The plasma density enhancement outside hollow electrodes in capacitively coupled radio-frequency(RF) discharges is investigated by a two-dimensional(2D) particle-in-cell/Monte-Carlo collision(PIC/MCC) model. Results s...The plasma density enhancement outside hollow electrodes in capacitively coupled radio-frequency(RF) discharges is investigated by a two-dimensional(2D) particle-in-cell/Monte-Carlo collision(PIC/MCC) model. Results show that plasma exists inside the cavity when the sheath inside the hollow electrode hole is fully collapsed, which is an essential condition for the plasma density enhancement outside hollow electrodes. In addition, the existence of the electron density peak at the orifice is generated via the hollow cathode effect(HCE), which plays an important role in the density enhancement. It is also found that the radial width of bulk plasma at the orifice affects the magnitude of the density enhancement, and narrow radial plasma bulk width at the orifice is not beneficial to obtain high-density plasma outside hollow electrodes.Higher electron density at the orifice, combined with larger radial plasma bulk width at the orifice,causes higher electron density outside hollow electrodes. The results also imply that the HCE strength inside the cavity cannot be determined by the magnitude of the electron density outside hollow electrodes.展开更多
In this paper, the characteristics of an atmospheric pressure helium plasma jet generated by a dual-power electrode (DPE) configuration are investigated by using a two-dimensional fluid model. The effect of a needle...In this paper, the characteristics of an atmospheric pressure helium plasma jet generated by a dual-power electrode (DPE) configuration are investigated by using a two-dimensional fluid model. The effect of a needle electrode on the discharge is studied by comparing the results of the DPE configuration with those of the single ring electrode configuration. It is found that the existence of the needle leads to the generation of a helium plasma jet with a higher propagation velocity, higher species density, and larger discharge width. Furthermore, the influences of the needle radius and needle-to-ring discharge gap on the generation of a plasma jet are also studied. The simulation results indicate that the needle electrode has an evident influence on the plasma jet characteristics.展开更多
Generation characteristics of vacuum discharge plasma are very important for the applied research of metal plasma. The vacuum discharge electrode configuration and the cathode material affect the generation characteri...Generation characteristics of vacuum discharge plasma are very important for the applied research of metal plasma. The vacuum discharge electrode configuration and the cathode material affect the generation characteristics of the metal plasma which consists of metal ions coming from cathode and generated by vacuum discharge. In this research, the generation characteristics of the metal plasma generated by vacuum discharge are discussed for four patterns of electrode configurations, i.e. cone-mesh electrode setup, cone-cross line electrode setup, cone-line electrode setup and cone-ring electrode setup. Characteristics of the metal plasma, such as elec- tron density, electron temperature, space potential, ion energy, are measured by the probe method for discussing the impacts of different electrode configurations on the density of generated metal plasma. Moreover, the diffusion velocities of the metal plasma are measured for cathode materials of Pb, Al, and Cu, respectively. The experimental results indicate that the plasma generated by the discharge of cone-ring electrode configuration possesses the maximum density and the metal plasma generated by the Al cathode possesses the fastest diffusion velocity and the highest kinetic energy.展开更多
Dry-spun Carbon Nanotube(CNT)fibers were surface-modified by atmospheric pressure oxygen plasma functionalization using a well controlled and continuous process.The fibers were characterized by scanning electron micro...Dry-spun Carbon Nanotube(CNT)fibers were surface-modified by atmospheric pressure oxygen plasma functionalization using a well controlled and continuous process.The fibers were characterized by scanning electron microscopy(SEM),Raman spectroscopy,and X-ray Photoelectron Spectroscopy(XPS).It was found from the conducted electrochemical measurements that the functionalized fibers showed a 132.8% increase in specific capacitance compared to non-functionalized fibers.Dye-adsorption test and the obtained Randles-Sevcik plot demonstrated that the oxygen plasma functionalized fibers exhibited increased surface area.It was further established by Brunauer-Emmett-Teller(BET)measurements that the surface area of the CNT fibers was increased from 168.22 m^2/g to 208.01 m^2/g after plasma functionalization.The pore size distribution of the fibers was also altered by this processing.The improved electrochemical data was attributed to enhanced wettability,increased surface area,and the presence of oxygen functional groups,which promoted the capacitance of the fibers.Fiber supercapacitors were fabricated from the oxygen plasma functionalized CNT fiber electrodes using different electrolyte systems.The devices with functionalized electrodes exhibited excellent cyclic stability(93.2% after 4000 cycles),flexibility,bendability,and good energy densities.At 0.5 m A/cm^2,the EMIMBF4 device revealed a specific capacitance,which is 27% and 65%greater than the specific capacitances of devices using EMIMTFSI and H2SO4 electrolytes,respectively.The practiced in this work plasma surface processing can be employed in other applications where fibers,yarns,ribbons,and sheets need to be chemically modified.展开更多
An atmospheric pressure plasma jet(APPJ) in Ar with various grounded electrode arrangements is employed to investigate the effects of electrode arrangement on the characteristics of the APPJ.Electrical and optical m...An atmospheric pressure plasma jet(APPJ) in Ar with various grounded electrode arrangements is employed to investigate the effects of electrode arrangement on the characteristics of the APPJ.Electrical and optical methods are used to characterize the plasma properties.The discharge modes of the APPJ with respect to applied voltage are studied for grounded electrode positions of 10 mm,40 mm and 80 mm,respectively,and the main discharge and plasma parameters are investigated.It is shown that an increase in the distance between the grounded electrode and high-voltage electrode results in a change in the discharge modes and discharge parameters.The discharges transit from having two discharge modes,dielectric barrier discharge(DBD) and jet,to having three,corona,DBD and jet,with increase in the distance from the grounded to the high-voltage electrodes.The maximum length of the APPJ reaches 3.8 cm at an applied voltage of 8 kV.The discharge power and transferred charges and spectral line intensities for species in the APPJ are influenced by the positions of the grounded electrode,while there is no obvious difference in the values of the electron excited temperature(EET) for the three grounded electrode positions.展开更多
This study aimed to produce spherical TiNi powders suitable for additive manufacturing by plasma rotating electrode process(PREP).Scanning electron microscopy,X-ray diffractometry and differential scanning calorimetry...This study aimed to produce spherical TiNi powders suitable for additive manufacturing by plasma rotating electrode process(PREP).Scanning electron microscopy,X-ray diffractometry and differential scanning calorimetry were used to investigate the surface and inner micro-morphology,phase constituent and martensitic transformation temperature of the surface and inner of the atomized TiNi powders with different particle sizes.The results show that the powder surface becomes smoother and the grain becomes finer gradually with decreasing particle size.All the powders exhibit a main B2-TiNi phase,while large powders with the particle size≥178μm contain additional minor Ti2Ni and Ni3Ti secondary phases.These secondary phases are a result of the eutectoid decomposition during cooling.Particles with different particle sizes have experienced different cooling rates during atomization.Various cooling rates cause different martensitic transformation temperatures and routes of the TiNi powders;in particular,the transformation temperature decreases with decreasing particle size.展开更多
The surface dielectric barrier discharge (SDBD) plasma actuator has shown great promise as an aerodynamic flow control device. In this paper, the encapsulated electrode width of a SDBD actuator is changed to study t...The surface dielectric barrier discharge (SDBD) plasma actuator has shown great promise as an aerodynamic flow control device. In this paper, the encapsulated electrode width of a SDBD actuator is changed to study the airflow acceleration behavior. The effects of encapsulated electrode width on the actuator performance are experimentally investigated by measuring the dielectric layer surface potential, time-averaged ionic wind velocity and thrust force. Experimental results show that the airflow velocity and thrust force increase with the encapsulated electrode width. The results can be attributed to the distinct plasma distribution at different encapsulated electrode widths.展开更多
Cold atmospheric plasma(CAP)jet has wide applications in various fields including advanced materials synthesis and modifications,biomedicine,environmental protection and energy saving,etc.Appropriate control on the vo...Cold atmospheric plasma(CAP)jet has wide applications in various fields including advanced materials synthesis and modifications,biomedicine,environmental protection and energy saving,etc.Appropriate control on the volume,temperature and chemically reactive species concentratio ns of the CAP jet is of great importance in actual applications.In this paper,an radio-frequency atmospheric-pressure glow discharge(RF-APGD)plasma generator with a hybrid cross-linear-field electrode configuration is proposed.The experimental results show that,with the aid of the copper mesh located at the downstream of the traditional co-axial-type plasma generator with a cross-field electrode configuration,a linear field between the inner powered electrode of the traditional plasma generator and the copper mesh can be established.This linerfield can,to some extent,enhance the discharges at the upstream of the copper mesh,resulting in small increments(all less than 12.5%)of the species emission intensities,electron excitation temperatures and gas temperatures by keeping other parameters being unchanged.And due to the intrinsic transparent and conducting features of the grounded copper mesh to the gas flowing,electric current and heat flux of the plasma plumes,a plasma region with higher concentrations of chemically reactive species and larger plasma plume diameters is obtained at the downstream of the grounded copper mesh on the same level of the gas temperature and electron excitation temperature compared to those of the plasma free jet.In addition,the charged particle number densities at the same downstream axial location of the grounded copper mesh decrease significantly compared to those of the plasma free jet.This means that the copper mesh is also,to some extent,helpful for separating the chemically reactive neutral species from the charged particles in side a plasma environment.The preceding results indicate that the cross-linear-field electrode configuration of the plasma generator is an effective approach for tuning the characteristics of the RF-APGD plasma jet in order to obtain an appropriate combination of the plasma jet properties with higher chemically reactive species concentrations,especially relative higher number densities of neutral species,larger plasma volumes and lower gas temperatures.展开更多
A cold dielectric barrier discharge (DBD) plasma plume with one highly conductive liquid electrode has been developed to treat thermally sensitive materials, and its preliminary discharging characteristics have been...A cold dielectric barrier discharge (DBD) plasma plume with one highly conductive liquid electrode has been developed to treat thermally sensitive materials, and its preliminary discharging characteristics have been studied. The averaged electron temperature and density is estimated to be 0.6eV and 1011/cm3, respectively. The length of plasma plume can reach 5cm with helium gas (He), and the conductivity of the outer electrode affects the plume length obviously. This plasma plume could be touched by bare hand without causing any burning or painful sensation, which may provide potential application for safe aseptic skin care. Moreover, the oxidative particles (e.g., OH, O*, 03) in the downstream oxygen (02) gas of the plume have been applied to treat the landfill leachate. The results show that the activated 02 gas can degrade the landfill leachate effectively, and the chemical oxygen demand (COD), conductivity, biochemical oxygen demand (BOD), and suspended solid (SS) can be decreased by 52%, 57%, 76% and 92%, respectively.展开更多
We developed an apparatus for producing high-density hydrogen plasma. The atomic hydrogen density was 3.1 × 1021 m<sup>?3</sup> at a pressure of 30 Pa, a microwave power of 1000 W, and a hydrogen gas ...We developed an apparatus for producing high-density hydrogen plasma. The atomic hydrogen density was 3.1 × 1021 m<sup>?3</sup> at a pressure of 30 Pa, a microwave power of 1000 W, and a hydrogen gas flow rate of 10 sccm. We confirmed that the temperatures of transition-metal films increased to above 800<sup>。</sup>C within 5 s when they were exposed to hydrogen plasma formed using the apparatus. We applied this phenomenon to the selective heat treatment of nickel films deposited on silicon wafers and formed nickel silicide electrodes. We found that this heat phenomenon automatically stopped after the nickel slicidation reaction finished. To utilize this method, we can perform the nickel silicidation process without heating the other areas such as channel regions and improve the reliability of silicon ultralarge-scale integration devices.展开更多
The self-induced magnetic field in a pulsed plasma thruster(PPT)with flared electrodes is investigated for a better understanding of the working process and the structural design of the thruster.A two-dimensional mode...The self-induced magnetic field in a pulsed plasma thruster(PPT)with flared electrodes is investigated for a better understanding of the working process and the structural design of the thruster.A two-dimensional model of the magnetic field is built and is validated by comparing the simulated results with the experimental results in literature.The magnetic flux density in the discharge channel during the working process is presented and analyzed regarding the electrode structures.The calculated magnetic field flux density decreases from 0.8 T at the upstream to 0.1 T and below at the downstream in the discharge channel(68 J).The peak of the magnetic flux density over time lags behind the current peak,which provides evidence for the existence of a moving plasma sheet in the discharge process.The magnetic field induced by the current in the extra bending part of the anode enhances the Lorentz force,which acts on the charged particles near the propellant.Finally,the geometric study indicates that the electromagnetic impulse bit does not monotonically increase with the flared angle of the electrodes.Instead,it reaches a maximum at a certain flared angle,which could provide significant suggestions for structural optimization.展开更多
To improve the utilization rate of plasma active species,in this study,a closed non-uniform air gap is formed by a flowing water film electrode and a sawtooth insulating dielectric layer to realize the diffuse glow di...To improve the utilization rate of plasma active species,in this study,a closed non-uniform air gap is formed by a flowing water film electrode and a sawtooth insulating dielectric layer to realize the diffuse glow discharge in the atmosphere.Firstly,the electric field distribution characteristics of non-uniform air gap in the sawtooth dielectric layer are studied,and the influence of aspect ratio on the characteristics of diffuse discharge plasma is discussed.Subsequently,the effects of wire mesh,the inclination angle of the dielectric plate,and liquid inlet velocity on the flow characteristics of the water film electrode are analyzed.The results show that the non-uniform electric field distribution formed in the sawtooth groove can effectively inhibit the filamentous discharge,and the 1 mm flowing water film is directly used as the electrode,and high-active plasma is formed directly on the lower surface of the water film.In addition,a plasma flowing water treatment device is built to treat the methyl orange solution and observe its decolorization effect.The experimental results show that after 50 min of treatment,the decolorization rate of the methyl orange solution reaches 96%,which provides a new idea for industrial applications of wastewater treatment.展开更多
This paper presents a novel set-up to be used in the degradation of dye, Various influencing factors, such as the voltage, the number of the anodes, and the catalytic action of Fe^2+, were examined. Chemical oxygen d...This paper presents a novel set-up to be used in the degradation of dye, Various influencing factors, such as the voltage, the number of the anodes, and the catalytic action of Fe^2+, were examined. Chemical oxygen demand (COD), ultraviolet (UV), FTIR absorption spectra, and atomic force microscopy (AFM) were used to monitor the degradation process. The results showed that the efficiency of degradation is raised by increasing the applied voltage, and is further improved when two or three anodes are used. Moreover, the use of Fe^2+ ion can promote the degradation reaction and shorten the degradation time. So the multi-electrode instrument is more efficient in degrading the dye and should be further studied.展开更多
A macroscopic cell and three-dimensional fluid model have been used to investigate the discharge characteristics in ac plasma display panel cells of electrode-shaping configurations. Four kinds of non-standaxd geometr...A macroscopic cell and three-dimensional fluid model have been used to investigate the discharge characteristics in ac plasma display panel cells of electrode-shaping configurations. Four kinds of non-standaxd geometries (i.e. D-, △-, W- and U-shape electrodes) have been considered. The characteristics of the discharge current, the operating voltage and the discharge efficiency of different configurations have been discussed. It is found that the discharge efficiency can be improved by about 10%-30% compared with the standard geometry, while the operating voltage increases slightly in the non-standard geometries. There is a trade-off between improving the discharge efficiency and lowering the sustaining voltage in design of plasma display cells by electrode shaping.展开更多
At the ambient temperature and pressure a glow discharge plasma was used as a new approach for the coupling of methane with the newly-developed rotary multidentate helix electrode. In the presence of hydrogen, the eff...At the ambient temperature and pressure a glow discharge plasma was used as a new approach for the coupling of methane with the newly-developed rotary multidentate helix electrode. In the presence of hydrogen, the effects of the input peak voltages and gas flow rates on methane conversion, C2 single pass yield and selectivity were investigated, and then the results were compared with those from the three-disc multidentate electrode. This demonstrated, on an experimental scale, that the rotary multidentate helix electrode was better than the multidentate three-disc electrode as there was little accumulation of coke, and the C2 yield per pass was 69.85% and C2 selectivity over 99.14% with 70.46% methane conversion at an input peak voltage of 2300 V and 60 ml/min gas flow rate.展开更多
The plasma characteristics of a gas-liquid phase discharge reactor were investigated by optical and electrical methods.The nozzle-cylinder electrode in the discharge reactor was supplied witha negative nanosecond puls...The plasma characteristics of a gas-liquid phase discharge reactor were investigated by optical and electrical methods.The nozzle-cylinder electrode in the discharge reactor was supplied witha negative nanosecond pulsed generator.The optical emission spectrum diagnosis revealed that OH(A2∑+ → X2Π,306–309 nm),N32(CΠ→B3Πg,337 nm),O(3p5p→3s-5s-0,777.2 nm)and O(3p3p→3s3s0,844.6 nm)were produced in the discharge plasma channels.The electron temperature(Te)was calculated from the emission relative intensity ratio between the atomic O 777.2 nm and 844.6 nm,and it increased with the applied voltage and the pulsed frequency and fell within the range of 0.5–0.8 e V.The gas temperature(Tg)that was measured by Lifbase was in a range from 400 K to 600 K.展开更多
In a steady-state plasma,the loss rate of plasma particles to the chamber wall and surfaces in contact with plasma is balanced by the ionization rate of background neutrals in the hot-filament discharges.The balance b...In a steady-state plasma,the loss rate of plasma particles to the chamber wall and surfaces in contact with plasma is balanced by the ionization rate of background neutrals in the hot-filament discharges.The balance between the loss rate and ionization rate of plasma particles(electrons and ions)maintains quasi-neutrality of the bulk plasma.In the presence of an external perturbation,it tries to retain its quasi-neutrality condition.In this work,we studied how the properties of bulk plasma are affected by an external DC potential perturbation.An auxiliary biased metal disk electrode was used to introduce a potential perturbation to the plasma medium.A single Langmuir probe and an emissive probe,placed in the line of the discharge axis,were used for the characterization of the bulk plasma.It is observed that only positive bias to the auxiliary metal disk increases the plasma potential,electron temperature,and plasma density but these plasma parameters remain unaltered when the disk is biased with a negative potential with respect to plasma potential.The observed plasma parameters for two different-sized,positively as well as negatively biased,metal disks are compared and found inconsistent with the existing theoretical model at large positive bias voltages.The role of the primary energetic electrons population in determining the plasma parameters is discussed.The experimentally observed results are qualitatively explained on the basis of electrostatic confinement arising due to the loss of electrons to a biased metal disk electrode.展开更多
Atmospheric pressure plasma jet shows great potential for polymer film processing. The electrode geometry is the key factor to determine discharge characteristics and film modification of jets. In this paper, we compa...Atmospheric pressure plasma jet shows great potential for polymer film processing. The electrode geometry is the key factor to determine discharge characteristics and film modification of jets. In this paper, we compared the discharge characteristics and the film modifications of atmospheric pressure plasma jets with needle-ring electrode(NRE) and doublering electrode(DRE). The results show that jet with NRE has stronger electric field intensity and higher discharge power,making it present more reactive oxygen particles and higher electron temperature, but its discharge stability is insufficient.In contrast, the jet with DRE has uniform electric field distribution of lower field intensity, which allows it to maintain stable discharge over a wide range of applied voltages. Besides, the modification results show that the treatment efficiency of PET film by NRE is higher than that by DRE. These results provide a suitable atmospheric pressure plasma jets device selection scheme for polymer film processing process.展开更多
Ni-Cr alloyed layers were synthesized on the surface of Q235 mild steel by double-glow plasma surface metallurgy with different electrode distance.The microstructure and phases of the alloyed layer were characterized ...Ni-Cr alloyed layers were synthesized on the surface of Q235 mild steel by double-glow plasma surface metallurgy with different electrode distance.The microstructure and phases of the alloyed layer were characterized by scanning electron microscopy(SEM),energy dispersive X-ray spectrometry(EDS),and X-ray diffraction(XRD).The corrosion behavior of the Ni-Cr alloyed layers both in 3.5%NaCl and 0.5 M H_(2)SO_(4) solution were systematically investigated by open-circuit potential(OCP),potentiodynamic polarization and electrochemical impedance spectroscopy(EIS).The obtained results reveal that the Ni-Cr alloyed layer consists of a deposited layer and an inter-diffusion layer.With increasing the electrode distance,the relative thickness,microstructure and phase composition of the Ni-Cr alloyed layers vary greatly.Polarization data show the Ni-Cr alloyed layer with the electrode distance of 15 mm has highest corrosion resistance and lowest corrosion rate,while EIS results reveal the same trend.The highest protective efficiency in 3.5%NaCl and 0.5 M H_(2)SO_(4) solution are 99.23%and 99.92%,respectively,obtained for the Ni-Cr alloyed layer with 15 mm electrode distance.When the electrode distance is too large,a thin and porosity Ni-Cr alloyed layer,caused by low plasma density and Kirkendall effect,will be obtained,and will decrease the protective efficiency in corrosive medium.展开更多
Plasma flow control is a new type of active flow control approach based on plasma pneumatic actuation.Dielectric barrier discharge(DBD) actuators have become a focus of international aerodynamic research.However,the p...Plasma flow control is a new type of active flow control approach based on plasma pneumatic actuation.Dielectric barrier discharge(DBD) actuators have become a focus of international aerodynamic research.However,the practical applications of typical DBDs are largely restricted due to their limited discharge area and low relative-induced velocity.The further improvement of performance will be beneficial for engineering applications.In this paper,high-speed schlieren and high-speed particle image velocimetry(PIV) are employed to study the flow field induced by three kinds of plasma actuations in a static atmosphere,and the differences in induced flow field structure among typical DBD,extended DBD(EX-DBD),and tri-electrode sliding discharge(TED) are compared.The analyzing of the dynamic evolution of the maximum horizontal velocity over time,the velocity profile at a fixed horizontal position,and the momentum and body force in a control volume reveals that the induced velocity peak value and profile velocity height of EX-DBD are higher than those of the other two types of actuation,suggesting that EX-DBD actuation has the strongest temporal aerodynamic effect among the three types of actuations.The TED actuation not only can enlarge the plasma extension but also has the longest duration in the entire pulsed period and the greatest influence on the height and width of the airflow near the wall surface.Thus,the TED actuation has the ability to continuously influencing a larger three-dimensional space above the surface of the nlasma actuator.展开更多
文摘The plasma density enhancement outside hollow electrodes in capacitively coupled radio-frequency(RF) discharges is investigated by a two-dimensional(2D) particle-in-cell/Monte-Carlo collision(PIC/MCC) model. Results show that plasma exists inside the cavity when the sheath inside the hollow electrode hole is fully collapsed, which is an essential condition for the plasma density enhancement outside hollow electrodes. In addition, the existence of the electron density peak at the orifice is generated via the hollow cathode effect(HCE), which plays an important role in the density enhancement. It is also found that the radial width of bulk plasma at the orifice affects the magnitude of the density enhancement, and narrow radial plasma bulk width at the orifice is not beneficial to obtain high-density plasma outside hollow electrodes.Higher electron density at the orifice, combined with larger radial plasma bulk width at the orifice,causes higher electron density outside hollow electrodes. The results also imply that the HCE strength inside the cavity cannot be determined by the magnitude of the electron density outside hollow electrodes.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10775026,11275042,11305026,and 11405042)
文摘In this paper, the characteristics of an atmospheric pressure helium plasma jet generated by a dual-power electrode (DPE) configuration are investigated by using a two-dimensional fluid model. The effect of a needle electrode on the discharge is studied by comparing the results of the DPE configuration with those of the single ring electrode configuration. It is found that the existence of the needle leads to the generation of a helium plasma jet with a higher propagation velocity, higher species density, and larger discharge width. Furthermore, the influences of the needle radius and needle-to-ring discharge gap on the generation of a plasma jet are also studied. The simulation results indicate that the needle electrode has an evident influence on the plasma jet characteristics.
文摘Generation characteristics of vacuum discharge plasma are very important for the applied research of metal plasma. The vacuum discharge electrode configuration and the cathode material affect the generation characteristics of the metal plasma which consists of metal ions coming from cathode and generated by vacuum discharge. In this research, the generation characteristics of the metal plasma generated by vacuum discharge are discussed for four patterns of electrode configurations, i.e. cone-mesh electrode setup, cone-cross line electrode setup, cone-line electrode setup and cone-ring electrode setup. Characteristics of the metal plasma, such as elec- tron density, electron temperature, space potential, ion energy, are measured by the probe method for discussing the impacts of different electrode configurations on the density of generated metal plasma. Moreover, the diffusion velocities of the metal plasma are measured for cathode materials of Pb, Al, and Cu, respectively. The experimental results indicate that the plasma generated by the discharge of cone-ring electrode configuration possesses the maximum density and the metal plasma generated by the Al cathode possesses the fastest diffusion velocity and the highest kinetic energy.
基金funded by a NASA Grant NNX13AF46Apartly by the National Institute for Occupational Safety and Health through the UC Pilot Research Project Training Program ERC Grant #T42OH008432
文摘Dry-spun Carbon Nanotube(CNT)fibers were surface-modified by atmospheric pressure oxygen plasma functionalization using a well controlled and continuous process.The fibers were characterized by scanning electron microscopy(SEM),Raman spectroscopy,and X-ray Photoelectron Spectroscopy(XPS).It was found from the conducted electrochemical measurements that the functionalized fibers showed a 132.8% increase in specific capacitance compared to non-functionalized fibers.Dye-adsorption test and the obtained Randles-Sevcik plot demonstrated that the oxygen plasma functionalized fibers exhibited increased surface area.It was further established by Brunauer-Emmett-Teller(BET)measurements that the surface area of the CNT fibers was increased from 168.22 m^2/g to 208.01 m^2/g after plasma functionalization.The pore size distribution of the fibers was also altered by this processing.The improved electrochemical data was attributed to enhanced wettability,increased surface area,and the presence of oxygen functional groups,which promoted the capacitance of the fibers.Fiber supercapacitors were fabricated from the oxygen plasma functionalized CNT fiber electrodes using different electrolyte systems.The devices with functionalized electrodes exhibited excellent cyclic stability(93.2% after 4000 cycles),flexibility,bendability,and good energy densities.At 0.5 m A/cm^2,the EMIMBF4 device revealed a specific capacitance,which is 27% and 65%greater than the specific capacitances of devices using EMIMTFSI and H2SO4 electrolytes,respectively.The practiced in this work plasma surface processing can be employed in other applications where fibers,yarns,ribbons,and sheets need to be chemically modified.
基金supported by National Natural Science Foundation of China under Grant Nos.51377075 and 51677083
文摘An atmospheric pressure plasma jet(APPJ) in Ar with various grounded electrode arrangements is employed to investigate the effects of electrode arrangement on the characteristics of the APPJ.Electrical and optical methods are used to characterize the plasma properties.The discharge modes of the APPJ with respect to applied voltage are studied for grounded electrode positions of 10 mm,40 mm and 80 mm,respectively,and the main discharge and plasma parameters are investigated.It is shown that an increase in the distance between the grounded electrode and high-voltage electrode results in a change in the discharge modes and discharge parameters.The discharges transit from having two discharge modes,dielectric barrier discharge(DBD) and jet,to having three,corona,DBD and jet,with increase in the distance from the grounded to the high-voltage electrodes.The maximum length of the APPJ reaches 3.8 cm at an applied voltage of 8 kV.The discharge power and transferred charges and spectral line intensities for species in the APPJ are influenced by the positions of the grounded electrode,while there is no obvious difference in the values of the electron excited temperature(EET) for the three grounded electrode positions.
基金Project(2016KJXX-78)supported by the Shaanxi Youth Science and Technology New Star Project,ChinaProject(2016KTCQ01-113)supported by the Shaanxi Science and Technology Co-ordination and Innovation Project,China+1 种基金Project(51604228)supported by the National Natural Science Foundation of ChinaProject supported by the Open Fund of State Key Laboratory for Powder Metallurgy,Central South University,China
文摘This study aimed to produce spherical TiNi powders suitable for additive manufacturing by plasma rotating electrode process(PREP).Scanning electron microscopy,X-ray diffractometry and differential scanning calorimetry were used to investigate the surface and inner micro-morphology,phase constituent and martensitic transformation temperature of the surface and inner of the atomized TiNi powders with different particle sizes.The results show that the powder surface becomes smoother and the grain becomes finer gradually with decreasing particle size.All the powders exhibit a main B2-TiNi phase,while large powders with the particle size≥178μm contain additional minor Ti2Ni and Ni3Ti secondary phases.These secondary phases are a result of the eutectoid decomposition during cooling.Particles with different particle sizes have experienced different cooling rates during atomization.Various cooling rates cause different martensitic transformation temperatures and routes of the TiNi powders;in particular,the transformation temperature decreases with decreasing particle size.
基金supported by National Natural Science Foundation of China(No.11175037)National Natural Science Foundation for Young Scientists of China(No.11305017)Special Fund for Theoretical Physics(No.11247239)
文摘The surface dielectric barrier discharge (SDBD) plasma actuator has shown great promise as an aerodynamic flow control device. In this paper, the encapsulated electrode width of a SDBD actuator is changed to study the airflow acceleration behavior. The effects of encapsulated electrode width on the actuator performance are experimentally investigated by measuring the dielectric layer surface potential, time-averaged ionic wind velocity and thrust force. Experimental results show that the airflow velocity and thrust force increase with the encapsulated electrode width. The results can be attributed to the distinct plasma distribution at different encapsulated electrode widths.
基金supported by National Natural Science Foundation of China(Nos.11475103,21627812)the National Key Research and Development Program of China(No.2016YFD0102106)Tsinghua University Initiative Scientific Program(20161080108)
文摘Cold atmospheric plasma(CAP)jet has wide applications in various fields including advanced materials synthesis and modifications,biomedicine,environmental protection and energy saving,etc.Appropriate control on the volume,temperature and chemically reactive species concentratio ns of the CAP jet is of great importance in actual applications.In this paper,an radio-frequency atmospheric-pressure glow discharge(RF-APGD)plasma generator with a hybrid cross-linear-field electrode configuration is proposed.The experimental results show that,with the aid of the copper mesh located at the downstream of the traditional co-axial-type plasma generator with a cross-field electrode configuration,a linear field between the inner powered electrode of the traditional plasma generator and the copper mesh can be established.This linerfield can,to some extent,enhance the discharges at the upstream of the copper mesh,resulting in small increments(all less than 12.5%)of the species emission intensities,electron excitation temperatures and gas temperatures by keeping other parameters being unchanged.And due to the intrinsic transparent and conducting features of the grounded copper mesh to the gas flowing,electric current and heat flux of the plasma plumes,a plasma region with higher concentrations of chemically reactive species and larger plasma plume diameters is obtained at the downstream of the grounded copper mesh on the same level of the gas temperature and electron excitation temperature compared to those of the plasma free jet.In addition,the charged particle number densities at the same downstream axial location of the grounded copper mesh decrease significantly compared to those of the plasma free jet.This means that the copper mesh is also,to some extent,helpful for separating the chemically reactive neutral species from the charged particles in side a plasma environment.The preceding results indicate that the cross-linear-field electrode configuration of the plasma generator is an effective approach for tuning the characteristics of the RF-APGD plasma jet in order to obtain an appropriate combination of the plasma jet properties with higher chemically reactive species concentrations,especially relative higher number densities of neutral species,larger plasma volumes and lower gas temperatures.
基金Project supported by the Science and Technology Programme of Beijing Municipal Science and Technology Commission, China (Granted No Y0604002040731)
文摘A cold dielectric barrier discharge (DBD) plasma plume with one highly conductive liquid electrode has been developed to treat thermally sensitive materials, and its preliminary discharging characteristics have been studied. The averaged electron temperature and density is estimated to be 0.6eV and 1011/cm3, respectively. The length of plasma plume can reach 5cm with helium gas (He), and the conductivity of the outer electrode affects the plume length obviously. This plasma plume could be touched by bare hand without causing any burning or painful sensation, which may provide potential application for safe aseptic skin care. Moreover, the oxidative particles (e.g., OH, O*, 03) in the downstream oxygen (02) gas of the plume have been applied to treat the landfill leachate. The results show that the activated 02 gas can degrade the landfill leachate effectively, and the chemical oxygen demand (COD), conductivity, biochemical oxygen demand (BOD), and suspended solid (SS) can be decreased by 52%, 57%, 76% and 92%, respectively.
文摘We developed an apparatus for producing high-density hydrogen plasma. The atomic hydrogen density was 3.1 × 1021 m<sup>?3</sup> at a pressure of 30 Pa, a microwave power of 1000 W, and a hydrogen gas flow rate of 10 sccm. We confirmed that the temperatures of transition-metal films increased to above 800<sup>。</sup>C within 5 s when they were exposed to hydrogen plasma formed using the apparatus. We applied this phenomenon to the selective heat treatment of nickel films deposited on silicon wafers and formed nickel silicide electrodes. We found that this heat phenomenon automatically stopped after the nickel slicidation reaction finished. To utilize this method, we can perform the nickel silicidation process without heating the other areas such as channel regions and improve the reliability of silicon ultralarge-scale integration devices.
基金National Natural Science Foundation of China(No.11602016).
文摘The self-induced magnetic field in a pulsed plasma thruster(PPT)with flared electrodes is investigated for a better understanding of the working process and the structural design of the thruster.A two-dimensional model of the magnetic field is built and is validated by comparing the simulated results with the experimental results in literature.The magnetic flux density in the discharge channel during the working process is presented and analyzed regarding the electrode structures.The calculated magnetic field flux density decreases from 0.8 T at the upstream to 0.1 T and below at the downstream in the discharge channel(68 J).The peak of the magnetic flux density over time lags behind the current peak,which provides evidence for the existence of a moving plasma sheet in the discharge process.The magnetic field induced by the current in the extra bending part of the anode enhances the Lorentz force,which acts on the charged particles near the propellant.Finally,the geometric study indicates that the electromagnetic impulse bit does not monotonically increase with the flared angle of the electrodes.Instead,it reaches a maximum at a certain flared angle,which could provide significant suggestions for structural optimization.
基金financially supported by National Natural Science Foundation of China(No.51577011)。
文摘To improve the utilization rate of plasma active species,in this study,a closed non-uniform air gap is formed by a flowing water film electrode and a sawtooth insulating dielectric layer to realize the diffuse glow discharge in the atmosphere.Firstly,the electric field distribution characteristics of non-uniform air gap in the sawtooth dielectric layer are studied,and the influence of aspect ratio on the characteristics of diffuse discharge plasma is discussed.Subsequently,the effects of wire mesh,the inclination angle of the dielectric plate,and liquid inlet velocity on the flow characteristics of the water film electrode are analyzed.The results show that the non-uniform electric field distribution formed in the sawtooth groove can effectively inhibit the filamentous discharge,and the 1 mm flowing water film is directly used as the electrode,and high-active plasma is formed directly on the lower surface of the water film.In addition,a plasma flowing water treatment device is built to treat the methyl orange solution and observe its decolorization effect.The experimental results show that after 50 min of treatment,the decolorization rate of the methyl orange solution reaches 96%,which provides a new idea for industrial applications of wastewater treatment.
基金supported the by Project of Key Science and Technology of Education Ministry (20050)the Natural Science Foundation of Gansu Province (3ZS041-A25-028)the Invention Project of Science & Technology (KJCXGC-01, NWNU), China
文摘This paper presents a novel set-up to be used in the degradation of dye, Various influencing factors, such as the voltage, the number of the anodes, and the catalytic action of Fe^2+, were examined. Chemical oxygen demand (COD), ultraviolet (UV), FTIR absorption spectra, and atomic force microscopy (AFM) were used to monitor the degradation process. The results showed that the efficiency of degradation is raised by increasing the applied voltage, and is further improved when two or three anodes are used. Moreover, the use of Fe^2+ ion can promote the degradation reaction and shorten the degradation time. So the multi-electrode instrument is more efficient in degrading the dye and should be further studied.
基金Project supported by the National Natural Science Foundation of China (Grant No 10475007), the Scientific Research Foundation for the Returned 0verseas Chinese Scholars, the State Education Ministry of China (Grant No LLKYJJ200403) and Thomson . Plasma, France.
文摘A macroscopic cell and three-dimensional fluid model have been used to investigate the discharge characteristics in ac plasma display panel cells of electrode-shaping configurations. Four kinds of non-standaxd geometries (i.e. D-, △-, W- and U-shape electrodes) have been considered. The characteristics of the discharge current, the operating voltage and the discharge efficiency of different configurations have been discussed. It is found that the discharge efficiency can be improved by about 10%-30% compared with the standard geometry, while the operating voltage increases slightly in the non-standard geometries. There is a trade-off between improving the discharge efficiency and lowering the sustaining voltage in design of plasma display cells by electrode shaping.
基金supported by National Natural Science Foundation of China (No. 50177002)
文摘At the ambient temperature and pressure a glow discharge plasma was used as a new approach for the coupling of methane with the newly-developed rotary multidentate helix electrode. In the presence of hydrogen, the effects of the input peak voltages and gas flow rates on methane conversion, C2 single pass yield and selectivity were investigated, and then the results were compared with those from the three-disc multidentate electrode. This demonstrated, on an experimental scale, that the rotary multidentate helix electrode was better than the multidentate three-disc electrode as there was little accumulation of coke, and the C2 yield per pass was 69.85% and C2 selectivity over 99.14% with 70.46% methane conversion at an input peak voltage of 2300 V and 60 ml/min gas flow rate.
基金supported by National Natural Science Foundation of China(Grant No.51207089)
文摘The plasma characteristics of a gas-liquid phase discharge reactor were investigated by optical and electrical methods.The nozzle-cylinder electrode in the discharge reactor was supplied witha negative nanosecond pulsed generator.The optical emission spectrum diagnosis revealed that OH(A2∑+ → X2Π,306–309 nm),N32(CΠ→B3Πg,337 nm),O(3p5p→3s-5s-0,777.2 nm)and O(3p3p→3s3s0,844.6 nm)were produced in the discharge plasma channels.The electron temperature(Te)was calculated from the emission relative intensity ratio between the atomic O 777.2 nm and 844.6 nm,and it increased with the applied voltage and the pulsed frequency and fell within the range of 0.5–0.8 e V.The gas temperature(Tg)that was measured by Lifbase was in a range from 400 K to 600 K.
文摘In a steady-state plasma,the loss rate of plasma particles to the chamber wall and surfaces in contact with plasma is balanced by the ionization rate of background neutrals in the hot-filament discharges.The balance between the loss rate and ionization rate of plasma particles(electrons and ions)maintains quasi-neutrality of the bulk plasma.In the presence of an external perturbation,it tries to retain its quasi-neutrality condition.In this work,we studied how the properties of bulk plasma are affected by an external DC potential perturbation.An auxiliary biased metal disk electrode was used to introduce a potential perturbation to the plasma medium.A single Langmuir probe and an emissive probe,placed in the line of the discharge axis,were used for the characterization of the bulk plasma.It is observed that only positive bias to the auxiliary metal disk increases the plasma potential,electron temperature,and plasma density but these plasma parameters remain unaltered when the disk is biased with a negative potential with respect to plasma potential.The observed plasma parameters for two different-sized,positively as well as negatively biased,metal disks are compared and found inconsistent with the existing theoretical model at large positive bias voltages.The role of the primary energetic electrons population in determining the plasma parameters is discussed.The experimentally observed results are qualitatively explained on the basis of electrostatic confinement arising due to the loss of electrons to a biased metal disk electrode.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11565003)the Jiangxi Province Academic Degree and Postgraduate Education and Teaching Reform Research Project (Grant No. JXYJG-2022-180)the Scientific Research Base Project of Gannan Normal University (Grant No. 22wdxt01)。
文摘Atmospheric pressure plasma jet shows great potential for polymer film processing. The electrode geometry is the key factor to determine discharge characteristics and film modification of jets. In this paper, we compared the discharge characteristics and the film modifications of atmospheric pressure plasma jets with needle-ring electrode(NRE) and doublering electrode(DRE). The results show that jet with NRE has stronger electric field intensity and higher discharge power,making it present more reactive oxygen particles and higher electron temperature, but its discharge stability is insufficient.In contrast, the jet with DRE has uniform electric field distribution of lower field intensity, which allows it to maintain stable discharge over a wide range of applied voltages. Besides, the modification results show that the treatment efficiency of PET film by NRE is higher than that by DRE. These results provide a suitable atmospheric pressure plasma jets device selection scheme for polymer film processing process.
基金by the National Natural Science Foundation of China(51704167 and 51764041)the Aeronautical Science Foundation of China(2016ZF56020)。
文摘Ni-Cr alloyed layers were synthesized on the surface of Q235 mild steel by double-glow plasma surface metallurgy with different electrode distance.The microstructure and phases of the alloyed layer were characterized by scanning electron microscopy(SEM),energy dispersive X-ray spectrometry(EDS),and X-ray diffraction(XRD).The corrosion behavior of the Ni-Cr alloyed layers both in 3.5%NaCl and 0.5 M H_(2)SO_(4) solution were systematically investigated by open-circuit potential(OCP),potentiodynamic polarization and electrochemical impedance spectroscopy(EIS).The obtained results reveal that the Ni-Cr alloyed layer consists of a deposited layer and an inter-diffusion layer.With increasing the electrode distance,the relative thickness,microstructure and phase composition of the Ni-Cr alloyed layers vary greatly.Polarization data show the Ni-Cr alloyed layer with the electrode distance of 15 mm has highest corrosion resistance and lowest corrosion rate,while EIS results reveal the same trend.The highest protective efficiency in 3.5%NaCl and 0.5 M H_(2)SO_(4) solution are 99.23%and 99.92%,respectively,obtained for the Ni-Cr alloyed layer with 15 mm electrode distance.When the electrode distance is too large,a thin and porosity Ni-Cr alloyed layer,caused by low plasma density and Kirkendall effect,will be obtained,and will decrease the protective efficiency in corrosive medium.
基金Project supported by the National Natural Science Foundation of China(Grant No.51607188)the Foundation for Key Laboratories of National Defense Science and Technology,China(Grant No.614220202011801)+2 种基金the Shaanxi Provincial Natural Science Basic Research Program,China(Grant No.2019JM-393)the Shaanxi Provincial Key Industry Innovation,Chain(Grant No.2017ZDCXL-GY-06-01)Xi'an Muinicipal Science and Technology Project,China(Grant No.201805037YD15CG21(28)).
文摘Plasma flow control is a new type of active flow control approach based on plasma pneumatic actuation.Dielectric barrier discharge(DBD) actuators have become a focus of international aerodynamic research.However,the practical applications of typical DBDs are largely restricted due to their limited discharge area and low relative-induced velocity.The further improvement of performance will be beneficial for engineering applications.In this paper,high-speed schlieren and high-speed particle image velocimetry(PIV) are employed to study the flow field induced by three kinds of plasma actuations in a static atmosphere,and the differences in induced flow field structure among typical DBD,extended DBD(EX-DBD),and tri-electrode sliding discharge(TED) are compared.The analyzing of the dynamic evolution of the maximum horizontal velocity over time,the velocity profile at a fixed horizontal position,and the momentum and body force in a control volume reveals that the induced velocity peak value and profile velocity height of EX-DBD are higher than those of the other two types of actuation,suggesting that EX-DBD actuation has the strongest temporal aerodynamic effect among the three types of actuations.The TED actuation not only can enlarge the plasma extension but also has the longest duration in the entire pulsed period and the greatest influence on the height and width of the airflow near the wall surface.Thus,the TED actuation has the ability to continuously influencing a larger three-dimensional space above the surface of the nlasma actuator.