The effect of tip-blade cutting on the performance of a large scale axial fan was investigated using computational fluid dynamics(CFD)methods.Experiments verified the numerical simulations.The original fan was compare...The effect of tip-blade cutting on the performance of a large scale axial fan was investigated using computational fluid dynamics(CFD)methods.Experiments verified the numerical simulations.The original fan was compared with the one with tip-cutting in terms of dimensionless characteristic and aerodynamic performance in tip region under the conditions of the maximum efficiency point and near-stall point.The results showed that double leakage flow occurred in tip clearance at maximum efficiency point and spillage of leakage flow from leading edge occurred in tip-blade region at near-stall point for the both two fans;and that tip-cutting with 6% of blade height could reduce the intensity of tip-leakage vortex and increase flow capacity in tip blade region,and hold the stall margin almost the same as the original fan.The maximum efficiency of the fan with tip-cutting was improved by1%,and the ability of total pressure rising was obviously greater than the original fan.展开更多
The purpose of this study is focused on development of an online monitoring system for measuring and evaluating the cutting condition as the ID-blade saw is cutting a silicon ingot. First,the cutting experiments are c...The purpose of this study is focused on development of an online monitoring system for measuring and evaluating the cutting condition as the ID-blade saw is cutting a silicon ingot. First,the cutting experiments are carried out and the cutting signals during the blade slicing a six-inch ingot are measured by a 3-axes load sensor which is mounted on the top of the ingot. To evaluate the blade condition in slicing,a novel data processing method,combining the discrete Fourier transform(DFT) with the discrete Wavelet transform(DWT),is proposed in this paper for extracting the components due to the rotation of the blade and the cutting impedance. To validate the effect of the method,four ID-blades with three different types of the blade edge are used and discussed. The obtained results show that the component induced from the rotation and the component due to the blade slicing can be extracted efficiently by introduction of the proposed method. Furthermore,a simple online monitoring system,which consists of a 3-axes load sensor or acceleration sensor,DC cuts high-pass filter,and AD converter embedded microcomputer,is designed. The estimated cutting condition information obtained from the proposed monitoring system can be used as a feedback signal to the slicing machine for production of high quality wafer.展开更多
The problems of severe sawtooth wear,harsh sawing noise,and low surface quality during the processing of circular saw blades need to be solved.To improve the cutting performance of TiC-based cermet saw blades,microtex...The problems of severe sawtooth wear,harsh sawing noise,and low surface quality during the processing of circular saw blades need to be solved.To improve the cutting performance of TiC-based cermet saw blades,microtextures parallel to the cutting edge were fabricated on rough and fine sawteeth by laser machining.The cutting tests were performed on a sawing platform under lubricated conditions.Models of the sawing arc length and working sawtooth cutting force variations were developed for sawing steel pipes,and the accuracy of the sawing force model was verified experimentally.The results indicate that the variations in the sawing force are proportional to the sawing arc length.The circular saw blades with microtextures that did not penetrate the sawtooth rake face exhibited the lowest cutting force,sawing noise,and highest machined surface quality.Furthermore,the worn-out distance of the rougher and finisher sawteeth was reduced by approximately 7.4%and 44.1%,respectively,compared with conventional circular saw blades.The main failure modes of sawteeth were tip wear,rake face adhesion,and oxidative wear.In addition,the mechanism by which the textures improve the cutting and wear properties of TiC-based circular saw blades was discussed.This study provided a significant concept for enhancing the cutting performance of circular saw blades and improving the machined surface quality.展开更多
Modern-day microtomy requires high precision equipment to thinly section biological tissues.The sectioned tissue must be of good quality not showing cutting tracks or so-called artefacts.The quality of these sections ...Modern-day microtomy requires high precision equipment to thinly section biological tissues.The sectioned tissue must be of good quality not showing cutting tracks or so-called artefacts.The quality of these sections is dependent on the blade wear,which is related to the hardness of the tissue sample,cutting angle and cutting speed.A test rig has been designed and manufactured to allow these parameters to be controlled.This has allowed for the blade wear to be analysed and quantified,and this has been completed for both ultrasonically assisted and conventional cutting.The obtained results showed a 25.2%decrease in average blade roughness after 38 cuts when using the ultrasonically assisted cutting regime.The data also showed no adverse effect on the quality of the slides produced when using this cutting methodology.Finally,the cutting force measured for both cutting regimes showed that ultrasonically assisted cutting required less force compared to conventional cutting.With the reduction of surface roughness and force,it is possible to state that ultrasonically assisted cutting reduces the wear of the blade,thereby increasing the life of the blades.An increase of just 10%in blade life would yield a cost saving of approximately 25%thereby reducing the environmental and financial impact of microtomy.展开更多
This paper mainly describes a new approach to optimizing of the cutting glass fiber with multiple performance characteristics, based on reliability analysis, Taguchi and Grey methods. During the cutting process, the s...This paper mainly describes a new approach to optimizing of the cutting glass fiber with multiple performance characteristics, based on reliability analysis, Taguchi and Grey methods. During the cutting process, the speed, the volume and the cutting load are optimized cutting parameters when the performance characteristics, which include Weibull modulus and blade wear, are taken into consideration. In this paper, optimization with multiple performance characteristics is found to be the highest cutting speed and the smallest cutting volume, and the medium cutting load. An analysis of the variance of the blade wear indicates that the cutting speed (47.21%), the cutting volume (14.62%) and the cutting load (12.20%) are the most significant parameters in the cutting process of glass fibers. In summary, the most optimal cutting parameter should be A3B1C2. The results of experiments have shown that the multiple performance characteristics of cutting glass fiber are improved effectively through this approach.展开更多
When ultrasonically cutting honeycomb core curved parts,the tool face of the straight blade must be along the curved surface’s tangent direction at all times to ensure high-quality machining of the curved surface.How...When ultrasonically cutting honeycomb core curved parts,the tool face of the straight blade must be along the curved surface’s tangent direction at all times to ensure high-quality machining of the curved surface.However,given that the straight blade is a nonstandard tool,the existing computer-aided manufacturing technology cannot directly realize the above action requirement.To solve this problem,this paper proposed an algorithm for extracting a straight blade real-time tool face vector from a 5-axis milling automatically programmed tool location file,which can realize the tool location point and tool axis vector conversion from the flat end mill to the straight blade.At the same time,for the multi-solution problem of the rotation axis,the dependent axis rotation minimization algorithm was introduced,and the spindle rotation algorithm was proposed for the tool edge orientation problem when the straight blade is used to machine the curved part.Finally,on the basis of the MATLAB platform,the dependent axis rotation minimization algorithm and spindle rotation algorithm were integrated and compiled,and the straight blade ultrasonic cutting honeycomb core postprocessor was then developed.The model of the machine tool and the definition of the straight blade were conducted in the VERICUT simulation software,and the simulation machining of the equivalent entity of the honeycomb core can then be realized.The correctness of the numerical control program generated by the postprocessor was verified by machining and accuracy testing of the two designed features.Observation and analysis of the simulation and experiment indicate that the tool pose is the same under each working condition,and the workpieces obtained by machining also meet the corresponding accuracy requirements.Therefore,the postprocessor developed in this paper can be well adapted to the honeycomb core ultrasonic cutting machine tool and realize high-quality and high-efficient machining of honeycomb core composites.展开更多
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20113218120006)
文摘The effect of tip-blade cutting on the performance of a large scale axial fan was investigated using computational fluid dynamics(CFD)methods.Experiments verified the numerical simulations.The original fan was compared with the one with tip-cutting in terms of dimensionless characteristic and aerodynamic performance in tip region under the conditions of the maximum efficiency point and near-stall point.The results showed that double leakage flow occurred in tip clearance at maximum efficiency point and spillage of leakage flow from leading edge occurred in tip-blade region at near-stall point for the both two fans;and that tip-cutting with 6% of blade height could reduce the intensity of tip-leakage vortex and increase flow capacity in tip blade region,and hold the stall margin almost the same as the original fan.The maximum efficiency of the fan with tip-cutting was improved by1%,and the ability of total pressure rising was obviously greater than the original fan.
文摘The purpose of this study is focused on development of an online monitoring system for measuring and evaluating the cutting condition as the ID-blade saw is cutting a silicon ingot. First,the cutting experiments are carried out and the cutting signals during the blade slicing a six-inch ingot are measured by a 3-axes load sensor which is mounted on the top of the ingot. To evaluate the blade condition in slicing,a novel data processing method,combining the discrete Fourier transform(DFT) with the discrete Wavelet transform(DWT),is proposed in this paper for extracting the components due to the rotation of the blade and the cutting impedance. To validate the effect of the method,four ID-blades with three different types of the blade edge are used and discussed. The obtained results show that the component induced from the rotation and the component due to the blade slicing can be extracted efficiently by introduction of the proposed method. Furthermore,a simple online monitoring system,which consists of a 3-axes load sensor or acceleration sensor,DC cuts high-pass filter,and AD converter embedded microcomputer,is designed. The estimated cutting condition information obtained from the proposed monitoring system can be used as a feedback signal to the slicing machine for production of high quality wafer.
基金supported by the National Natural Science Foundation of China(Grant No.52275443)the Key Research and Development Projects of Shandong Province(Grant No.2020CXGC011003).
文摘The problems of severe sawtooth wear,harsh sawing noise,and low surface quality during the processing of circular saw blades need to be solved.To improve the cutting performance of TiC-based cermet saw blades,microtextures parallel to the cutting edge were fabricated on rough and fine sawteeth by laser machining.The cutting tests were performed on a sawing platform under lubricated conditions.Models of the sawing arc length and working sawtooth cutting force variations were developed for sawing steel pipes,and the accuracy of the sawing force model was verified experimentally.The results indicate that the variations in the sawing force are proportional to the sawing arc length.The circular saw blades with microtextures that did not penetrate the sawtooth rake face exhibited the lowest cutting force,sawing noise,and highest machined surface quality.Furthermore,the worn-out distance of the rougher and finisher sawteeth was reduced by approximately 7.4%and 44.1%,respectively,compared with conventional circular saw blades.The main failure modes of sawteeth were tip wear,rake face adhesion,and oxidative wear.In addition,the mechanism by which the textures improve the cutting and wear properties of TiC-based circular saw blades was discussed.This study provided a significant concept for enhancing the cutting performance of circular saw blades and improving the machined surface quality.
文摘Modern-day microtomy requires high precision equipment to thinly section biological tissues.The sectioned tissue must be of good quality not showing cutting tracks or so-called artefacts.The quality of these sections is dependent on the blade wear,which is related to the hardness of the tissue sample,cutting angle and cutting speed.A test rig has been designed and manufactured to allow these parameters to be controlled.This has allowed for the blade wear to be analysed and quantified,and this has been completed for both ultrasonically assisted and conventional cutting.The obtained results showed a 25.2%decrease in average blade roughness after 38 cuts when using the ultrasonically assisted cutting regime.The data also showed no adverse effect on the quality of the slides produced when using this cutting methodology.Finally,the cutting force measured for both cutting regimes showed that ultrasonically assisted cutting required less force compared to conventional cutting.With the reduction of surface roughness and force,it is possible to state that ultrasonically assisted cutting reduces the wear of the blade,thereby increasing the life of the blades.An increase of just 10%in blade life would yield a cost saving of approximately 25%thereby reducing the environmental and financial impact of microtomy.
文摘This paper mainly describes a new approach to optimizing of the cutting glass fiber with multiple performance characteristics, based on reliability analysis, Taguchi and Grey methods. During the cutting process, the speed, the volume and the cutting load are optimized cutting parameters when the performance characteristics, which include Weibull modulus and blade wear, are taken into consideration. In this paper, optimization with multiple performance characteristics is found to be the highest cutting speed and the smallest cutting volume, and the medium cutting load. An analysis of the variance of the blade wear indicates that the cutting speed (47.21%), the cutting volume (14.62%) and the cutting load (12.20%) are the most significant parameters in the cutting process of glass fibers. In summary, the most optimal cutting parameter should be A3B1C2. The results of experiments have shown that the multiple performance characteristics of cutting glass fiber are improved effectively through this approach.
基金financially supported in part by the National Key Research and Development Pro-gram of China(No.2022YFB3404803)the National Natural Science Foundation of China(No.92160301).
基金support from the National Natural Science Foundation of China (Grant No.U20A20291).
文摘When ultrasonically cutting honeycomb core curved parts,the tool face of the straight blade must be along the curved surface’s tangent direction at all times to ensure high-quality machining of the curved surface.However,given that the straight blade is a nonstandard tool,the existing computer-aided manufacturing technology cannot directly realize the above action requirement.To solve this problem,this paper proposed an algorithm for extracting a straight blade real-time tool face vector from a 5-axis milling automatically programmed tool location file,which can realize the tool location point and tool axis vector conversion from the flat end mill to the straight blade.At the same time,for the multi-solution problem of the rotation axis,the dependent axis rotation minimization algorithm was introduced,and the spindle rotation algorithm was proposed for the tool edge orientation problem when the straight blade is used to machine the curved part.Finally,on the basis of the MATLAB platform,the dependent axis rotation minimization algorithm and spindle rotation algorithm were integrated and compiled,and the straight blade ultrasonic cutting honeycomb core postprocessor was then developed.The model of the machine tool and the definition of the straight blade were conducted in the VERICUT simulation software,and the simulation machining of the equivalent entity of the honeycomb core can then be realized.The correctness of the numerical control program generated by the postprocessor was verified by machining and accuracy testing of the two designed features.Observation and analysis of the simulation and experiment indicate that the tool pose is the same under each working condition,and the workpieces obtained by machining also meet the corresponding accuracy requirements.Therefore,the postprocessor developed in this paper can be well adapted to the honeycomb core ultrasonic cutting machine tool and realize high-quality and high-efficient machining of honeycomb core composites.