was recently proposed,which involves injecting water mist to enlarge the sizes of the aerosol particles before removing them using water sprays.In this study,a series of experiments were performed to clarify the proper spray configurations for effective aerosol scavenging and to improve the performance of the water mist.The experimental results showed that the spray flow rate and droplet characteristics are important factors for the aerosol-scavenging efficiency and performance of the water mist.The results obtained from this study will be helpful for the optimization of the spray system design for effective aerosol scavenging during the decommissioning of the Fukushima Daiichi plant.展开更多
Almost without exception literature data and modeling effort are understandably devoted to water as the sprayed liquid since it constitutes the most common liquid used in spray drying applications. In selected applica...Almost without exception literature data and modeling effort are understandably devoted to water as the sprayed liquid since it constitutes the most common liquid used in spray drying applications. In selected applications, however, the liquid making up the solution or suspension may not be water. The objective of this work is to examine the differences in flow patterns, thermal behavior and drying rates caused by different liquids having different thermo-physical properties spray into a spray dryer using a computational fluid dynamic model.Numerical experiments were carried out for water (base case), ethyl alcohol and isopropyl alcohol-the latter two as model non-aqueous liquids. The chamber geometry was cylinder type with a co-current axial pressure nozzle and also an axial central exit so that the configuration is two dimensional and axi-symmetric. It is shown that the liquid properties can have major influence on the thermal field, droplet trajectories, residence times and overall evaporation capacity when all parameters of the problem are held fixed. Deviations from the single phase turbulent airflow in the same chamber without spray are different for the three liquids examined.展开更多
The flow stress of spray formed 70Si30Al alloy was studied by hot compression on a Gleeble- 1500 test machine. The experimental results indicated that the flow stress depends on the strain rate and the deformation tem...The flow stress of spray formed 70Si30Al alloy was studied by hot compression on a Gleeble- 1500 test machine. The experimental results indicated that the flow stress depends on the strain rate and the deformation temperature. The flow stress increases with an increase in strain rate at a given deformation temperature. The flow stress decreases with the deformation temperature increasing at a given strain rate. The relational expression among the flow stress, the swain rate, and the deformation temperature satisfies the Arrhenius equation. The deformation activation energy of 70Si30Al alloy during hot deformation is 866.27 kJ/mol from the Arrhenius equation.展开更多
The downstream water-air heat and moisture transfer system in a moving coordinate was studied. The relationship between the diameter of the misted droplets and the spray pressure was determined. Based on the theory of...The downstream water-air heat and moisture transfer system in a moving coordinate was studied. The relationship between the diameter of the misted droplets and the spray pressure was determined. Based on the theory of the relative velocity,the two-phase flow mode of the spray chamber and the efficiency equation for heat and moisture exchange were established. Corrections were carried out for the efficiency equation with spray pressure of 157 kPa. The results show that the pressure plays an important part in determining the efficiency of heat and moisture exchange. When the spray pressure is less than 157 kPa,better coincidence is noticed between the theoretical analysis and the test results with the error less than 6%. Greater error will be resulted in the case when the spray pressure is beyond 157 kPa. After the correction treatment,the coincidence between the theoretical and the experimental results is greatly improved.展开更多
The flow stress behavior of an as-spray-deposited AZ31 magnesium alloy with fine grains was investigated by means of compression tests with a Gleeble 1500 thermal mechanical simulator at isothermal constant strain rat...The flow stress behavior of an as-spray-deposited AZ31 magnesium alloy with fine grains was investigated by means of compression tests with a Gleeble 1500 thermal mechanical simulator at isothermal constant strain rates of 0.01, 0.1, 1.0, and 10 s^-1; the testing temperatures ranged from 623 to 723 K. It is demonstrated that a linear equation can be fitted between the Zemer-Hollomon parameter Z and stress in a double-log scale. The effect of deformation parameters on the behavior of recrystallization was analyzed. Dynamic recrystallization (DRX) generally occurs at a higher temperature and at a lower strain rate. The constitutive equation of the spray-deposited AZ31 magnesium alloy is presented by calculating the deformation activation energy (199.8 kJ·mol^-1). The as-spray-formed AZ31 alloy is easier for DRX nucleation at elevated temperatures due to the fine grain, which provides a large amount of nucleation sites and a high-diffusivity path for the atom.展开更多
This review article reports the recent progress in the development of a new group of molecule-based flow diagnostic techniques, which include molecular tag- ging velocimetry (MTV) and molecular tagging thermometry ...This review article reports the recent progress in the development of a new group of molecule-based flow diagnostic techniques, which include molecular tag- ging velocimetry (MTV) and molecular tagging thermometry (MTT), for both qualitative flow visualization of thermally induced flow structures and quantitative whole-field mea- surements of flow velocity and temperature distributions. The MTV and MTT techniques can also be easily combined to result in a so-called molecular tagging velocimetry and ther- mometry (MTV&T) technique, which is capble of achieving simultaneous measurements of flow velocity and temperature distribution in fluid flows. Instead of using tiny particles, the molecular tagging techniques (MTV, MTT, and MTV&T) use phosphorescent molecules, which can be turned into long-lasting glowing marks upon excitation by photons of appropriate wavelength, as the tracers for the flow veloc- ity and temperature measurements. The unique attraction and implementation of the molecular tagging techniques are demonstrated by three application examples, which include: (1) to quantify the unsteady heat transfer process from a heated cylinder to the surrounding fluid flow in order to exam- ine the thermal effects on the wake instabilities behind the heated cylinder operating in mixed and forced heat convec- tion regimes, (2) to reveal the time evolution of unsteady heat transfer and phase changing process inside micro-sized, icing water droplets in order to elucidate the underlying physics pertinent to aircraft icing phenomena, and (3) to achievesimultaneous droplet size, velocity and temperature measure- ments of "in-flight" droplets to characterize the dynamic and thermodynamic behaviors of flying droplets in spray flows.展开更多
Large-eddy simulation of spray combustion is under its rapid development.Different combustion models were used by different investigators.However,these models are less validated by detailed experimental data.In this p...Large-eddy simulation of spray combustion is under its rapid development.Different combustion models were used by different investigators.However,these models are less validated by detailed experimental data.In this paper,large-eddy simulation(LES)of ethanol spray-air combustion was made using an Eulerian-Lagrangian approach,a subgrid-scale kinetic energy stress model,and a filtered finite-rate combustion model,neglecting the sub-grid scale reaction rate.The simulation results are compared with experimental dada in the literature and validated in detail.The LES obtained statistically averaged gas temperature is in much better agreement with the experimental results than Reynolds averaged(RANS)modeling using the most complex probability density function(PDF)equation combustion model.The instantaneous LES results show the coherent structures of the shear region near the high-temperature flame zone and the fuel vapor concentration map,indicating that the droplets are concentrated in this shear region.The instantaneous temperature,oxygen and carbon dioxide concentration maps show the close interaction between the coherent structures and the combustion reaction.展开更多
Spray nozzle is a key component in equipment for plant protection and water-saving irrigation. The fan nozzle is a kind of spray nozzle, which is widely used in agriculture and forestry for irrigation and control of d...Spray nozzle is a key component in equipment for plant protection and water-saving irrigation. The fan nozzle is a kind of spray nozzle, which is widely used in agriculture and forestry for irrigation and control of diseases, insects, and weeds. In consideration of the increasing velocity of the flow field, when the hydraulic pressure remains unchanged and the flow path becomes narrow, and because the increase of the velocity of spray drops can increase the penetrability of spray drops into the plant canopy, a kind of new fan nozzle with multi entries and simple inner structure was designed and the influences of its structure parameters on the inner flow field were analyzed using FLUENT software. The experimental results showed that the influence of the throat length on the inner flow field of the nozzle was insignificant, while the orifice grooving degree had a significant effect on inner flow field of the nozzle. The larger the grooving degree was, the smaller the pressure and velocity of internal flow field of the nozzle. The nozzle throat length had little influence on the velocity change of internal flow field. Positive correlation was shown between throat length and flow field velocity.展开更多
The spray behaviors of the combined trapezoid spray tray(CTST) have a significant effect on the gas-liquid interface. In this paper, the spray process of CTST in a column, 570 mm in diameter, was experimentally invest...The spray behaviors of the combined trapezoid spray tray(CTST) have a significant effect on the gas-liquid interface. In this paper, the spray process of CTST in a column, 570 mm in diameter, was experimentally investigated by using a high-speed camera, and a theoretical model of the average droplet size was established according to the unstable wave theory. The results demonstrated that gas velocity passing through the hole is the key factor affecting the spray angle, which increases gradually with an increase in the gas velocity. When the gas velocity exceeds 7.5 m/s, the spray angle becomes stable at around 55°. The average flow velocity of the liquid sheet at the spray-hole increases significantly with an increase in the gas velocity, and decreases slightly with an increase in the liquid flow rate; moreover, it increases from the bottom of spray hole upward to the top. The density of liquid drops distribution in the spray area can be described by the RosinRammler function. In addition, the liquid drops are mainly concentrated in the area of spray angle ranging from 20° to 40°, and they gradually become uniform with the increase in the gas velocity and the liquid flow rate. The average liquid drop size deceases with an increase in the gas velocity, and increases slightly with an increasing liquid flow rate. In the normal working range, the average liquid drop size is about 1.0 mm to 2.5 mm in diameter.展开更多
We present a new Nusselt number correlation for spray cooling at large Reynolds numbers and high surface temperatures for water sprays impinging perpendicularly onto a flat plate. A large set of experimental data on s...We present a new Nusselt number correlation for spray cooling at large Reynolds numbers and high surface temperatures for water sprays impinging perpendicularly onto a flat plate. A large set of experimental data on spray cooling of hot surfaces with water has been analyzed, including the water temperature effects. For large-scale cooling, such as in industrial processes, large number of injection parameters such as number, type, pressure, and angle of the spray injection has led to a multitude of correlations that are difficult for general and practical applications. However, by synthesizing a set of experimental data where all of the above parameters have been varied, we find that the Nusselt number and therefore the heat transfer coefficient can be cast accurately as a function of the Reynolds number. Water is widely used as the coolant during spray cooling, and has a specific phase change characteristic. At large Reynolds number (Re > 100,000) and surface temperature (Ts > 600°C) ranges, which are of interest in large-scale spray cooling, the effect of water temperature is quite significant as it affects the film boiling close to the surface. This effect also has been parameterized using experimental data.展开更多
Numerical simulation is applied to detail the combustion characteristics of n-decane sprays in highly compressible vortices formed in a supersonic mixing layer. The multi-phase reacting flow is modeled, in which the s...Numerical simulation is applied to detail the combustion characteristics of n-decane sprays in highly compressible vortices formed in a supersonic mixing layer. The multi-phase reacting flow is modeled, in which the shear flow is solved Eulerianly by means of direct numerical simulation, and the motions of individual sub-grid point-mass fuel droplets are tracked Lagrangianly.Spray combustion behaviors are studied under different ambient pressures. Results indicate that ignition kernels are formed at high-strain vortex braids, where the scalar dissipation rates are high.The flame kernels are then strongly strained, associated with the rotation of the shearing vortex, and propagate to envelop the local vortex. It is observed that the flammable mixtures entrained in the vortex are burned from the edge to the core of the vortex until the reactants are completely consumed. As the ambient pressure increases, the high-temperature region expands so that the behaviors of spray flames are strongly changed. An overall analysis of the combustion field indicates that the time-averaged temperature increases, and the fluctuating pressure decreases, resulting in a more stable spray combustion under higher pressures, primarily due to the acceleration of the chemical reaction.展开更多
The droplet velocity and diameter significantly affect both the spatial drift loss and the interfacial deposition behaviors, thus determining the ultimate utilization efficiency during pesticide spraying.Investigating...The droplet velocity and diameter significantly affect both the spatial drift loss and the interfacial deposition behaviors, thus determining the ultimate utilization efficiency during pesticide spraying.Investigating the spatial velocity and diameter evolutions can reveal the mechanism of drift loss and guide to design regulation strategy. Here, we explored the spatial velocity distribution of droplets after leaving the nozzle by particle image velocimetry technology and particle tracking model, considering that the effect of nozzle configuration and the air velocity. It shows that all droplets decelerate rapidly with the velocity attenuation ratio ranging from 50% to 80% within the region of 200 mm below the nozzle.The spatial velocity evolution differences between droplets in crossflow are determined by the competition of vertical drag force and net gravity, and the drag force sharply increases as the droplet diameter decreases, especially for that smaller than 150 μm. Based on the spatial evolution differences of the droplet velocity and diameter, a functional adjuvant was added to the liquid for improving the diameter distribution. And the drift loss was significantly reduced due to the reduction of the proportion of easily drifting droplets.展开更多
This paper analyzes the behaviour of coating particles as well as the gas flow both inside and outside of the High-Velocity Oxy-Fuel (HVOF) thermal spray gun by using a quasi-one-dimensional analysis and a numerical...This paper analyzes the behaviour of coating particles as well as the gas flow both inside and outside of the High-Velocity Oxy-Fuel (HVOF) thermal spray gun by using a quasi-one-dimensional analysis and a numerical simulation. The HVOF gun in the present analysis is an axially symmetric convergent-divergent nozzle with the design Math number of 2.0. From the present analysis, the distributions of veloeity and temperature of the coating particles flying inside and outside of the HVOF gun are predicted. The velocity and temperature of the coating particles at the exit of the gun calculated by the present method agree well with the previous experimental results. Therefore, the present method of calculation is considered to be useful for predicting the HVOF gas and particle flows.展开更多
To study statistical characteristics of the random spray autoignition,aviation kerosene was injected transiently into non-vitiated air crossflow in a flow reactor with optical accesses.The operating conditions were re...To study statistical characteristics of the random spray autoignition,aviation kerosene was injected transiently into non-vitiated air crossflow in a flow reactor with optical accesses.The operating conditions were relevant to gas turbine combustor:the air crossflow pressure and temperature were in the range of 1.4-1.7 MPa and 830-947 K,respectively,and the jet-tocrossflow momentum flux ratios were 20,50 and 80.Statistical distributions of random ignition delay times with adequate convergence were estimated based on histograms.The dependences of the distributions on reactor pressure,temperature,and jet-to-crossflow momentum flux ratio were studied.The results show that the resulting distributions appear more concentrated with the increase of air temperature or jet-to-crossflow momentum flux ratio.And then the correlations for the mean and standard deviation of the ignition delay time sample data were developed based on the present results.Compared with the correlations of ignition delay time of homogeneous premixed gas-phase kerosene/air mixture reported in the literature,the results show a greater significance pressure dependence and lower temperature sensitivity of the ignition delay time of nonpremixed kerosene spray.展开更多
The aim of this work is to investigate the dependence of Zn S thin films structural and optical properties with the solution flow rate during the deposition using an ultrasonic spray method. The solution flow rate ran...The aim of this work is to investigate the dependence of Zn S thin films structural and optical properties with the solution flow rate during the deposition using an ultrasonic spray method. The solution flow rate ranged from 10 to 50 m L/h and the substrate temperature was maintained at 450 °C. The effect of the solution flow rate on the properties of Zn S thin films was investigated by X-ray diffraction(XRD), scanning electron microscopy(SEM), optical transmittance spectroscopy(UV–V) and the four-point method. The X-ray diffraction analysis showed that the deposited material was pure zinc sulphide, it has a cubic sphalerite structure with preferential orientation along the(111) direction. The grain size values were calculated and found to be between 38 to 82 nm.SEM analysis revealed that the deposited thin films have good adherence to the substrate surfaces, are homogeneous and have high density. The average transmission of all films is up more than 65% in the range wavelength from 200 to 1100 nm and their band gap energy values were found between 3.5–3.92 e V. The obtained film thickness varies from 390 to 1040 nm. Moreover, the electric resistivity of the deposited films increases with the increasing of the solution flow rate between 3.51 × 10^5 and 11 × 10^5 Ω·cm.展开更多
The impact of the Marangoni convection over the thin film flow on an expanding cylinder has been examined in this study. The diverse effect of the embedded constraints has been detected during the liquid film flow. It...The impact of the Marangoni convection over the thin film flow on an expanding cylinder has been examined in this study. The diverse effect of the embedded constraints has been detected during the liquid film flow. It has been examined that the behavior of the physical parameters altered after the small intervals and diverse from the traditional approach. The similarity variables have been utilized to alter the basic flow equations into the nonlinear ordinary differential equations. The result of the transformed equations is computed by BVPh 2.0 package. The performance of different constraints, for flow motion and temperature distributions are plotted and conferred. It has been observed that under the Marangoni convection the impact of the physical parameters varies after the point of inflection and the diverse impact of the embedding constraints provide space for the variation of the point of inflection for the desired spray analysis.展开更多
Recently,multi-rotor unmanned aerial vehicle(UAV)becomes more and more significantly irreplaceable in the field of plant protection against diseases,pests and weeds of crops.The easy takeoff and landing performance,ho...Recently,multi-rotor unmanned aerial vehicle(UAV)becomes more and more significantly irreplaceable in the field of plant protection against diseases,pests and weeds of crops.The easy takeoff and landing performance,hover function and high spraying efficiency of UAV are urgently required to spray pesticide for crop timely and effectively,especially in dispersed plots and hilly mountains.In such situations,the current researches about UAV spray application mainly focus on studying the influence of the UAV spraying parameters on the droplet deposition,such as operation height,operation velocity and wind velocity.The deposition and distribution of pesticide droplets on crops which depends on installation position of nozzle and airflow distribution characteristics of UAV are directly related to the control effect of pesticide and crop growth in different growth periods.As a preliminary step,this study focuses on the dynamic development law and distribution characteristics of the downwash air flow for the SLK-5 six-rotor agricultural UAV.Based on compressible Reynolds-averaged Navier-Stokes(RANS)equations with an RNG k-εturbulence model and dynamic mesh technology,the efficient three-dimensional computational fluid dynamics(CFD)method was established to analyze the flow field distribution characteristics of UAV in hover.Then the unsteady interaction flow field of the wing was investigated in detail.The downwash wind speed of the marked points for the SLK-5 UAV in hover was also tested by weather tracker.It was found that the maximum velocity value of the downwash flow was close to 10 m/s;the z-direction velocity was the main body of the wind velocity in the downwash airflow,and the comparison of the wind velocity experiment test and simulation showed that the relative error was less than 12%between the experimental and simulated values of the z-direction velocity at the marked points.Then the flow characteristics of the longitudinal and cross section were analyzed in detail,the results obtained can be used as a reference for drift and sedimentation studies for multi-rotor unmanned aerial vehicle.展开更多
The movement and deposition of the droplets sprayed by agricultural unmanned aerial vehicle(UAV)are influenced by the complex downwash flow field of the rotors.Instead of conducting field experiment,a high speed parti...The movement and deposition of the droplets sprayed by agricultural unmanned aerial vehicle(UAV)are influenced by the complex downwash flow field of the rotors.Instead of conducting field experiment,a high speed particle image velocimetry(PIV)method was used to measure the movement and deposition of the droplets at different rotating speeds of rotors(1000-3000 r/min)or at different transverse injecting points(20-50 cm away from its nearby rotors)in the downwash flow field of an agricultural UAV with eight rotors and conical nozzles.The maximum speed and size of the high speed zone of the droplets were found greatly influenced by the downwash velocity.The initial spray angle of the nozzle declined with the increase of downwash flow speed.It was found that the downwash velocity could not only change the deposition zone of the droplets,but also influence their distribution.The increase of the downwash velocity would increase the deposition uniformity of the droplets.The nozzle position in the downwash flow field could also influence the deposition of the droplets.When the transverse distance between the nozzle and its nearby rotors increased,the relative deposition near the downwash flow of the rotors increased simultaneously.However,the distance between the deposition peak and the nozzle stayed constant.The initial spray angle of the nozzle was not influenced by the transverse distance between the nozzle and its nearby rotors.The research results could provide a theoretical basis and reference for the optimization of the spray application of multi-rotor UAV to minimize droplets deposition uncertainty.展开更多
Cold spray is a technique to make a coating on a wide variety of mechanical or electric parts by spraying solid particles accelerated through a high-speed gas flow in a converging-diverging nozzle. In this study, pseu...Cold spray is a technique to make a coating on a wide variety of mechanical or electric parts by spraying solid particles accelerated through a high-speed gas flow in a converging-diverging nozzle. In this study, pseudo-shock waves in a modeled cold spray nozzle as well as high-speed gas jets are visualized by schlieren technique. The schlieren photographs reveals the supersonic flow with shock train in the nozzle. Static pressure along the barrel wall is also measured. The location of the head of pseudo-shock wave and its pressure distribution along the nozzle wall are analytically explained by using a formula of pseudo-shock wave. The analytical results show that the supersonic flow accompanying shock wave in the nozzle should be treated as pseudo-shock wave instead of normal shock wave.展开更多
The water-cooled supersonic two-stage high-velocity oxy-fuel (HVOF) thermal spray gun was developed to make a coating of temperature-sensitive material,such as titanium,on a substrate.The gun has a combustion chamber ...The water-cooled supersonic two-stage high-velocity oxy-fuel (HVOF) thermal spray gun was developed to make a coating of temperature-sensitive material,such as titanium,on a substrate.The gun has a combustion chamber (CC) followed by a mixing chamber (MC),in which the combustion gas is mixed with the nitrogen gas at room temperature.The mixed gas is accelerated to supersonic speed through a converging-diverging (C-D) nozzle followed by a straight passage called the barrel.This paper proposes an experimental procedure to estimate the cooling rate of CC,MC and barrel separately.Then,the mathematical model is presented to predict the pressure and temperature in the MC for the specific mass flow rates of fuel,oxygen and nitrogen by assuming chemical equilibrium with water-cooling in the CC and MC,and frozen flow with constant specific heat from stagnant condition to the throat in the CC and MC.Finally,the present mathematical model was validated by comparing the calculated and measured stagnant pressures of the CC of the two-stage HVOF gun.展开更多
基金financially supported by the Nuclear Energy Science and Technology and Human Resource Development Project of the Japan Atomic Energy Agency/Collaborative Laboratories for Advanced Decommissioning Science(No.R04I034)Ruicong Xu appreciates the scholarship(financial support)from the Chinese Scholarship Council(CSC No.202106380073).
文摘During the decommissioning of the Fukushima Daiichi nuclear power plant,it is important to consider the retrieval of resolidified debris both in air and underwater configurations.For the subsequent retrieval of debris from the reactor building,the resolidified debris must be cut into smaller pieces using various cutting methods.During the cutting process,aerosol particles are expected to be generated at the submicron scale.It has been noted that such aerosols sizing within the Greenfield gap(0.1-1μm)are difficult to remove effectively using traditional spraying methods.Therefore,to improve the aerosol removal efficiency of the spray system,a new aerosol agglomeration method was recently proposed,which involves injecting water mist to enlarge the sizes of the aerosol particles before removing them using water sprays.In this study,a series of experiments were performed to clarify the proper spray configurations for effective aerosol scavenging and to improve the performance of the water mist.The experimental results showed that the spray flow rate and droplet characteristics are important factors for the aerosol-scavenging efficiency and performance of the water mist.The results obtained from this study will be helpful for the optimization of the spray system design for effective aerosol scavenging during the decommissioning of the Fukushima Daiichi plant.
文摘Almost without exception literature data and modeling effort are understandably devoted to water as the sprayed liquid since it constitutes the most common liquid used in spray drying applications. In selected applications, however, the liquid making up the solution or suspension may not be water. The objective of this work is to examine the differences in flow patterns, thermal behavior and drying rates caused by different liquids having different thermo-physical properties spray into a spray dryer using a computational fluid dynamic model.Numerical experiments were carried out for water (base case), ethyl alcohol and isopropyl alcohol-the latter two as model non-aqueous liquids. The chamber geometry was cylinder type with a co-current axial pressure nozzle and also an axial central exit so that the configuration is two dimensional and axi-symmetric. It is shown that the liquid properties can have major influence on the thermal field, droplet trajectories, residence times and overall evaporation capacity when all parameters of the problem are held fixed. Deviations from the single phase turbulent airflow in the same chamber without spray are different for the three liquids examined.
基金This work was financially supported by the National Basic Research Program of China (No. G20000672).
文摘The flow stress of spray formed 70Si30Al alloy was studied by hot compression on a Gleeble- 1500 test machine. The experimental results indicated that the flow stress depends on the strain rate and the deformation temperature. The flow stress increases with an increase in strain rate at a given deformation temperature. The flow stress decreases with the deformation temperature increasing at a given strain rate. The relational expression among the flow stress, the swain rate, and the deformation temperature satisfies the Arrhenius equation. The deformation activation energy of 70Si30Al alloy during hot deformation is 866.27 kJ/mol from the Arrhenius equation.
基金Project(06YFJMCI5500) supported by the Natural Science Foundation of Tianjin City of China
文摘The downstream water-air heat and moisture transfer system in a moving coordinate was studied. The relationship between the diameter of the misted droplets and the spray pressure was determined. Based on the theory of the relative velocity,the two-phase flow mode of the spray chamber and the efficiency equation for heat and moisture exchange were established. Corrections were carried out for the efficiency equation with spray pressure of 157 kPa. The results show that the pressure plays an important part in determining the efficiency of heat and moisture exchange. When the spray pressure is less than 157 kPa,better coincidence is noticed between the theoretical analysis and the test results with the error less than 6%. Greater error will be resulted in the case when the spray pressure is beyond 157 kPa. After the correction treatment,the coincidence between the theoretical and the experimental results is greatly improved.
基金supported by the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China
文摘The flow stress behavior of an as-spray-deposited AZ31 magnesium alloy with fine grains was investigated by means of compression tests with a Gleeble 1500 thermal mechanical simulator at isothermal constant strain rates of 0.01, 0.1, 1.0, and 10 s^-1; the testing temperatures ranged from 623 to 723 K. It is demonstrated that a linear equation can be fitted between the Zemer-Hollomon parameter Z and stress in a double-log scale. The effect of deformation parameters on the behavior of recrystallization was analyzed. Dynamic recrystallization (DRX) generally occurs at a higher temperature and at a lower strain rate. The constitutive equation of the spray-deposited AZ31 magnesium alloy is presented by calculating the deformation activation energy (199.8 kJ·mol^-1). The as-spray-formed AZ31 alloy is easier for DRX nucleation at elevated temperatures due to the fine grain, which provides a large amount of nucleation sites and a high-diffusivity path for the atom.
基金supported by the National Aeronauticaland Space Administration(NASA)(Grant NNX12AC21A)The support of the National Science Foundation(NSF)under award numbers of CBET-1064196,IIA-1064235 and CBET-1435590
文摘This review article reports the recent progress in the development of a new group of molecule-based flow diagnostic techniques, which include molecular tag- ging velocimetry (MTV) and molecular tagging thermometry (MTT), for both qualitative flow visualization of thermally induced flow structures and quantitative whole-field mea- surements of flow velocity and temperature distributions. The MTV and MTT techniques can also be easily combined to result in a so-called molecular tagging velocimetry and ther- mometry (MTV&T) technique, which is capble of achieving simultaneous measurements of flow velocity and temperature distribution in fluid flows. Instead of using tiny particles, the molecular tagging techniques (MTV, MTT, and MTV&T) use phosphorescent molecules, which can be turned into long-lasting glowing marks upon excitation by photons of appropriate wavelength, as the tracers for the flow veloc- ity and temperature measurements. The unique attraction and implementation of the molecular tagging techniques are demonstrated by three application examples, which include: (1) to quantify the unsteady heat transfer process from a heated cylinder to the surrounding fluid flow in order to exam- ine the thermal effects on the wake instabilities behind the heated cylinder operating in mixed and forced heat convec- tion regimes, (2) to reveal the time evolution of unsteady heat transfer and phase changing process inside micro-sized, icing water droplets in order to elucidate the underlying physics pertinent to aircraft icing phenomena, and (3) to achievesimultaneous droplet size, velocity and temperature measure- ments of "in-flight" droplets to characterize the dynamic and thermodynamic behaviors of flying droplets in spray flows.
基金Supported by the National Natural Science Foundation of China(5073600,51266008)the Research Grant Council of Hong Kong(5105/08E,B-Q10H)
文摘Large-eddy simulation of spray combustion is under its rapid development.Different combustion models were used by different investigators.However,these models are less validated by detailed experimental data.In this paper,large-eddy simulation(LES)of ethanol spray-air combustion was made using an Eulerian-Lagrangian approach,a subgrid-scale kinetic energy stress model,and a filtered finite-rate combustion model,neglecting the sub-grid scale reaction rate.The simulation results are compared with experimental dada in the literature and validated in detail.The LES obtained statistically averaged gas temperature is in much better agreement with the experimental results than Reynolds averaged(RANS)modeling using the most complex probability density function(PDF)equation combustion model.The instantaneous LES results show the coherent structures of the shear region near the high-temperature flame zone and the fuel vapor concentration map,indicating that the droplets are concentrated in this shear region.The instantaneous temperature,oxygen and carbon dioxide concentration maps show the close interaction between the coherent structures and the combustion reaction.
文摘Spray nozzle is a key component in equipment for plant protection and water-saving irrigation. The fan nozzle is a kind of spray nozzle, which is widely used in agriculture and forestry for irrigation and control of diseases, insects, and weeds. In consideration of the increasing velocity of the flow field, when the hydraulic pressure remains unchanged and the flow path becomes narrow, and because the increase of the velocity of spray drops can increase the penetrability of spray drops into the plant canopy, a kind of new fan nozzle with multi entries and simple inner structure was designed and the influences of its structure parameters on the inner flow field were analyzed using FLUENT software. The experimental results showed that the influence of the throat length on the inner flow field of the nozzle was insignificant, while the orifice grooving degree had a significant effect on inner flow field of the nozzle. The larger the grooving degree was, the smaller the pressure and velocity of internal flow field of the nozzle. The nozzle throat length had little influence on the velocity change of internal flow field. Positive correlation was shown between throat length and flow field velocity.
基金supported by the Science and Technology Research and Development Plan of Hebei Province, China (12276710D)
文摘The spray behaviors of the combined trapezoid spray tray(CTST) have a significant effect on the gas-liquid interface. In this paper, the spray process of CTST in a column, 570 mm in diameter, was experimentally investigated by using a high-speed camera, and a theoretical model of the average droplet size was established according to the unstable wave theory. The results demonstrated that gas velocity passing through the hole is the key factor affecting the spray angle, which increases gradually with an increase in the gas velocity. When the gas velocity exceeds 7.5 m/s, the spray angle becomes stable at around 55°. The average flow velocity of the liquid sheet at the spray-hole increases significantly with an increase in the gas velocity, and decreases slightly with an increase in the liquid flow rate; moreover, it increases from the bottom of spray hole upward to the top. The density of liquid drops distribution in the spray area can be described by the RosinRammler function. In addition, the liquid drops are mainly concentrated in the area of spray angle ranging from 20° to 40°, and they gradually become uniform with the increase in the gas velocity and the liquid flow rate. The average liquid drop size deceases with an increase in the gas velocity, and increases slightly with an increasing liquid flow rate. In the normal working range, the average liquid drop size is about 1.0 mm to 2.5 mm in diameter.
文摘We present a new Nusselt number correlation for spray cooling at large Reynolds numbers and high surface temperatures for water sprays impinging perpendicularly onto a flat plate. A large set of experimental data on spray cooling of hot surfaces with water has been analyzed, including the water temperature effects. For large-scale cooling, such as in industrial processes, large number of injection parameters such as number, type, pressure, and angle of the spray injection has led to a multitude of correlations that are difficult for general and practical applications. However, by synthesizing a set of experimental data where all of the above parameters have been varied, we find that the Nusselt number and therefore the heat transfer coefficient can be cast accurately as a function of the Reynolds number. Water is widely used as the coolant during spray cooling, and has a specific phase change characteristic. At large Reynolds number (Re > 100,000) and surface temperature (Ts > 600°C) ranges, which are of interest in large-scale spray cooling, the effect of water temperature is quite significant as it affects the film boiling close to the surface. This effect also has been parameterized using experimental data.
基金the partial finical supports from the National Natural Science Foundation of China(No.51676111)the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics(No.U1730104)the Tsinghua University Initiative Scientific Research Program,China(No.2014Z05091)
文摘Numerical simulation is applied to detail the combustion characteristics of n-decane sprays in highly compressible vortices formed in a supersonic mixing layer. The multi-phase reacting flow is modeled, in which the shear flow is solved Eulerianly by means of direct numerical simulation, and the motions of individual sub-grid point-mass fuel droplets are tracked Lagrangianly.Spray combustion behaviors are studied under different ambient pressures. Results indicate that ignition kernels are formed at high-strain vortex braids, where the scalar dissipation rates are high.The flame kernels are then strongly strained, associated with the rotation of the shearing vortex, and propagate to envelop the local vortex. It is observed that the flammable mixtures entrained in the vortex are burned from the edge to the core of the vortex until the reactants are completely consumed. As the ambient pressure increases, the high-temperature region expands so that the behaviors of spray flames are strongly changed. An overall analysis of the combustion field indicates that the time-averaged temperature increases, and the fluctuating pressure decreases, resulting in a more stable spray combustion under higher pressures, primarily due to the acceleration of the chemical reaction.
基金This work was financially supported by the National Key Research and Development Program of China(2017YFD0200304).
文摘The droplet velocity and diameter significantly affect both the spatial drift loss and the interfacial deposition behaviors, thus determining the ultimate utilization efficiency during pesticide spraying.Investigating the spatial velocity and diameter evolutions can reveal the mechanism of drift loss and guide to design regulation strategy. Here, we explored the spatial velocity distribution of droplets after leaving the nozzle by particle image velocimetry technology and particle tracking model, considering that the effect of nozzle configuration and the air velocity. It shows that all droplets decelerate rapidly with the velocity attenuation ratio ranging from 50% to 80% within the region of 200 mm below the nozzle.The spatial velocity evolution differences between droplets in crossflow are determined by the competition of vertical drag force and net gravity, and the drag force sharply increases as the droplet diameter decreases, especially for that smaller than 150 μm. Based on the spatial evolution differences of the droplet velocity and diameter, a functional adjuvant was added to the liquid for improving the diameter distribution. And the drift loss was significantly reduced due to the reduction of the proportion of easily drifting droplets.
文摘This paper analyzes the behaviour of coating particles as well as the gas flow both inside and outside of the High-Velocity Oxy-Fuel (HVOF) thermal spray gun by using a quasi-one-dimensional analysis and a numerical simulation. The HVOF gun in the present analysis is an axially symmetric convergent-divergent nozzle with the design Math number of 2.0. From the present analysis, the distributions of veloeity and temperature of the coating particles flying inside and outside of the HVOF gun are predicted. The velocity and temperature of the coating particles at the exit of the gun calculated by the present method agree well with the previous experimental results. Therefore, the present method of calculation is considered to be useful for predicting the HVOF gas and particle flows.
基金supported by the National Natural Science Foundation of China(Nos.91641109 and 61827802)。
文摘To study statistical characteristics of the random spray autoignition,aviation kerosene was injected transiently into non-vitiated air crossflow in a flow reactor with optical accesses.The operating conditions were relevant to gas turbine combustor:the air crossflow pressure and temperature were in the range of 1.4-1.7 MPa and 830-947 K,respectively,and the jet-tocrossflow momentum flux ratios were 20,50 and 80.Statistical distributions of random ignition delay times with adequate convergence were estimated based on histograms.The dependences of the distributions on reactor pressure,temperature,and jet-to-crossflow momentum flux ratio were studied.The results show that the resulting distributions appear more concentrated with the increase of air temperature or jet-to-crossflow momentum flux ratio.And then the correlations for the mean and standard deviation of the ignition delay time sample data were developed based on the present results.Compared with the correlations of ignition delay time of homogeneous premixed gas-phase kerosene/air mixture reported in the literature,the results show a greater significance pressure dependence and lower temperature sensitivity of the ignition delay time of nonpremixed kerosene spray.
文摘The aim of this work is to investigate the dependence of Zn S thin films structural and optical properties with the solution flow rate during the deposition using an ultrasonic spray method. The solution flow rate ranged from 10 to 50 m L/h and the substrate temperature was maintained at 450 °C. The effect of the solution flow rate on the properties of Zn S thin films was investigated by X-ray diffraction(XRD), scanning electron microscopy(SEM), optical transmittance spectroscopy(UV–V) and the four-point method. The X-ray diffraction analysis showed that the deposited material was pure zinc sulphide, it has a cubic sphalerite structure with preferential orientation along the(111) direction. The grain size values were calculated and found to be between 38 to 82 nm.SEM analysis revealed that the deposited thin films have good adherence to the substrate surfaces, are homogeneous and have high density. The average transmission of all films is up more than 65% in the range wavelength from 200 to 1100 nm and their band gap energy values were found between 3.5–3.92 e V. The obtained film thickness varies from 390 to 1040 nm. Moreover, the electric resistivity of the deposited films increases with the increasing of the solution flow rate between 3.51 × 10^5 and 11 × 10^5 Ω·cm.
文摘The impact of the Marangoni convection over the thin film flow on an expanding cylinder has been examined in this study. The diverse effect of the embedded constraints has been detected during the liquid film flow. It has been examined that the behavior of the physical parameters altered after the small intervals and diverse from the traditional approach. The similarity variables have been utilized to alter the basic flow equations into the nonlinear ordinary differential equations. The result of the transformed equations is computed by BVPh 2.0 package. The performance of different constraints, for flow motion and temperature distributions are plotted and conferred. It has been observed that under the Marangoni convection the impact of the physical parameters varies after the point of inflection and the diverse impact of the embedding constraints provide space for the variation of the point of inflection for the desired spray analysis.
基金acknowledge the financial support provided by the National Key Research and Development Plan of China(No.2016YFD0200702)Study on Key Techniques of Aviation Plant Protection for Rice Diseases and Insect Pests of China(No.S201729)+1 种基金Open exchange project of China-US pesticide technology Joint Research Center(No.Y2017PT32)Aviation intelligent pesticide operation system based on Beidou automatic navigation(No.S201609).
文摘Recently,multi-rotor unmanned aerial vehicle(UAV)becomes more and more significantly irreplaceable in the field of plant protection against diseases,pests and weeds of crops.The easy takeoff and landing performance,hover function and high spraying efficiency of UAV are urgently required to spray pesticide for crop timely and effectively,especially in dispersed plots and hilly mountains.In such situations,the current researches about UAV spray application mainly focus on studying the influence of the UAV spraying parameters on the droplet deposition,such as operation height,operation velocity and wind velocity.The deposition and distribution of pesticide droplets on crops which depends on installation position of nozzle and airflow distribution characteristics of UAV are directly related to the control effect of pesticide and crop growth in different growth periods.As a preliminary step,this study focuses on the dynamic development law and distribution characteristics of the downwash air flow for the SLK-5 six-rotor agricultural UAV.Based on compressible Reynolds-averaged Navier-Stokes(RANS)equations with an RNG k-εturbulence model and dynamic mesh technology,the efficient three-dimensional computational fluid dynamics(CFD)method was established to analyze the flow field distribution characteristics of UAV in hover.Then the unsteady interaction flow field of the wing was investigated in detail.The downwash wind speed of the marked points for the SLK-5 UAV in hover was also tested by weather tracker.It was found that the maximum velocity value of the downwash flow was close to 10 m/s;the z-direction velocity was the main body of the wind velocity in the downwash airflow,and the comparison of the wind velocity experiment test and simulation showed that the relative error was less than 12%between the experimental and simulated values of the z-direction velocity at the marked points.Then the flow characteristics of the longitudinal and cross section were analyzed in detail,the results obtained can be used as a reference for drift and sedimentation studies for multi-rotor unmanned aerial vehicle.
基金the National Natural Science Foundation of China(31601228)the Youth Science Fund of the Beijing Natural Science Foundation(6164032)the Youth Science Fund of Beijing Academy of Agriculture and Forestry Sciences(QNJJ201631)。
文摘The movement and deposition of the droplets sprayed by agricultural unmanned aerial vehicle(UAV)are influenced by the complex downwash flow field of the rotors.Instead of conducting field experiment,a high speed particle image velocimetry(PIV)method was used to measure the movement and deposition of the droplets at different rotating speeds of rotors(1000-3000 r/min)or at different transverse injecting points(20-50 cm away from its nearby rotors)in the downwash flow field of an agricultural UAV with eight rotors and conical nozzles.The maximum speed and size of the high speed zone of the droplets were found greatly influenced by the downwash velocity.The initial spray angle of the nozzle declined with the increase of downwash flow speed.It was found that the downwash velocity could not only change the deposition zone of the droplets,but also influence their distribution.The increase of the downwash velocity would increase the deposition uniformity of the droplets.The nozzle position in the downwash flow field could also influence the deposition of the droplets.When the transverse distance between the nozzle and its nearby rotors increased,the relative deposition near the downwash flow of the rotors increased simultaneously.However,the distance between the deposition peak and the nozzle stayed constant.The initial spray angle of the nozzle was not influenced by the transverse distance between the nozzle and its nearby rotors.The research results could provide a theoretical basis and reference for the optimization of the spray application of multi-rotor UAV to minimize droplets deposition uncertainty.
文摘Cold spray is a technique to make a coating on a wide variety of mechanical or electric parts by spraying solid particles accelerated through a high-speed gas flow in a converging-diverging nozzle. In this study, pseudo-shock waves in a modeled cold spray nozzle as well as high-speed gas jets are visualized by schlieren technique. The schlieren photographs reveals the supersonic flow with shock train in the nozzle. Static pressure along the barrel wall is also measured. The location of the head of pseudo-shock wave and its pressure distribution along the nozzle wall are analytically explained by using a formula of pseudo-shock wave. The analytical results show that the supersonic flow accompanying shock wave in the nozzle should be treated as pseudo-shock wave instead of normal shock wave.
文摘The water-cooled supersonic two-stage high-velocity oxy-fuel (HVOF) thermal spray gun was developed to make a coating of temperature-sensitive material,such as titanium,on a substrate.The gun has a combustion chamber (CC) followed by a mixing chamber (MC),in which the combustion gas is mixed with the nitrogen gas at room temperature.The mixed gas is accelerated to supersonic speed through a converging-diverging (C-D) nozzle followed by a straight passage called the barrel.This paper proposes an experimental procedure to estimate the cooling rate of CC,MC and barrel separately.Then,the mathematical model is presented to predict the pressure and temperature in the MC for the specific mass flow rates of fuel,oxygen and nitrogen by assuming chemical equilibrium with water-cooling in the CC and MC,and frozen flow with constant specific heat from stagnant condition to the throat in the CC and MC.Finally,the present mathematical model was validated by comparing the calculated and measured stagnant pressures of the CC of the two-stage HVOF gun.