期刊文献+
共找到580篇文章
< 1 2 29 >
每页显示 20 50 100
THE SUPERCLOSENESS OF THE FINITE ELEMENT METHOD FOR A SINGULARLY PERTURBED CONVECTION-DIFFUSION PROBLEM ON A BAKHVALOV-TYPE MESH IN 2D
1
作者 Chunxiao ZHANG Jin ZHANG 《Acta Mathematica Scientia》 SCIE CSCD 2024年第4期1572-1593,共22页
For singularly perturbed convection-diffusion problems,supercloseness analysis of the finite element method is still open on Bakhvalov-type meshes,especially in the case of 2D.The difficulties arise from the width of ... For singularly perturbed convection-diffusion problems,supercloseness analysis of the finite element method is still open on Bakhvalov-type meshes,especially in the case of 2D.The difficulties arise from the width of the mesh in the layer adjacent to the transition point,resulting in a suboptimal estimate for convergence.Existing analysis techniques cannot handle these difficulties well.To fill this gap,here a novel interpolation is designed delicately for the smooth part of the solution,bringing about the optimal supercloseness result of almost order 2 under an energy norm for the finite element method.Our theoretical result is uniform in the singular perturbation parameterεand is supported by the numerical experiments. 展开更多
关键词 singularly perturbed CONVECTION-DIFFUSION finite element method supercloseNESS Bakhvalov-type mesh
下载PDF
Superconvergence of Direct Discontinuous Galerkin Methods:Eigen-structure Analysis Based on Fourier Approach
2
作者 Xuechun Liu Haijin Wang +1 位作者 Jue Yan Xinghui Zhong 《Communications on Applied Mathematics and Computation》 EI 2024年第1期257-278,共22页
This paper investigates superconvergence properties of the direct discontinuous Galerkin(DDG)method with interface corrections and the symmetric DDG method for diffusion equations.We apply the Fourier analysis techniq... This paper investigates superconvergence properties of the direct discontinuous Galerkin(DDG)method with interface corrections and the symmetric DDG method for diffusion equations.We apply the Fourier analysis technique to symbolically compute eigenvalues and eigenvectors of the amplification matrices for both DDG methods with different coefficient settings in the numerical fluxes.Based on the eigen-structure analysis,we carry out error estimates of the DDG solutions,which can be decomposed into three parts:(i)dissipation errors of the physically relevant eigenvalue,which grow linearly with the time and are of order 2k for P^(k)(k=2,3)approximations;(ii)projection error from a special projection of the exact solution,which is decreasing over the time and is related to the eigenvector corresponding to the physically relevant eigenvalue;(iii)dissipative errors of non-physically relevant eigenvalues,which decay exponentially with respect to the spatial mesh sizeΔx.We observe that the errors are sensitive to the choice of the numerical flux coefficient for even degree P^(2)approximations,but are not for odd degree P^(3)approximations.Numerical experiments are provided to verify the theoretical results. 展开更多
关键词 Direct discontinuous Galerkin(DDG)method with interface correction Symmetric DDG method superconvergence Fourier analysis Eigen-structure
下载PDF
Superconvergence of Finite Element Approximations to Parabolic and Hyperbolic Integro-Differential Equations 被引量:2
3
作者 张铁 李长军 《Northeastern Mathematical Journal》 CSCD 2001年第3期279-288,共10页
The object of this paper is to investigate the superconvergence properties of finite element approximations to parabolic and hyperbolic integro-differential equations. The quasi projection technique introduced earlier... The object of this paper is to investigate the superconvergence properties of finite element approximations to parabolic and hyperbolic integro-differential equations. The quasi projection technique introduced earlier by Douglas et al. is developed to derive the O(h2r) order knot superconvergence in the case of a single space variable, and to show the optimal order negative norm estimates in the case of several space variables. 展开更多
关键词 superconvergence parabolic and hyperbolic integro-differential equation finite element
下载PDF
Application for Superconvergence of Finite Element Approximations for the Elliptic Problem by Global and Local L<sup>2</sup>-Projection Methods 被引量:1
4
作者 Rabeea H. Jari Lin Mu 《American Journal of Computational Mathematics》 2012年第4期249-257,共9页
Numerical experiments are given to verify the theoretical results for superconvergence of the elliptic problem by global and local L2-Projection methods.
关键词 FINITE Element Methods superconvergence L2-Projection ELLIPTIC Problem
下载PDF
Superconvergence Study of the Direct Discontinuous Galerkin Method and Its Variations for Diffusion Equations 被引量:2
5
作者 Yuqing Miao Jue Yan Xinghui Zhong 《Communications on Applied Mathematics and Computation》 2022年第1期180-204,共25页
In this paper,we apply the Fourier analysis technique to investigate superconvergence properties of the direct disontinuous Galerkin(DDG)method(Liu and Yan in SIAM J Numer Anal 47(1):475-698,2009),the DDG method with ... In this paper,we apply the Fourier analysis technique to investigate superconvergence properties of the direct disontinuous Galerkin(DDG)method(Liu and Yan in SIAM J Numer Anal 47(1):475-698,2009),the DDG method with the interface correction(DDGIC)(Liu and Yan in Commun Comput Phys 8(3):541-564,2010),the symmetric DDG method(Vidden and Yan in Comput Math 31(6):638-662,2013),and the nonsymmetric DDG method(Yan in J Sci Comput 54(2):663-683,2013).We also include the study of the interior penalty DG(IPDG)method,due to its close relation to DDG methods.Error estimates are carried out for both P2 and P3 polynomial approximations.By investigating the quantitative errors at the Lobatto points,we show that the DDGIC and symmetric DDG methods are superior,in the sense of obtaining(k+2)th superconvergence orders for both P2 and P3 approximations.Superconvergence order of(k+2)is also observed for the IPDG method with P3 polynomial approximations.The errors are sensitive to the choice of the numerical flux coefficient for even degree P2 approximations,but are not for odd degree P3 approxi-mations.Numerical experiments are carried out at the same time and the numerical errors match well with the analytically estimated errors. 展开更多
关键词 Direct discontinuous Galerkin methods superconvergence Fourier analysis Diffusion equation
下载PDF
Superconvergence and the Numerical Flux: a Study Using the Upwind-Biased Flux in Discontinuous Galerkin Methods 被引量:2
6
作者 Daniel J.Frean Jennifer K.Ryan 《Communications on Applied Mathematics and Computation》 2020年第3期461-486,共26页
One of the beneficial properties of the discontinuous Galerkin method is the accurate wave propagation properties.That is,the semi-discrete error has dissipation errors of order 2k+1(≤Ch2k+1)and order 2k+2 for disper... One of the beneficial properties of the discontinuous Galerkin method is the accurate wave propagation properties.That is,the semi-discrete error has dissipation errors of order 2k+1(≤Ch2k+1)and order 2k+2 for dispersion(≤Ch2k+2).Previous studies have concentrated on the order of accuracy,and neglected the important role that the error constant,C,plays in these estimates.In this article,we show the important role of the error constant in the dispersion and dissipation error for discontinuous Galerkin approximation of polynomial degree k,where k=0,1,2,3.This gives insight into why one may want a more centred flux for a piecewise constant or quadratic approximation than for a piecewise linear or cubic approximation.We provide an explicit formula for these error constants.This is illustrated through one particular flux,the upwind-biased flux introduced by Meng et al.,as it is a convex combination of the upwind and downwind fluxes.The studies of wave propagation are typically done through a Fourier ansatz.This higher order Fourier information can be extracted using the smoothness-increasing accuracy-conserving(SIAC)filter.The SIAC filter ties the higher order Fourier information to the negative-order norm in physical space.We show that both the proofs of the ability of the SIAC filter to extract extra accuracy and numerical results are unaffected by the choice of flux. 展开更多
关键词 Discontinuous Galerkin Smoothness-increasing accuracy-conserving(SIAC)filtering superconvergence
下载PDF
Convergence and Superconvergence of Fully Discrete Finite Element for Time Fractional Optimal Control Problems 被引量:1
7
作者 Yuelong Tang 《American Journal of Computational Mathematics》 2021年第1期53-63,共11页
In this paper, we consider a fully discrete finite element approximation for time fractional optimal control problems. The state and adjoint state are approximated by triangular linear fi nite elements in space and &l... In this paper, we consider a fully discrete finite element approximation for time fractional optimal control problems. The state and adjoint state are approximated by triangular linear fi nite elements in space and <em>L</em>1 scheme in time. The control is obtained by the variational discretization technique. The main purpose of this work is to derive the convergence and superconvergence. A numerical example is presented to validate our theoretical results. 展开更多
关键词 Time Fractional Optimal Control Problems Finite Element Convergence and superconvergence
下载PDF
Convergence and Superconvergence of the Local Discontinuous Galerkin Method for Semilinear Second‑Order Elliptic Problems on Cartesian Grids
8
作者 Mahboub Baccouch 《Communications on Applied Mathematics and Computation》 2022年第2期437-476,共40页
This paper is concerned with convergence and superconvergence properties of the local discontinuous Galerkin(LDG)method for two-dimensional semilinear second-order elliptic problems of the form−Δu=f(x,y,u)on Cartesia... This paper is concerned with convergence and superconvergence properties of the local discontinuous Galerkin(LDG)method for two-dimensional semilinear second-order elliptic problems of the form−Δu=f(x,y,u)on Cartesian grids.By introducing special GaussRadau projections and using duality arguments,we obtain,under some suitable choice of numerical fuxes,the optimal convergence order in L2-norm of O(h^(p+1))for the LDG solution and its gradient,when tensor product polynomials of degree at most p and grid size h are used.Moreover,we prove that the LDG solutions are superconvergent with an order p+2 toward particular Gauss-Radau projections of the exact solutions.Finally,we show that the error between the gradient of the LDG solution and the gradient of a special Gauss-Radau projection of the exact solution achieves(p+1)-th order superconvergence.Some numerical experiments are performed to illustrate the theoretical results. 展开更多
关键词 Semilinear second-order elliptic boundary-value problems Local discontinuous Galerkin method A priori error estimation Optimal superconvergence supercloseNESS Gauss-Radau projections
下载PDF
Numerical Solutions for Nonlinear Fredholm Integral Equations of the Second Kind and Their Superconvergence
9
作者 徐定华 《Advances in Manufacturing》 SCIE CAS 1997年第2期98-104,共7页
This paper discusses the numerical solutions for the nonlinear Fredholm integral equations of thesecond kind. On the basis of the Galerkin method, the author establishes a Galerkin algorithm, a Wavelet-Galerkinalgorit... This paper discusses the numerical solutions for the nonlinear Fredholm integral equations of thesecond kind. On the basis of the Galerkin method, the author establishes a Galerkin algorithm, a Wavelet-Galerkinalgorithm and their corresponding iterated correction schemes for this kind of equations.The superconvergemceof the numerical solutions of these two algorithms is proved. Not only are the results concerning the Hammersteinintegral equations generalized to nonlinear Fredilolm equations of the second kind, but also more precise resultsare obtained by tising the wavelet method. 展开更多
关键词 nonlinear Fredholm integral equations Galerkin Inethod ofthonormal multiresoltltion analysis superconvergence.
下载PDF
Approximation and Superconvergence Analysis for a New Higher Order Wilson Element to Sobolev Type Equations
10
作者 石东洋 郝晓斌 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2008年第1期127-134,共8页
In this paper, a new higher order Wilson element is presented, and the convergence is proved. Then the interpolation postprocessing technique is used to obtain the global superconvergence and posterior error estimate ... In this paper, a new higher order Wilson element is presented, and the convergence is proved. Then the interpolation postprocessing technique is used to obtain the global superconvergence and posterior error estimate of higher accuracy of this new element for the Sobolev type equations. 展开更多
关键词 Sobolev type equations higher order Wilson element interpolation postprocessing technique superconvergence
下载PDF
带变系数时间分数阶扩散方程一个新的非协调高阶逼近格式高精度分析新模式
11
作者 王芬玲 赵艳敏 +1 位作者 史艳华 魏亚冰 《应用数学》 北大核心 2024年第4期1163-1172,共10页
基于时间高阶L2-1_(σ)格式和空间EQ_(1)^(rot)非协调有限元方法,对带有变系数的一类时间分数阶扩散方程进行了高效数值分析.首先,证明全离散逼近格式的解在能量模意义下的无条件稳定性.然后,利用该元的特殊性质,并将插值算子和投影算... 基于时间高阶L2-1_(σ)格式和空间EQ_(1)^(rot)非协调有限元方法,对带有变系数的一类时间分数阶扩散方程进行了高效数值分析.首先,证明全离散逼近格式的解在能量模意义下的无条件稳定性.然后,利用该元的特殊性质,并将插值算子和投影算子相结合,导出了采用传统估计无法导出的超逼近结果.此外,利用插值后处理技术,呈现了整体超收敛估计.最后,借助数值实验,验证了理论分析的正确性. 展开更多
关键词 EQ_(1)^(rot)非协调元 全离散格式 无条件稳定 超逼近和超收敛
下载PDF
一类非线性非局部抛物问题的类Wilson非协调元分析
12
作者 王萍莉 《许昌学院学报》 CAS 2024年第2期1-6,共6页
主要研究在半离散格式下一类非线性非局部抛物问题的类Wilson非协调元逼近.当问题的精确解u∈H^(3)(Ω)时,利用该单元相容误差在能量范数意义下可达到O(h^(2))阶(比其插值误差高一阶)的特殊性质,采用关于时间t的导数转移技巧,并结合双... 主要研究在半离散格式下一类非线性非局部抛物问题的类Wilson非协调元逼近.当问题的精确解u∈H^(3)(Ω)时,利用该单元相容误差在能量范数意义下可达到O(h^(2))阶(比其插值误差高一阶)的特殊性质,采用关于时间t的导数转移技巧,并结合双线性元的高精度分析和插值后处理技巧,得到了超逼近性质和整体超收敛结果. 展开更多
关键词 非线性非局部抛物问题 类Wilson非协调元 高精度分析 超逼近超收敛
下载PDF
非线性抛物型积分微分方程Galerkin有限元方法超收敛分析
13
作者 石东洋 张林根 《信阳师范学院学报(自然科学版)》 CAS 2024年第1期45-50,共6页
主要研究非线性抛物型积分微分方程的协调Galerkin有限元方法Crank-Nicolson(CN)全离散格式。通过对非线性项的精细估计,采用插值与投影相结合的估计技巧,导出了L^(∞)(H^(1))模意义下具有O(h^(2)+τ^(2))阶的超逼近性质。进一步利用插... 主要研究非线性抛物型积分微分方程的协调Galerkin有限元方法Crank-Nicolson(CN)全离散格式。通过对非线性项的精细估计,采用插值与投影相结合的估计技巧,导出了L^(∞)(H^(1))模意义下具有O(h^(2)+τ^(2))阶的超逼近性质。进一步利用插值后处理技术得到了整体超收敛结果,弥补了以往文献的不足。同时,通过数值例子验证了理论分析的正确性和方法的高效性。 展开更多
关键词 非线性抛物型积分微分方程 协调Galerkin有限元方法 超逼近 超收敛
下载PDF
BBM-Burgers方程的非协调有限元方法的超收敛分析
14
作者 石东洋 周钱 《信阳师范学院学报(自然科学版)》 CAS 2024年第2期182-189,共8页
研究Benjamin-Bona-Mahony-Burgers(BBM-Burgers)方程的非协调EQ_(1)^(rot)元的线性化BDF格式下的超收敛性质。通过使用数学归纳法来处理非线性项,并利用该单元已有的高精度结果及插值后处理技术,得到了在对空间剖分尺度和时间步长无网... 研究Benjamin-Bona-Mahony-Burgers(BBM-Burgers)方程的非协调EQ_(1)^(rot)元的线性化BDF格式下的超收敛性质。通过使用数学归纳法来处理非线性项,并利用该单元已有的高精度结果及插值后处理技术,得到了在对空间剖分尺度和时间步长无网格比约束的前提下,关于离散H^(1)-模意义下具有O(h^(2)+τ^(2))阶的超逼近和超收敛结果。最后,通过给出数值算例验证了理论分析的正确性。 展开更多
关键词 BBM-Burgers方程 非协调EQ_(1)^(rot)元 线性化BDF全离散格式 超逼近 超收敛
下载PDF
非线性BBMB方程能量稳定有限元方法高精度分析
15
作者 王乐乐 《郑州航空工业管理学院学报》 2024年第3期108-112,共5页
文章主要研究非线性Benjamin-Bona-Mahony-Burgers(BBMB)方程的能量稳定全离散有限元格式的高精度分析。首先,证明了后向Euler全离散格式的能量稳定性,得到了H1模意义下有限元解的有界性。其次,利用上述有界性和Brouwer不动点定理证明... 文章主要研究非线性Benjamin-Bona-Mahony-Burgers(BBMB)方程的能量稳定全离散有限元格式的高精度分析。首先,证明了后向Euler全离散格式的能量稳定性,得到了H1模意义下有限元解的有界性。其次,利用上述有界性和Brouwer不动点定理证明了离散问题解的存在唯一性。再次,利用协调双线性元的特殊性质,得到了相应的超逼近和整体超收敛结果。最后,通过数值试验验证了理论分析的有效性。 展开更多
关键词 BBMB方程 能量稳定格式 超逼近和超收敛分析
下载PDF
非线性Benjamin-Bona-Mahony-Burgers方程的非协调有限元超收敛分析
16
作者 廖歆 赵国营 《郑州航空工业管理学院学报》 2024年第2期102-107,共6页
文章研究了二维非线性Benjamin-Bona-Mahony-Burgers(BBMB)方程的非协调有限元方法。利用非协调EQ^(rot)_(1)元相容误差比插值误差高一阶的特殊性质,给出了非线性BBMB方程在半离散以及向后Euler全离散格式下的超逼近和整体超收敛结果。... 文章研究了二维非线性Benjamin-Bona-Mahony-Burgers(BBMB)方程的非协调有限元方法。利用非协调EQ^(rot)_(1)元相容误差比插值误差高一阶的特殊性质,给出了非线性BBMB方程在半离散以及向后Euler全离散格式下的超逼近和整体超收敛结果。最后,通过数值试验验证了理论分析的正确性和方法的有效性。 展开更多
关键词 非线性BBMB方程 非协调EQ^(rot)_(1)元 半离散格式 向后Euler全离散格式 超逼近和超收敛
下载PDF
超收敛光滑再生梯度无网格配点法
17
作者 齐栋梁 《力学与实践》 2024年第4期820-829,共10页
无网格配点(meshfree collocation,MC)法易于实现,但形函数高阶梯度的计算限制了其计算效率。为了提高MC法的梯度计算效率和收敛精度,本文结合无网格再生梯度理论与梯度光滑方法,提出了一种超收敛光滑再生梯度无网格配点(smoothed repro... 无网格配点(meshfree collocation,MC)法易于实现,但形函数高阶梯度的计算限制了其计算效率。为了提高MC法的梯度计算效率和收敛精度,本文结合无网格再生梯度理论与梯度光滑方法,提出了一种超收敛光滑再生梯度无网格配点(smoothed reproducing gradient meshfree collocation,SRGMC)法。所提方法以一阶再生梯度为基础递推构造二阶光滑再生梯度,避免了形函数中矩量矩阵的逆矩阵求导运算,数值实现便捷且计算效率高。文中通过典型数值算例验证了SRGMC法的精度和收敛性,结果表明,本文所提SRGMC法具有超收敛特性,且精度明显优越于MC法。 展开更多
关键词 无网格法 光滑再生梯度 配点法 超收敛
下载PDF
非线性BBM方程BDF2混合有限元方法的超逼近分析
18
作者 王俊俊 江梦萍 关振 《许昌学院学报》 CAS 2024年第5期1-7,共7页
针对非线性Benjamin-Bona-Mahony (BBM)方程,在时间上构造了2阶的Backward differential formula (BDF2)时间离散格式,在空间上采用双线性单元和零阶RT单元的混合有限元方法,研究了其超收敛性质.首先,利用变换技巧给出关于逼近方程的稳... 针对非线性Benjamin-Bona-Mahony (BBM)方程,在时间上构造了2阶的Backward differential formula (BDF2)时间离散格式,在空间上采用双线性单元和零阶RT单元的混合有限元方法,研究了其超收敛性质.首先,利用变换技巧给出关于逼近方程的稳定性.其次,利用逼近解的有界性得到关于其原始变量u的一个超逼近结果,进而得到其中间变量q的超逼近结果.最后利用一个算例验证理论结果的正确性. 展开更多
关键词 非线性BBM方程 BDF2混合有限元方法 稳定性 超逼近分析
下载PDF
二维半线性波动方程的能量稳定的Galerkin方法超收敛分析
19
作者 杨怀君 和刘萌 《郑州航空工业管理学院学报》 2024年第4期98-105,共8页
文章研究了一类半线性波动方程的能量稳定的全离散Galerkin方法的超收敛误差估计。首先,分析了数值格式解的唯一性和稳定性。其次,利用矩形网格上双线性元的特殊性质以及插值算子和Ritz算子在H1-范数下的超逼近的估计,得到了超逼近的结... 文章研究了一类半线性波动方程的能量稳定的全离散Galerkin方法的超收敛误差估计。首先,分析了数值格式解的唯一性和稳定性。其次,利用矩形网格上双线性元的特殊性质以及插值算子和Ritz算子在H1-范数下的超逼近的估计,得到了超逼近的结果。再次,借助于插值后处理技术得到了H1-范数下的全局超收敛的结果。最后,通过数值实验验证了理论分析的正确性。 展开更多
关键词 半线性波动方程 能量稳定的全离散格式 超收敛误差估计
下载PDF
Superconvergence analysis of Wilson element on anisotropic meshes 被引量:3
20
作者 石东洋 梁慧 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2007年第1期119-125,共7页
The Wilson finite element method is considered to solve a class of two- dimensional second order elliptic boundary value problems. By using of the particular structure of the element and some new techniques, we obtain... The Wilson finite element method is considered to solve a class of two- dimensional second order elliptic boundary value problems. By using of the particular structure of the element and some new techniques, we obtain the superclose and global superconvergence on anisotropic meshes. Numerical example is also given to confirm our theoretical analysis. 展开更多
关键词 Anisotropic meshes Wilson element superclose superconvergence
下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部